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1
I N T R O D U C T I O N

If programmers sang hymns, some of the most popular would be
hymns in praise of modular programming. – D. L. Parnas

1.1 Gradual Typing and First-Class Components

Modularity is a prime concern in programming language design, and
even dynamically-typed scripting languages such as Racket, Python,
and Ruby support modular programming. In Parnas’s words, module
systems “allow one module to be written with little knowledge of the
code used in an another module” and “allow modules to be reassem-
bled and replaced without reassembly of the whole system” [10]. Lan-
guages like Racket [4] take full advantage of their dynamism to en-
able the latter with units—first-class modules that are available at
run-time for flexible loading and linking. Their dynamic nature al-
lows additional modules to be linked into the system while it is run-
ning without reassembly of the whole system. First-class components
thus enable flexible uses such as dynamic plugin architectures. Fur-
thermore, first-class components offer mutually-recursive linking, al-
lowing even tightly coupled modules to be written separately. While
the flexibility of Racket’s units enable useful software development
patterns, the lack of static type-checking means that the interfaces of
these components are only loosely defined and enforced. This loose-
ness hampers the ability to write reliable and independent modules.

Meanwhile, gradual type systems offer the ability to retrofit static
type-based reasoning on top of existing dynamically-typed languages
by allowing the programmer to selectively add type annotations to
parts of their programs. The added annotations are statically checked,
providing accurate documentation for the interfaces that the original
developers wrote down in the comments or, in the worst case, only
pictured in their minds. Therefore a gradual type system is a perfect
match for first-class components, allowing programmers to retrofit
stricter interfaces on existing components.

This brings me to my thesis:

Gradual typing accommodates first-class modules.

I demonstrate this through the design of a static type system for
units and a corresponding implementation in Typed Racket. I show
that programming with gradually typed first-class modules is practi-
cal by porting several unit-based programs from the Racket codebase
to Typed Racket.
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2
U N I T S

2.1 Programming with Units

Large systems often necessitate the use of modules in order to re-
duce the complexity of individual components. When these compo-
nents are tightly coupled, however, it becomes difficult to break up
a program without introducing cyclic dependencies. Units mitigate
this issue by explicitly allowing recursive linking, thus allowing large
programs to be more readily broken down into logical components.

Consider the implementation of a typechecker for a language like
Typed Racket [12]. Implementing a typechecker requires functions to
typecheck each form in a language such as if expressions, lambda ex-
pressions, let expressions, and applications. Each typing rule should be
implemented separately from all of the others, but due to the recur-
sive nature of abstract syntax trees the process of typechecking these
forms is highly interconnected. Using units allows typechecking for
each form to be implemented independently of the others closely fol-
lowing the recursive nature of the problem. The typechecker for the
full language is produced by linking together the units for each form.

(define-signature tc-expr^ (tc-expr))
(define-signature tc-if^ (tc/if))
(define-signature tc-lambda^ (tc/lambda))
(define-signature tc-let^ (tc/let))
(define-signature tc-app^ (tc/app))

Figure 1: Signatures in Typed Racket

Linking for Racket’s units are mediated by signatures. Each signa-
ture provides a set of names that a unit will either agree to import
or export. Figure 1 presents a subset of the signatures used in the ac-
tual implementation of Typed Racket. The define-signature form binds
a signature name given a collection of names to be imported or ex-
ported. Since Racket links units in a nominal fashion, units that import
a particular signature can only link with units that export that exact
signature and vice versa. Signatures make programming with units
manageable by providing static interfaces to support separate compi-
lation and providing single identifiers to represent large collections
of imports or exports. In structural unit systems, units must specify
each imported and exported identifier which is impractical for units

3



with large numbers of imports or exports. Many signatures used in
the implementation of Racket contain long lists of identifiers. Using
signatures allows simple reuse of these collections that is not subject
to the error-prone lists of structural unit systems.

The definition of the tc-expr@ unit below demonstrates the use of
imports and exports. The tc-expr@ unit exports the tc-expr^ signature
which requires the definition of tc-expr, the function that implements
typechecking for expressions. Taking full advantage of the unit’s im-
ports, the tc-expr function pattern matches on its arguments and de-
fers to the more specialized typechecking functions.

(define tc-expr@
(unit (import tc-if^ tc-lambda^ tc-let^ tc-app^)

(export tc-expr^)
(define (tc-expr form)

(syntax-parse form
[(if test then else) (tc/if form)]
[(#%plain-lambda formals . body)

(tc/lambda form)]
[(let ([name expr] ...) e) (tc/let form)]
[(#%plain-app . _) (tc/app form)]
...))))

The tc-expr@ unit is not useful in isolation. It depends on units
that implement its imported signatures. Before a unit’s body can be
evaluated the unit must satisfy its imports. The primary means of
satisfying a unit’s imports is to link it with other units that provide
the necessary signatures. We can create a typechecker@ unit for type-
checking expressions by linking the tc-expr@ unit with the other units
necessary for typechecking.

(define typechecker@
(compound-unit
(import)
(export TC-EXPR)
(link (([TC-EXPR : tc-expr^])

tc-expr@
TC-IF TC-LAMBDA TC-LET TC-APP)

(([TC-IF : tc-if^]) tc-if@ TC-EXPR)
(([TC-LAMBDA : tc-lambda^]) tc-lambda@ TC-EXPR)
(([TC-LET : tc-let^]) tc-let@ TC-EXPR)
(([TC-APP : tc-app^])
tc-app@
TC-EXPR TC-LAMBDA TC-LET))))

The compound-unit form creates new units from existing units by
linking them together. To produce a compound unit, the programmer
provides import and export lists like an ordinary unit and a series of
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linking clauses. Each linking clause specifies the linking behavior of a
particular unit value that participates in the linking. In each clause,
the programmer writes down the exports of the unit, a reference to
the unit value, and its imports. For example, the tc-if@ unit exports
the tc-if^ signature which is bound to the name TC-IF in the body of
the compound-unit form. It also imports the signature bound to the
name TC-EXPR which represents the tc-expr^ signature bound in the
first linking clause. The typechecker@ compound-unit recursively links
together the units for each element of the typechecker. Despite the
mutually recursive relationship between tc-expr@ and the tc-let@, the
linking behavior of units allows these components to be developed
independently of one another.

A unit may provide definitions or values to its context via defini-
tions or expressions in its body. These definitions or values can only
be communicated to a unit’s context when the unit is invoked. Further-
more, a unit can only be invoked when all of its imports have been
satisfied, or when it imports no signatures, to ensure that the unit’s
body is well-defined.

Units are typically invoked using the invoke-unit form, which re-
turns the result of evaluating the final expression in the unit’s body.
An invocation of a unit can also introduce definitions into the sur-
rounding scope. For example, the define-values/invoke-unit form used
below invokes a unit and introduces definitions for the unit’s exports.

(define-values/invoke-unit typechecker@
(import)
(export tc-expr^))

(tc-expr #�((lambda ([x : Integer]) (+ x 5)) 12))

Since invoking units requires all imports to be satisfied, the pro-
grammer must usually provide units for all imports. Instead, since
creating units can be a syntactic burden, many operations on units al-
low a unit’s imports to be satisfied by bindings in its lexical context.

For example the heap@ unit below is invoked without linking to a
unit that exports the compare^ signature. The invoke-unit form in this
case uses the definition of compare in the current scope to satisfy the
heap@ unit’s imports.

(define-signature compare^ (compare))
(define-signature heap^ (merge ...))
(define (compare n m) (< n m))
(define heap@

(unit (import compare^)
(export heap^)
(define (merge h1 h2)

(... (compare ...)))))
(invoke-unit heap@ (import compare^))
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2.2 Tracking Dependencies

Invoking a unit in Racket may cause side effects such as printing to
the screen or reading input from the user. The ability for units to con-
tain side-effecting computation gives units expressive power, but it
also adds a complication regarding how to manage these effects. If
two effectful units are linked together using the compound-unit form,
the first unit in the link clause executes its body first when the com-
pound unit is invoked. If an effect in one unit depends on the other,
then re-ordering the linking clauses in a compound unit may break
the program.

Racket avoids this problem by allowing programmers to annotate
units with init-depend clauses. These clauses specify which imports of
a unit must be linked before the given unit. Failure to satisfy the
dependency ordering results in an error at link-time.

As an example of the use of init-depend clauses, consider the fol-
lowing effectful units:

(define-signature data^ (data))
(define-signature results^ (results))
(define data@

(unit (import)
(export data^)
(define data (read))))

(define results@
(unit (import data^)

(export results^)
(init-depend data^)
(define results

(... data ...))))

the data@ unit calls the read function to get input from the user and
the results@ unit uses the data to generate a results value. Since re-
sults@ requires that the data is initialized before any processing can
occur, it is annotated with an init-depend clause. The init-depend clause
requires that the unit providing the data^ signature must be linked in
before results@. Trying to link the results unit before the data unit in
a compound-unit expression will result in a runtime error.

2.3 Prior Work on First-Class Modules

While gradual typing for modular programming is novel, it builds
on a long line of work on type systems for modules. In this section,
I describe two lines of work that are particularly relevant: existing
formalisms for units and ML modules.
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2.3.1 Units

The first presentation of units by Flatt and Felleisen [3] had the goal
of improving on module systems by supporting separate compila-
tion, dynamic loading, and cyclic linking. The design I present in this
thesis diverges from Flatt and Felleisen in order to support the prag-
matics of the unit library as it exists in full-fledged Racket. In this
section, I describe the key differences between the designs at a high-
level. In subsequent chapters, I detail the differences in an informal
design overview and with a formal model.

The Flatt and Felleisen model of units differs from Racket’s units
by using a structural linking mechanism as opposed to nominal link-
ing. In Flatt’s model, units import and export lists of individual iden-
tifiers rather than signatures. Flatt and Felleisen equipped their un-
typed model of units with a corresponding structural type system.
Their type system forms the basis of the type system that I develop
in this thesis.

Though Flatt and Felleisen’s type system and this thesis both
tackle notions of unit “dependencies”, their purpose and implementa-
tion differ significantly. Dependency tracking in Flatt and Felleisen’s
model is used to track and prevent recursive type definitions through
the linking of units. The initialization dependencies described in my
model enforce the linking order specified by init-depend clauses. Fur-
thermore, dependency information is tracked only with unit types,
rather than with unit values, in the Flatt and Felleisen model. In
Racket, the initialization dependencies are tracked in unit values.

Owens and Flatt [9] build on the Flatt-Felleisen model of units to
include translucent and opaque types. Units that import and export
opaque types allow the definition of units that can be parameterized
over any type. This increases the expressivity of the unit system, but
complicates the linking process. Consider the diamond import prob-
lem, in which two units that import and export an opaque type from
a single source are subsequently linked together. When linking the
two units together it is no longer possible to determine that the two
opaque types are actually the same. The addition of translucent types
to the unit system solves this problem. Units that can import and ex-
port types translucently allow for imported and exported types to
refer to one another through type equations. Solving the diamond
import problem is then a simple matter of tracing through type equa-
tions to determine when two types are equal.

Both of the unit models in the literature describe type systems
with structural linking, meaning that units may link together if they
export and import the same names. Meanwhile, the Racket implemen-
tation of units adopts a pragmatic view and conducts linking through
statically-bound signatures. Thus, Racket uses nominal linking, mean-
ing that units may only link together if their statically-bound signa-
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tures names agree. While the linking behavior is nominal, the type
system that accommodates these units has a structural nature. In par-
ticular, a unit type is a subtype of another if it imports fewer or ex-
ports more signatures than another unit type. This structural subtyp-
ing rule comes from Flatt and Felleisen’s original model.

2.3.2 ML modules

Unlike units, ML modules, known as structures, are not first-class val-
ues. This means that ML has no mechanism within the language to
link structures at runtime like Racket’s compound-unit form. Instead
ML modules link together via functor application. Functors are func-
tions from structures to structures that provide a way to combine ML
modules. Since units in Racket are first-class values, there is no need
for the notion of a functor, instead they can be simulated using func-
tions and the compound-unit form.

Although recent implementations of Ocaml [7] include so-called
first-class modules, they require the programmer to explicitly convert
back and forth between modules and module values. Additionally,
Ocaml includes a module rec form that allows recursive linking of
modules, but it is limited compared to Racket’s compound-unit form.
The recursive linking form in Ocaml requires each linked module be
given a type annotation and seems to prevent separate compilation
of mutually recursive modules.

While units in Racket must be invoked in order to access their
bindings, this is not the case in ML. ML modules allow access to
the types and values they contain through a selection operator. Units
in Racket use signatures and explicit invoking constructs to main-
tain abstractions in unit bodies. In ML this abstractions is maintained
through module types. Module types in ML, called signatures, only
allow access to members of the module that are mentioned in the
type. This is similar to Racket’s signatures which only allow access
to bindings mentioned in imported signatures. Like the prior work
on units, ML’s type system for modules is structural. ML’s module
types, however, do not support subtyping.
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3
D E S I G N O V E RV I E W

3.1 Criteria for Units in Typed Racket

The design of my type system is motivated by two points that tie into
my thesis: (1) the type system should support the gradual evolution
of module specifications, and (2) the type system should pragmati-
cally support units.

I bootstrap my type system on Typed Racket’s existing infrastruc-
ture since it already supports mature gradual typing for Racket. The
two points above and Racket’s existing design suggests that my grad-
ual type system must contain the following elements:

• Nominal linking of units through signatures,

• Dependency tracking to order side effects in units, and

• Unit contracts to support typed-untyped interoperation.

The previous chapter introduced the distinction between signa-
tures and units and Racket’s nominal linking behavior. A type sys-
tem for units must accommodate this distinction and reject invalid
linking situations. Furthermore, since Racket allows the programmer
to specify constraints on unit side-effects through init-depend clauses,
the type system should track these constraints as well.

Typed Racket supports sound gradual typing by compiling type
annotations into higher-order contracts [2] at the boundaries between
compilation packages. Whenever a value flows across these bound-
aries, the contract system applies a check, and potentially a delayed
check in the form of a wrapper, to the value. This check prevents
untyped code from violating the type invariants of typed code. To
soundly support units, I must extend Typed Racket with a translation
from unit types to matching unit contracts. I base my target contracts
off of Strickland and Felleisen’s unit contracts [11] with a modified
semantics that accounts for a unit’s body expressions.

In the rest of this section, I explain how each design criterion is
satisfied in my gradual type system design.

3.2 Signatures and Unit Types

The first-class nature of units and the fact that units may implement
multiple signatures requires a distinct notion of a unit type. To illus-
trate this need, consider the following untyped implementation of a
heap using units:
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(define-signature heap^ (find-min insert merge))
(define-signature compare^ (compare))
(define h@

(unit (import compare^)
(export heap^)
(define (find-min h) ...)
(define (insert v h)

(... (compare v ...) ...))
(define (merge h1 h2) ...)))

To add type annotations to this program, we must assign a type
to the variable h@. In ML-like languages in which modules are not
first class values, the type of h@ would be structural in terms of its
imports and exports. This example corresponds roughly to a functor
in ML that would accept a module of type compare^ as an argument
and return a module of type heap^. In Racket, where units are first
class values, the distinction between functors and modules is blurred.

In my design, type annotations are added in two places. First, the
programmer must annotate all signatures with type annotations for
each name. Second, the programmer annotates expressions that eval-
uate to units with unit types. Each unit type mentions the imported
and exported signatures as well as the type of the unit’s body ex-
pressions. For example, a typed implementation of the heap program
looks like this:

(define-signature heap^
([find-min : (-> Heap Integer)]
[insert : (-> Integer Heap Heap)]
[merge : (-> Heap Heap Heap)]))

(define-signature compare^
([compare : (-> Integer Integer Boolean)]))

(: h@ (Unit (import compare^)
(export heap^)
Void))

(define h@ (unit ...))

The type given to the h@ unit above shows the symmetry between
unit types and unit values. Declaring types in signature definitions
provides a consistent interface for all units importing or exporting
a given signature. Storing type information with signatures allows
Typed Racket to support nominal linking in the type system for units.

3.3 Tracking Dependencies in Types

As described in section 2.2, expressions in unit bodies may have side-
effects. To constrain these effects, programmers can specify the link-
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ing order of units using init-depend clauses. Recall the results@ unit
from earlier, reproduced below with matching type annotations:

(: results@ (Unit
(import data^)
(export results^)
(init-depend data^)
Void))

(define results@
(unit (import data^)

(export results^)
(init-depend data^)
(define results

(... data ...))))

The type for results@ specifies an additional signature in an init-
depend clause that mirrors the clause in the unit expression. Tracking
the dependencies in the unit type allows the type system to reject
wrongly ordered linking clauses at compile-time.

3.4 Unit Contracts

In order to ensure safe interoperation between typed and untyped
components, the runtime system must enforce the type systems’s in-
variants when typed values flow into untyped contexts. Typed Racket
uses Racket’s contract system [2] to protect values flowing between
typed and untyped modules. Strickland and Felleisen [11] introduced
contracts for units that protect the values imported and exported from
a given unit.

Simply checking the imports and exports of a given unit is suf-
ficient for most uses of units in Racket because they only contain
internal definitions and no body expressions. For units with body ex-
pressions, Strickland and Felleisen’s contracts are insufficient. Unit
contracts must also monitor the result of a unit’s body when it is
extracted via invoke-unit.

Strickland and Felleisen’s implementation of unit contracts does
not guard the result of invoking a unit with a contract that guaran-
tees it maintains the expected invariants. The proposed solution to
this oversight is to extend unit contracts to specify a contract that
protects the result of invoking a unit. For Typed Racket, this enhance-
ment is necessary to ensure sound interoperability between typed
and untyped code. When units flow from typed to untyped code,
unit contracts will ensure that the invariants of the type system hold,
even when units are invoked.
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3.5 Explicit Design Omissions

In the design of Typed Racket with units, some features present in
earlier work on unit type systems were explicitly omitted. Owens and
Flatt’s [9] type system for units which includes opaque and translu-
cent types was not considered for the design of Typed Racket with
units. An analysis of the Racket codebase determined that very few
Racket programs using units would benefit from opaque or translu-
cent types. Most Racket programs tend to use units as replacements
for modules and use units primarily to gain the advantages of cyclic
linking and dynamic loading.

Furthermore, supporting opaque and translucent types in Typed
Racket is challenging due to Typed Racket’s lack of real opaque types
that prevent reflective operations. The separation between units and
signatures in Racket would be complicated by the addition of opaque
and translucent types. Programmers would need to declare opaque
types in signature definitions. Unit values importing and exporting
signatures would then introduce type equations which must be man-
aged in the type checking of compound-unit expressions and in com-
pilation from unit types to unit contracts.
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4
A M O D E L O F U N I T S

In this chapter, I present a formal model of my type system design.
The formal model is encoded in the Redex modelling language [1]
and is based on Flatt and Felleisen’s original model [3] of units. This
chapter starts with a basic, untyped language of units and then in-
troduces a type system for that language. The model leaves out the
formal details of typed-untyped interoperation and contracts.

4.1 The Untyped Language

Flatt and Felleisen [3] show that any language containing both be-
gin and letrec forms can support units. Extending a language with
units requires a sequencing form and a form which recursively binds
names. Figure 2 presents the untyped core language that forms the
basis for the semantics of units. The untyped core language is the
untyped lambda calculus extended with operations on numbers and
booleans and an if expression. The more interesting extensions in
this core language are the begin and letrec forms, which are necessary
when adding units to the core language.
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Figure 2: The Untyped Core Language

4.2 The Core Semantics

To support a simple expression of the semantics for the core language,
the base language is extended to support a stateful set! operation as
well as a void value, neither of which can occur in core language
expressions, they only serve to simplify the presentation of the lan-
guage’s semantics.

Figure 3 shows the evaluation contexts, C, for the core language
as well as the representations of the environment, E, and store, S.
Environments map variable names such as x to locations, denoted
by �, and the store maps locations to values. Values in the language
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Figure 3: Environments and Evaluation Contexts

are booleans, numbers, the void value, and closures consisting of a
lambda and an environment.

The reduction rules for the core language are standard. Figure 4

presents only those reduction rules which are necessary to extend a
language with units. The begin form forces the evaluation of its first
subexpression to a value before evaluating subsequent expressions.
A begin form containing only a single expression reduces to that ex-
pression. The set! rule evaluates its subexpression then updates the
store and maps the location of the variable to its new value. The core
language’s semantics for letrec are standard. The environment is ex-
tended to include the variable names bound by the leterec expression
and then each variable binding is evaluated in order before the body
expression is finally evaluated.
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Figure 4: Core Language Reduction Rules

4.3 A Language with Units

To model the functionality of Racket’s unit system the core language
is extended to include top-level definitions, a signature definition
mechanism, and new expression forms for each of the fundamental
unit operations: creating, compounding, and invoking units.

Signatures are created using the define-signature form which spec-
ifies the name of the signature, an optional parent signature and a list
of identifiers required by the signature. Signature extensions include
those variables from the base signature as well as any new identifiers.
This notion of signatures is the greatest departure from prior mod-
els of units. Units in this model are linked based on the names of
signatures rather than the actual identifiers imported and exported.
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This restriction may seem limiting, but in most cases it is more prac-
tical than linking identifiers individually. Many signatures in Racket
contain long lists of identifiers that must be defined by units export-
ing the signatures. Linking units exporting these signatures is made
simpler by specifying signatures rather than long lists of identifiers.

The unit expression creates a new unit with the specified import,
export, and init-depend signatures. Unit bodies contain a sequence of
definitions followed by a single expression. Definitions are allowed
to refer to one another and to values bound by imported signatures.
Valid units must define all exported values. Imported values cannot
be exported directly to prevent trivial circular linking.

The invoke-unit expression provides a way to evaluate the body
of a unit. Only units which have satisfied their imports or import no
signatures, may be invoked. Invoking a unit evaluates the unit’s body
expression in the context where the unit was defined extended with
the unit’s body definitions.

The compound-unit form allows the creation of compound units
by specifying how one or more units will be linked together. Each
unit expression in a compound expression must have its imports sat-
isfied. Imports can be satisfied either by imports to the compound
expression or by some linked units export. There are few restrictions
on which signatures can be used to satisfied a units imports inside a
compound expression. Recursive linking is allowed and is identical to
linking between two distinct units. Initialization dependencies are the
only means of disallowing certain linking scenarios in a compound-
unit expression.
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Figure 5: Extending the language with units

4.4 The Semantics of Units

Flatt and Felleisen [3] designed a semantics for units based on a
translation of invoked units into letrec expressions and compound
units into single unit expressions. The semantics of nominally linked
units presented here closely follows Flatt and Felleisen’s semantics
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for structural units. To express the semantics of units, the language
is extended with a unit closure, which pairs a unit with an environ-
ment. Just as lambda expressions evaluate to closures, unit expres-
sions reduce to values that close over the environment in which the
unit is evaluated. This is necessary only to avoid complications asso-
ciated with a substitution based semantics as presented in Flatt and
Felleisen’s original work on units.
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Figure 6: Evaluation Contexts for Units

The rule for evaluating an invoke-unit expression is nearly identi-
cal to the reduction presented in Flatt and Felleisen’s model of units.
Invoking a unit value is only allowed when that unit imports no sig-
natures. In that case the unit reduces to a letrec expression which is
evaluated in the environment of the unit value.

The evaluation of compound-unit expressions is not as simple as
unit or invoke-unit expressions. Flatt and Felleisen’s reduction rule for
compound units generates a new unit by joining the unit body defini-
tions from each unit being compounded and sequencing the expres-
sions. This reduction is only correct under the side-condition that the
definitions from each unit have no naming conflicts with one another.
Structurally linked units impose the requirement that no imported
identifier is exported. Nominal units, however, allow importing and
exporting the same signature through the use of prefixes. A com-
pound form that both imports and exports some signature cannot
simply reduce to a unit value which merges the bodies of all linked
units together. This can cause a naming conflict and lead to an in-
valid result. Therefore, the evaluation of a compound-unit form must
perform a consistent renaming over all units being linked and handle
the prefixing of imports and exports. The reduction rule defers to the
COMPOUND metafunction which ensures that each linking clause is
valid, init dependencies are satisfied, and all renaming is performed
to return a single unit.

4.5 Types for Units

The typed language extends the untyped language with type annota-
tions at binding sites, including signature definitions. The set of base
and function types is extended with a Unit type for the the types of
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Figure 7: Reduction Semantics of Unit Forms

unit expressions. Typechecking the typed unit language is straight-
forward. Non-unit expressions typecheck as in traditional models of
the typed lambda calculus with subtyping. The Unit type allows a
subtyping relation in which one unit type is a subtype of another if it
imports fewer signatures, exports more signatures, or the body types
are subtypes of one another.

Typechecking the unit language requires a new environment, la-
beled ⌃, that maps signature names to the variables bound by that
signature and their corresponding types. This environment could be
merged with the rest of the type environment, but is kept separate to
emphasize its role in typechecking units.

The typechecking rule for the unit form is structurally similar to
the rule for typechecking letrec. A unit expression is well typed if its
body definitions and expression are well typed in the context of its
imported signatures. Other conditions of unit typechecking simply
ensure that a unit is well-formed. Well formed units are those that do
not import the same signature or identifier more than once, do not
directly export an imported identifier, and define all expected exports
with the correct types.

An invoke-unit expression is well-typed when the expression be-
ing invoked is a well-typed, import-free unit. This ensures that only
units which have satisfied their imports can be invoked. The type of
an invoke-unit expression is the body type of the unit subexpression.
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Typechecking the compound-unit form is the most complex of the
typechecking rules added to support typed units. The additional com-
plexity comes from the need to track dependency information in the
type system. The Links judgment operates over all the linking clauses
of a compound-unit form to ensure that each link is valid. A given link-
ing clause is valid when the type of the expression being linked is a
unit type whose imports and exports are consistent with those de-
clared in the linking clause and any init-depend signatures mentioned
in the type must have appeared above the current linking clause. This
guarantees that units can be linked together safely according to user-
specified init dependencies.
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Figure 8: Typechecking Rules for Units
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5
I M P L E M E N T I N G T Y P E D U N I T S

5.1 Overview

This chapter gives an overview of the implementation of units in
Typed Racket. I introduce the notion of trampolining macros to imple-
ment the syntactic support for typed units. To support typed-untyped
interaction, this chapter also explains the details of type to contract
compilation for unit types. The chapter closes with a discussion of
the limitations of Typed Racket’s implementaion of units.

Implementing units for Typed Racket presents a syntactic chal-
lenge that requires more than just translation the typing judgements
from the previous chapter into code. Since Typed Racket accommo-
dates the full range of syntactic extensions that come with Racket, it
typechecks a source program by first fully expanding it into the core
language forms [13]. This allows Typed Racket to accommodate most
syntax extensions without extending the type system. Since this core
language is fully desugared, high-level information about complex
syntactic forms may be lost in the expansion process.

Typechecking complex, high-level macros such as units requires
cooperation from the macro implementation so that the typechecker
can recover the information it needs to typecheck the form. Con-
cretely, this means that Typed Racket needs to provide a wrapper
unit macro that annotates the unit expression with typechecking an-
notations. The typechecker looks at these annotations to recover the
information needed by the unit typechecking rules.

5.2 Racket’s Unit Library

Racket implements units through a large collection of macros. This
implementation includes signatures, the core unit forms introduced
in section 4.3, and many variations on these core forms that reduce
the syntactic burden of programming with units. The nominal na-
ture of Racket’s units requires an implementation that binds vari-
ables which are not lexically apparent in unit expressions. Specifically,
it is impossible to distinguish from the syntax of a unit expression
whether a variable referenced in the unit’s body is bound by an im-
ported signature or the outer context of the unit expression. Thus,
Racket’s unit macro is necessarily unhygienic [6].

Racket’s unit macro performs a renaming on all imported and ex-
ported variables as well as internal definitions. This avoids possible
naming conflicts that can occur when linking units together. Unfor-
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tunately, this renaming strategy complicates the implementation of
macros that must cooperate with Racket’s unit form.

5.3 A Failed Attempt at Typed Units

The unhygienic nature of the unit macro poses a significant challenge
to annotating the syntax of unit expressions for typechecking. Once
syntax is annotated with the appropriate information, implementing
typechecking for units is a direct translation of the typing judgments
from section 4.5 into code. Annotating unit syntax requires the ability
to map external signature names to their internal renaming. Recover-
ing the internal names is necessary to correctly associate the types of
signature-bound variables in the body of a unit.

The naive attempt to recover internal names by inserting the
signature-bound identifiers into the body of the unit, fails. Inserting
these identifiers directly into a unit expression gives them an incom-
patible context, resulting in a different internal renaming. Further-
more, attempting to annotate unit body definitions and expressions
with information for typechecking by performing local expansion on
each definition and expression in the unit body also results in un-
bound identifier errors. Local expanding sub-expressions of a unit’s
body modifies the context of the sub-expressions and corrupts lexical
binding within the unit. This causes identifiers that should be bound
within the unit body to trigger unbound identifier errors. Overall,
an attempt to annotate unit syntax without cooperation from the un-
typed unit macro will not succeed.

5.4 Trampolining Macros

The process of annotating a unit expression for typechecking must
be able to handle the renaming and variable binding schemes that
the unit macro creates. The complex and unhygienic expansion of the
unit macro that occurs during compilation must be replicated by the
annotation process in order to maintain the correct binding structure.
To solve this problem, I adapt the style of trampolined programs [5]
to the design of macros. Trampolining macros are series of two or
more macros that cooperate with one another by allowing control of
the macro expansion process to bounce back and forth between each
involved macro.

Using a trampolining style, the typed unit macro becomes sub-
stantially less complex than the implementation that manually iter-
ates through each expression in the unit body and performs local
expansion. The typed unit macro, depicted in figure 9, becomes a
nearly trivial wrapper over its untyped equivalent. The macro inserts
a table that is used to map external signature names to their internal
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(define-syntax (typed-unit stx)
(syntax-parse stx
[(_ (import im-sig ...)

(export ex-sig ...)
body ...)

; Defer to the untyped unit macro
#�(unit (import im-sig ...)

(export ex-sig ...)
; The table mapping external to internal names
#,(import/export-table stx)
; Wrap the unit body with the annotate macro
(annotate body ...))]))

(define-syntax (annotate stx)
(syntax-parse stx

[(_) #�(begin)]
[(_ e)
(syntax-parse (local-expand #�e ...)
[(begin b ...) #�(annotate b ...)]
[(define-syntaxes (d ...) body)

; Leave macro definitions unchanged
#�(define-syntaxes (d ...) body)]

[(define-values (d ...) body)
; Mark definitions for later typechecking
#�(define-values (d ...)

#,(tag-unit-body-def
#�(#%expression

(begin
(void (� () d) ...)
body))))]

; Mark other expressions for later typechecking
[_ (tag-unit-body-expr ...)])]

[(_ e ...) #�(begin (annotate e) ...)]))

Figure 9: Trampolining Macros

renamings and wraps the entire unit body in a macro that marks each
definition or expression for typechecking.

Expansion of the typed unit macro begins by yielding control to
the untyped unit macro. The untyped unit macro first expands the
table, leaving syntax that the typechecker uses to recover the internal
names of signature-bound variables. After the table has expanded,
the trampolining process begins and the unit macro cedes control to
the annotating macro. The trampolining process then bounces con-
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trol of expansion back and forth between the unit macro and the
annotating macro. The annotating macro only needs to head-expand
expressions and definitions to mark them for typechecking. An added
benefit of the trampolining implementation is that macro definitions
in unit bodies do not need to be treated specially by the annotating
macro. Instead, Racket’s macro expansion process handles the expan-
sion of macros in unit bodies.

To better understand the trampolining process consider a simple
use of the typed unit macro below:

(typed-unit (import)
(export)

(define x 5)
(+ x 12))

This unit imports and exports no signatures and contains only a sin-
gle internal definition and body expression. Since the unit has no
imports or exports the table that maps signature names to their re-
namings is unnecessary for this example. Following the trampolining
process described above the typed-unit macro expands into the unit
macro and wraps the unit body with the annotate macro.

(unit (import)
(export)

(annotate
(define x 5)
(+ x 12)))

The untyped unit macro cannot immediately perform anymore ex-
pansion so it yields control of expansion to the annotate macro.

(unit (import)
(export)

(annotate (define x 5))
(annotate (+ x 12)))

The expansion of the annotate macro wraps each subexpression and
splices it into the body of the unit. Control of expansion returns the
the unit macro, but it immediately yields control back to the first
instance of the annotate macro.

(unit (import)
(export)

(@ (define-values (x) 5))
(annotate (+ x 12)))

When the annotate macro encounters a definition or an expression
it performs head-expansion, expanding Racket’s define form into the
core define-values form. Additionally, the annotate macro leaves a mark
that tells the typechecker to typecheck the given expression. In the
example, this mark is denoted by the @ symbol.
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(unit (import)
(export)

(@ (define-values (x) 5))
(@ (#%plain-app + x 12)))

Finishing off the example, the trampolining process continues until
each form in the unit’s body has been annotated. This result is the
unit above with its body expanded and marked for typechecking.

5.5 Implementing Type to Contract Translation

For sound interoperation, Typed Racket must compile unit types to
unit contracts at compilation package boundaries. While I already
explained the design of unit contracts, I did not describe the com-
pilation strategy. Consider again the implementation of a heap with
typed units:

(define-signature compare^
([compare : (-> Integer Integer Boolean)]))

(define-signature heap^
([insert : (-> Integer Heap Heap)]
...))

(: h@ (Unit (import compare^)
(export heap^)
Void))

(define h@
(unit (import compare^)

(export heap^)
(define (insert n h) ...)
...))

When h@ is exported, Typed Racket needs to generate a contract
that guards its invocations in other compilation contexts. Assuming
that heap/c is bound to a contract combinator that corresponds to heap
types, Typed Racket will produce the following contract for h@:

(unit/c
(import
(compare^ [compare (-> integer? integer? boolean?)]))

(export
(heap^ [insert (-> integer? heap/c heap/c)] ...))

void?)

The signatures in both imports and exports are expanded and
each type in each signature is converted to a contract. Since signa-
tures are expanded during the type to contract compilation, contract
generation only applies to unit values and unit types. Signatures may
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be exported and imported without any contract intervention. After
all, signatures are not first-class values.

5.6 Implementation limitations

Due to implementation challenges, several features of the base unit
library are still left unsupported in Typed Racket. In this section, I
detail the scope of these limitations and future plans to rectify them.

5.6.1 Signature Forms

Racket’s unit system includes many syntactic forms to make program-
ming with units convenient. This includes linking and invocation
forms which infer the signature specifications required for linking
and invocation. These forms use Racket’s macro system to associate
static information with identifiers that refer to units. Typed Racket’s
implementation of units is able to use this static information to sup-
port typechecking these forms. Racket also allows signature defini-
tions to contain more than simple lists of identifiers. Besides iden-
tifiers, signature definitions can contain macro definitions, variable
definitions for unit’s importing the signature, and variable definitions
for units exporting the signature among others.

(define-signature sig^
(x y z
(struct tree (val left right))
(define-values (a b c) ...)
(define-values-for-export (d e f) ...)
(define-syntaxes (s t) ...)))

Figure 10: A Racket Signature

Figure 10 shows many of the signature forms that Racket sup-
ports. Typed Racket should accommodate the idioms of unit pro-
gramming in untyped Racket, but it is unclear how to incorporate
all features of signatures in Racket. The define-values and define-values-
for-export signature forms pose a particular problem for typechecking.
These definition forms bind variables first from the signature defini-
tion and then from the environment in which the signature definition
occurs. This complex binding structure makes typechecking these
definitions difficult. The Typed Racket typechecker operates only on
fully expanded programs, but signature definitions are processed and
registered before other top level definitions are typechecked. Signa-
ture definitions, therefore, do not have full information to typecheck

24



these definitions during signature processing. The implementation of
units as macros could allow typechecking these signature definitions
along with unit typechecking. This strategy, however, is likely to pro-
duce unhelpful error messages that refer to unit expressions rather
than signature definitions. Additionally, if the types of definitions are
not known inside of a signature then compiling unit types into unit
contracts can no longer guarantee the safety of typed-untyped interac-
tions. For these reasons, Typed Racket disallows variable definitions
that occur inside define-signature forms.

Typed Racket does not currently support the struct form in sig-
nature definitions or struct definitions in unit bodies. Racket’s struct
definitions are generative meaning that each struct definition creates
a new struct-type even if it shares the same name as another struct.
Since units may be invoked multiple times, a unit body containing
a struct definition would create multiple incompatible structure def-
initions. The generativity of structs prevents Typed Racket from be-
ing able to typecheck struct definitions that occur in internal defini-
tion contexts. For example, a unit that defines and exports a struct
definition may be invoked multiple times. The typechecker must as-
sign a single type to the unit’s body, but each invocation of the unit
would create incompatible structure values. The result is a program
that typechecks, yet fails with a runtime type error.

5.6.2 Parametricity

The Pairing Heap case study required a partial rewrite of the original
program. This rewrite required monomorphizing the program and
specializing it to integers. The original program could create heaps of
any "type" that supported an implementation of the compare^ signa-
ture. This suggests that there are programs that would benefit from a
type system that allows parameterizing over the types in a signature
definition. Specifically, such a type system would allow a direct port-
ing of the Pairing Heap program to Typed Racket, without the need to
monomorphize the program.

The top of Figure 11 gives the definitions of the compare^ sig-
nature in the monomorphized version of the Pairing Heap program
and a unit intending to compare integers. The bottom of the figure
displays a hypothetical syntax for signatures which can be parame-
terized over types in a style similar to ML modules. Typed Racket
cannot currently deal with this sort of parametrization due to a lack
of true opaque types. A unit that imports a signature containing a
variable with an opaque type should not be able to introspect and
refine the type of that variable. Furthermore, the interaction between
typed and untyped code is unclear in the presence of these paramet-
ric signatures. Owens and Flatt [9] presented a type system which
handles this sort of parametricity for structural units. This thesis has
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(define-signature compare^
([compare : (-> Any Any Boolean)]))

(define int-compare@
(unit (import)

(export compare^)
(define (compare x y)

(and (exact-integer? x)
(exact-integer? y)
(<= x y)))))

(define-signature compare^
#:opaque (t)
([compare : (-> t t Boolean)]))

(define int-compare@
(unit (import)

(export (compare^ #:with ([t Integer])))
(define (compare x y) (<= x y))))

Figure 11: Monomorphic vs. Parametric Signatures

demonstrated that the Flatt and Felleisen model of units extends to
support Racket’s nominal units. Since Owens and Flatt’s primary ex-
tension to the Flatt-Felleisen unit model is the addition of opaque and
translucent types, this should extend to the type system for Racket’s
nominal units as well.
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6
E VA L U AT I O N

6.1 The Goal

The thesis of gradual typing is that programmers can ease the main-
tenance and evolution of their existing code bases by adding type
annotations. This implies that a gradual type system needs to sup-
port the programmer’s idioms and the necessary annotations are not
too onerous. Therefore, to evaluate my gradual type system for units
we need a two-pronged approach with these two evaluation criteria:

• Typed Racket with units supports common Racket idioms, and

• the syntactic overhead of adding type annotations is reasonable

To investigate whether gradually typed units meet these criteria, I
ported several unit-based programs from Racket to Typed Racket. The
porting process reveals what idioms are used in practice and what
kinds of type annotations are necessary for unit-based programs.

6.2 Cases

My evaluation corpus consists of three case studies. Two of the case
studies, Gobblet and Paint by Numbers, are part of the Games package
distributed with Racket. The third is a user-contributed package from
the PLaneT [8] package distribution system. The three programs were
chosen to illustrate three distinct use cases of units. Gobblet breaks up
the implementation of the game over several files that each imple-
ment a unit. The units are linked together and invoked to run the
game. Paint by Numbers is a puzzle game which implements each of
its puzzle instances as a unit. Puzzle instances are loaded from text
files containing the problem description using Racket’s include macro
then linked together through a function that performs a fold over the
list of units. The Pairing Heap program demonstrates the parametric
features of units by defining a heap unit that depends on a user spec-
ified comparison function.

6.3 The Process

Adding types to untyped code is usually a straightforward process.
The programmer needs to add annotations to top-level bindings and
function definitions Often the programmer can determine the types
of expressions from documentation comments or behavioral contracts
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on expressions. In poorly documented programs, the programmer
must deduce the appropriate type.

The similarity between unit bodies and Racket compilation pack-
ages simplifies the porting process, the programmer only needs to
keep in mind the types of identifiers bound by imported signatures.
In order to add type annotations to units that import signatures,
those signatures must first declare the types of their member vari-
ables. Without context, it is impossible to determine the types of vari-
ables contained in a signature. The programmer can only decipher
the types of signature variables by observing uses of those variables
in units that import or export a given signature. Thus, the process
of porting units and signatures to Typed Racket requires a two-way
refinement process in which types determined from unit bodies aid
in determining types in signatures which subsequently feeds back
into the process of typing unit bodies. Without external specifications,
porting signatures and units to Typed Racket must be performed in
tandem with one another.

Program Gobblet Paint by Numbers Pairing Heap
Lines 1785 141 164

% Increase 13 22 44

Signature ann. 36 8 11

Useful ann. 80 10 17

�: ann. 76 0 6

Other ann. 18 0 6

Type def. 9 1 2

Assert/cast 27 1 0

Ann./100L 12 13 24

Figure 12: Case Studies

6.4 Results

The table in figure 12 presents an analysis of results of porting the
three case studies to Typed Racket. For each case study we report the
the number of lines in the ported program as well as the percentage
increase in number of lines from the original untyped program. We
report these added annotations in several disjoint categories. The Sig-
nature annotations row is the number of identifiers in signatures that
were assigned types. Useful annotations are those annotations declared
for top-level and unit-body identifiers and the fields of structure defi-
nitions. These are the annotations which add information that is use-
ful to the typechecker and to programmers as a form of documen-
tation. The �: annotations are the types added to variables bound as
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arguments to anonymous functions. Finally, the other annotations cat-
egory includes all other annotations in the fully typed program.

The Type definition row counts the number of type definitions that
were added to the program. In some circumstances, even in a fully
annotated program, the type checker cannot prove that an expression
has the correct type. In these cases the programmer can assert or cast
the expression to satisfy the typechecker by adding a runtime check.
The number of assertions and casts needed in a given program is
collected in the Assert/cast row. The final row in the table reports the
number of annotations needed per hundred lines of code.

6.5 Discussion

Overall the process of porting programs to Typed Racket with Units
incurred reasonable syntactic overhead. The increase in number lines
over all three programs was 14%, which is on par with a similar exper-
iment conducted for Object-Oriented Typed Racket. One of the main
causes of an increase in the number of lines is due to typed signature
definitions. In Racket many signature definitions list all identifiers on
a single line of code, but this becomes unreadable when signatures
contain type declarations. This leads to splitting a typed signature
definition over multiple lines. For smaller programs, like the Pairing
Heap, this is especially noticeable.

The Pairing Heap program posed additional challenges. It was
originally written in MzScheme, a predecessor of Racket, and re-
quired a partial rewrite into Racket before it could be ported to Typed
Racket. Additionally, the program’s pairing-heap@ unit is intended
to be parameterized over the implementation of a comparison func-
tion. Since Typed Racket does not currently support signatures with
opaque types, the program was ported to work only with integers.

There are at least two possible future directions for further eval-
uation. First, a performance study to determine the overhead of unit
contracts in partially ported programs would further address the
overhead imposed by gradually typed units. Second, a soundness
evaluation is necessary to provide a proof that unit contracts soundly
mediate interactions between typed and untyped units.

6.5.1 Threats to Validity

As possible threats to the validity of the experiment we note that
only the Pairing Heap program was ported in its entirety. Gobblet is
a very large program of approximately 4000 lines of code, for this
experiment we ported only the non-gui portion of the program which
still measured nearly 2000 lines. Paint by Numbers contained only two
files that made any use of units, so this experiment ported only those
two files. The Paint by Numbers game, however, has one of the more
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interesting uses of units in the Racket codebase, a function which
folds over a list of units linking them together.
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