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Abstract
Programmers have come to embrace dynamically-typed languages
for prototyping and delivering large and complex systems. When it
comes to maintaining and evolving these systems, the lack of ex-
plicit static typing becomes a bottleneck. In response, researchers
have explored the idea of gradually-typed programming languages
which allow the incremental addition of type annotations to soft-
ware written in one of these untyped languages. Some of these
new, hybrid languages insert run-time checks at the boundary be-
tween typed and untyped code to establish type soundness for the
overall system. With sound gradual typing, programmers can rely
on the language implementation to provide meaningful error mes-
sages when type invariants are violated. While most research on
sound gradual typing remains theoretical, the few emerging imple-
mentations suffer from performance overheads due to these checks.
None of the publications on this topic comes with a comprehensive
performance evaluation. Worse, a few report disastrous numbers.

In response, this paper proposes a method for evaluating the per-
formance of gradually-typed programming languages. The method
hinges on exploring the space of partial conversions from untyped
to typed. For each benchmark, the performance of the different ver-
sions is reported in a synthetic metric that associates runtime over-
head to conversion effort. The paper reports on the results of ap-
plying the method to Typed Racket, a mature implementation of
sound gradual typing, using a suite of real-world programs of var-
ious sizes and complexities. Based on these results the paper con-
cludes that, given the current state of implementation technologies,
sound gradual typing faces significant challenges. Conversely, it
raises the question of how implementations could reduce the over-
heads associated with soundness and how tools could be used to
steer programmers clear from pathological cases.

Categories and Subject Descriptors D.2.8 [Software Engineer-
ing]: Metrics—Performance measures

Keywords Gradual typing, performance evaluation

1. Gradual Typing and Performance
Over the past couple of decades dynamically-typed languages have
become a staple of the software engineering world. Programmers
use these languages to build all kinds of software systems. In
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many cases, the systems start as innocent prototypes. Soon enough,
though, they grow into complex, multi-module programs, at which
point the engineers realize that they are facing a maintenance night-
mare, mostly due to the lack of reliable type information.

Gradual typing [21, 26] proposes a language-based solution to
this pressing software engineering problem. The idea is to extend
the language so that programmers can incrementally equip pro-
grams with types. In contrast to optional typing, gradual typing
provide programmers with soundness guarantees.

Realizing type soundness in this world requires run-time checks
that watch out for potential impedance mismatches between the
typed and untyped portions of the programs. The granularity of
these checks determine the peformance overhead of gradual typing.
To reduce the frequency of checks, macro-level gradual typing
forces programmers to annotate entire modules with types and
relies on behavioral contracts [12] between typed and untyped
modules to enforce soundness. In contrast, micro-level gradual
typing instead assigns an implicit type Dyn [1] to all unannotated
parts of a program; type annotations can then be added to any
declaration. The implementation must insert casts at the appropriate
points in the code. Different language designs use slightly different
semantics with different associated costs and limitations.

Both approaches to gradual typing come with two implicit
claims. First, the type systems accommodate common untyped
programming idioms. This allows programmers to add types with
minimal changes to existing code. Second, the cost of soundness is
tolerable, meaning programs remain performant even as program-
mers add type annotations. Ideally, types should improve perfor-
mance as they provide invariants that an optimizing compiler can
leverage. While almost every publication on gradual typing vali-
dates some version of the first claim, no projects tackle the second
claim systematically. Most publications come with qualified re-
marks about the performance of partially typed programs. Some
plainly admit that such mixed programs may suffer performance
degradations of up to two orders of magnitude [18, 25, 28].

This paper presents a single result: a method for systematically
evaluating the performance of a gradual type system. It is illustrated
with an application to Typed Racket, a mature implementation of
macro-level gradual typing. We find that Typed Racket’s cost of
soundness is not tolerable. If applying our method to other gradual
type system implementations yields similar results, then sound
gradual typing is dead.

The insight behind the method is that to understand the perfor-
mance of a gradual type system, it is necessary to simulate how a
maintenance programmer chooses to add types to an existing soft-
ware system. For practical reasons, such as limited developer re-
sources or access to source code, it may be possible to add types to
only a part of the system. Our method must therefore simulate all
possibilities. Thus, applying our method to Typed Racket requires
annotating all n modules with types. The resulting collection of
2 ¨ n modules is then used to create 2n configurations. The col-
lection of these configurations forms a complete lattice with the



untyped configuration at the bottom and the fully typed one at the
top. The points in between represent configurations in which some
modules are typed and others are untyped. Adding types to an un-
typed module in one of these configurations yields a configuration
at the next level of the lattice. In short, the lattice mimics all possi-
ble choices of single-module type conversions a programmer faces
when a maintenance task comes up.

A performance evaluation of a system for gradual typing must
time these configurations of a benchmark and extract information
from these timings. Section 2 introduces the evaluation method
in detail, including the information we retrieve from the lattices
and how we parameterize these retrievals. The timings may answer
basic questions such as how many of these configurations could be
deployed without degrading performance too much.

We apply our method to Typed Racket, the gradually typed sis-
ter language of Racket. With nine years of development, Typed
Racket is the oldest and probably most sophisticated implemen-
tation of gradual typing. Furthermore, Typed Racket has also ac-
quired a fair number of users, which suggests adequate perfor-
mance for these commercial and open source communities. The
chosen benchmark programs originate from these communities and
range from 150 to 7,500 lines of code. Section 3 presents these
benchmarks in detail.

Section 4 presents the results from running all configurations
of the Typed Racket benchmarks according to the metrics spelled
out in section 2. We interpret the ramifications of these rather
negative results in section 5 and discuss the threats to validity
of these conclusions. The section also includes our report on a
preliminary investigation into the possible causes of the slowdowns
in our benchmark configurations.

2. Benchmarking Software Evolution
Our evaluation method is inspired by our previous work on ex-
tending functional Typed Racket to the object-oriented aspects of
Racket, in which we use a lattice-style approach for a preliminary
performance evaluation [25]. By inspecting the entire lattices of
typed/untyped configurations of two small game systems, we iden-
tified and then eliminated a major performance bottleneck from
the implementation. Our previous performance evaluation was con-
ducted in tandem with the design and implementation of Typed
Racket, and thus the final results were relatively positive. In con-
trast, we conduct our current evaluation completely independently
of Typed Racket’s implementation efforts.1

Let us re-articulate the salient points from our previous work:

• A (software system) configuration is a sequence of n modules.
• Each module in a software system configuration is either typed

or untyped.
• A configuration ct is greater than a configuration cu (or equal)

if ct uses a typed module for every position in the sequence for
which cu uses a typed module.

• The collection of all configurations of length n forms a com-
plete lattice of size 2n. The bottom element is the completely
untyped configuration; the top element is the completely typed
one.

We speak of a performance lattice to describe this idea.
Our contribution is to exploit the lattice-oriented approach to

benchmarking for a summative evaluation. To this end, we imagine
software engineers who are considering the use of gradual typing
for some program and consider what kinds of questions may influ-

1 In terminology borrowed from the education community [20], we con-
ducted a formative evaluation while this paper conducts a summative eval-
uation to assess the post-intervention state of the system.

ence their decision. Based on this first step, we formulate a small
number of parameterized, quantitative measures that capture possi-
ble answers to these questions.

When the configuration consists of a small number of modules,
the software engineers might be able to equip the entire program
with type annotations in one fell swoop. Such a fully annotated
system should perform as well as the original, untyped version—
and if the gradual type system is integrated with the compiler, it
may even run faster because the compiler can apply standard type-
based optimization techniques.

Definition (typed/untyped ratio) The typed/untyped ratio of a
performance lattice is the time needed to run the top configuration
divided by the time needed to run the bottom configuration.

Unfortunately, this assumption overlooks the realities of imple-
mentations of gradual typing. Some modules simply cannot be
equipped with types because they use linguistic constructs that the
type system does not support. Furthermore, completely typed con-
figurations still use the run-time libraries of the underlying untyped
language. In particular, Typed Racket’s run-time system remains
largely untyped. As a result, even the completely typed configura-
tions of our benchmarks usually import constants, functions, and
classes from an untyped module in the run-time system. When
these values cross this boundary at run-time, the contract system
performs checks, and that imposes additional costs. To address this
issue, the implementors of Typed Racket have enlarged their trusted
code base with unchecked type environments that cover frequently
imported parts of the run-time system. The next section explains
what “completely typed” means for the individual benchmarks.

When the software system configuration consists of a reason-
ably large number of modules, no software engineering team can
annotate the entire system with types all at once. Every effort is
bound to leave the configuration in a state in which some modules
are typed and some others are untyped. As a result, the configura-
tion is likely to suffer from the software contracts that the gradual
type system injects at the boundaries between the typed and the
untyped portions. If the cost is tolerable, the configuration can be
released and can replace the currently deployed version. The run-
time costs may not be tolerable, however, as our previous work
observes. In that case, the question is how much more effort the
software engineers have to invest to reach a releasable configura-
tion. That is, how many more modules must be converted before
the performance is good enough for the new configuration to re-
place the running one.

To capture this idea, we formulate the following definition of
“deliverable configurations.”

Definition (N-deliverable) A configuration in a performance lat-
tice is N-deliverable if its performance is no worse than an Nx slow-
down compared to the completely untyped configuration.

We parameterize this definition over the slowdown factor that
a team may consider acceptable. One team may think of a 1.1x
slowdown as barely acceptable, while another one may tolerate a
slowdown of an order of magnitude [25].

Even if a configuration is not deliverable, it might be suitably
fast to run the test suites and the stress tests. A software engineer-
ing team can use such a configuration for development purposes,
but it may not deliver it. The question is how many configurations
of a performance lattice are usable in that sense. In order to formu-
late this criteria properly, we introduce the following definition of
usable configurations.

Definition (N/M-usable) A configuration in a performance lat-
tice is N/M-usable if its performance is worse than an Nx slow-
down and no worse than an Mx slowdown compared to the com-
pletely untyped configuration.



Using the first parameter, we exclude deliverable configurations
from the count. The second parameter specifies the positive bound-
ary, i.e., the acceptable slowdown factor for a usable configuration.

Definition (unacceptable) For any choice of N and M, a configu-
ration is unacceptable if it is neither N-deliverable nor N/M-usable.

Finally, we can also ask the question how much work a team
has to invest to turn unacceptable configurations into useful or even
deliverable configurations. In the context of macro-level gradual
typing, one easy way to measure this amount of work is to count
the number of modules that have to be annotated with types before
the resulting configuration becomes usable or deliverable. Here is
the precise definition.

Definition (L-step N/M-usable) A configuration is L-step N/M-
usable if it is unacceptable and at most L type conversion steps
away from a N-deliverable or a N/M-usable configuration.

This paper thus proposes an evaluation method based on a sys-
tematic exploration of the performance lattice. The benefit of pa-
rameterized metrics is that every reader can interpret the raw data
with his or her own choices for L, N, and M.

3. The Benchmark Programs
For our evaluation of Typed Racket, we use a suite of twelve
programs. They are representative of actual user code yet small
enough so that an exhaustive exploration of the performance lattice
remains tractable.

3.1 Overview
The table in figure 2 lists and summarizes our twelve benchmark
programs. For each, we give an approximate measure of the pro-
gram’s size, a diagram of its module structure, and a worst-case
measure of the contracts created and checked at runtime.

Size is measured by the number of modules and lines of code
(LOC) in a program. Crucially, the number of modules also de-
termines the number of gradually-typed configurations to be run
when testing the benchmark, as a program with n modules can be
gradually-typed in 2n possible configurations. Lines of code is less
important for evaluating macro-level gradual typing, but gives a
sense of the overall complexity of each benchmark. Moreover, the
Type Annotations LOC numbers are an upper bound on the anno-
tations required at any stage of gradual typing because each typed
module in our experiment fully annotates its import statements.

The column labeled “Other LOC” measures the additional in-
frastructure required to run each project for all typed-untyped con-
figurations. This count includes project-wide type definitions, typed
interfaces to untyped libraries, and any so-called type adaptor mod-
ules (see below).

The module structure graphs show a dot for each module in the
program. An arrow is drawn from module A to module B when
module A imports definitions from module B. When one of these
modules is typed and the other untyped, the imported definitions
are wrapped with a contract to ensure type soundness. To give a
sense of how “expensive” the contracts at each boundary are, we
color arrows to match the absolute number of times contracts at a
given boundary are checked. These numbers are independent from
the actual configurations.

The colors fail to show the cost of checking data structures im-
ported from another library or factored through an adaptor module.
For example, the kcfa graph has many thin black edges because the
modules only share data definitions. The column labeled “Adaptors
+ Libraries” reports the proportion of observed contract checks due
to adaptor modules and libraries.

Untyped Typed

�

∦
�

Untyped Typed

�

‖
�

�

Figure 1: Inserting a type adaptor

3.2 Adaptor Modules
A quirk in Racket’s structure-type definitions calls for one twist
to an otherwise straightforward setup of benchmark configurations.
Consider the following structure-type definition from gregor, one
of the benchmark programs:

(struct DateTime [date time jd])

Its evaluation introduces a new class of data structures via a con-
structor (DateTime), a predicate (DateTime?), and a number of se-
lectors. A second evaluation creates a disjoint class of structures,
meaning the selectors for the first class do not work on the second
and vice versa.

If a structure-type definition is exported, a configuration may
place the definition in an untyped module and its clients into the
typed portion of the program. As explained below, importing a
struct demands that each client assigns a type to the structure-
type definition. Now, when these typed clients wish to exchange
instances of these structure types, the type checker must prove that
the static types match. But due to the above quirk, the type system
assigns generative static types to imported structure types. Thus,
even if the developers who annotate the two clients with types
choose the same names for the imported structure types, the two
clients actually have mutually incompatible static types.

Figure 1 illuminates the problems with the left-hand diagram.
An export of a structure-type definition from the untyped module
(star-shaped) to the two typed clients (black squares) ensures that
the type checker cannot equate the two assigned static types. The
right-hand side of the figure explains the solution. We manually add
a type adaptor module. Such adaptor modules are specialized typed
interfaces to untyped code. The typed clients import structure-type
definitions and the associated static types exclusively from the type
adaptor, ensuring that only one canonical type is generated for each
structure type. Untyped clients remain untouched and continue to
use the original untyped file.

Adaptor modules also reduce the number of type annotations
needed at boundaries because all typed clients can reference a
single point of control.2 Therefore we expect type adaptor modules
to be of independent use to practitioners, rather than just a synthetic
byproduct of our setup.

3.3 Program Descriptions
This section briefly describes each benchmark, noting the depen-
dencies and required adaptor modules. Unless otherwise noted, the
benchmarks rely only on core Racket libraries and do not use adap-
tor modules. We credit program authors in parentheses; except for
sieve, all programs are independently useful.

Sieve (Ben Greenman) This program finds prime numbers using
the Sieve of Eratosthenes and is our smallest benchmark. It contains

2 In our experimental setup, type adaptors are available to all configurations
as library files.



Project name Modules Untyped
LOC

Type Ann.
LOC

Other
LOC

Module structure Adaptors +
Libraries

sieve 2 35 17 0 ‚‚ 0%

morse-code 4 216 29 0
‚

‚

‚

‚

0%

mbta 4 369 77 89 ‚‚‚‚ 79%

zordoz 5 1404 285 214

‚

‚

‚‚‚ 99%

suffixtree 6 545 125 40 ‚‚‚‚‚‚ 97%

lnm 6 501 120 62
‚

‚

‚

‚‚

‚

46%

kcfa 7 248 47 141 ‚‚‚‚‚‚‚ 99%

snake 8 161 50 27 ‚

‚

‚

‚

‚‚

‚

‚ 93%

tetris 9 305 71 38
‚

‚‚

‚‚

‚‚

‚

‚ 99%

synth 10 837 142 33

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚ 47%

gregor 13 996 164 103
‚

‚

‚

‚

‚

‚

‚

‚

‚

‚‚‚

‚
78%

quad 16 6722 300 241

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

45%

ă 10 ă 1,000 ă 100,000 ă 1,000,000 ă 1 billion

Figure 2: Characteristics of the benchmarks



two modules: a streams library and the sieve code. We wrote this
benchmark to illustrate the pitfalls of sound gradual typing.

Morse code (John Clements & Neil Van Dyke) This script is
adapted from a morse code training program.3 The original pro-
gram plays a morse code audio clip, reads keyboard input, and
scores the input based on its Levenshtein distance from the cor-
rect answer. Our benchmark setup generates morse code strings and
runs the Levenshtein algorithm on a list of frequently used words.

MBTA (Matthias Felleisen) The mbta program builds a represen-
tation of Boston’s public transit system and answers reachability
queries. It relies on an untyped graph library. The original program
responded asynchronously to queries with a server thread. We in-
stead measure a synchronous version of the program to ensure com-
patibility with Racket’s stack-based profiling tools.

Zordoz (Ben Greenman) This tool is used for exploring and
counting the frequency of Racket bytecode structures. It operates
on the Racket compiler’s untyped zo data structures. Since these
data structures are not natively supported in Typed Racket, even
the completely typed program incurs some dynamic overhead.

Suffixtree (Danny Yoo) This library implements a longest com-
mon substring algorithm using Ukkonen’s suffix tree algorithm.
While the library has minimal external dependencies, it calls for
one adaptor module for the algorithm’s internal data structures.

LNM (Ben Greenman) This script analyzes the measurements
included in this paper and generates figures 4 and 5. Most of this
benchmark’s running time is spent generating figures using Typed
Racket’s plot library, so the untyped version of this program is
noticeably less performant. This program relies on an untyped
image rendering library and uses two adaptor modules.

KCFA (Matt Might) The kcfa program implements a simple con-
trol flow analysis for a lambda calculus. The language definitions
and analysis are spread across seven modules, four of which require
adaptors because they introduce new datatypes.

Snake (David Van Horn) This program is based on a contract
verification benchmark4 by Nguyễn et al. [16]. It implements a
game where a growing and moving snake tries to eat apples while
avoiding walls and its own tail. Our benchmark runs a pre-recorded
history of moves altering the game state and does not display a
GUI. We use one adaptor module to represent the game datatypes,
but otherwise the program is self-contained.

Tetris (David Van Horn) This program is taken from the same
benchmark suite as snake [16] and implements the eponymous
game. Like snake, the benchmark runs a pre-recorded set of moves.
Using it here requires one adaptor module.

Synth (Vincent St-Amour & Neil Toronto) The synth bench-
mark5 is a sound synthesis example from St-Amour et al.’s work on
feature-specific profiling [23]. The program consists of nine mod-
ules, half of which are from Typed Racket’s array library. In order
to run these library modules in all typed-untyped configurations we
create an adaptor module for the underlying array data structure.

Gregor (Jon Zeppieri) This benchmark consists of thirteen mod-
ules and stress-tests a date and time library. The original library
uses a library for ad-hoc polymorphism that is not supported by
Typed Racket. Our adaptation instead uses a mono-typed variant of
this code and removes the string parsing component. The bench-
mark uses two adaptor modules and relies on a small, untyped li-
brary for acquiring data on local times.

3 http://github.com/jbclements/morse-code-trainer
4 http://github.com/philnguyen/soft-contract
5 http://github.com/stamourv/synth

Quad (Matthew Butterick) This project implements a type-
setting library. It depends on an external constraint satisfaction
solver library (to divide lines of text across multiple columns) and
uses two adaptor modules. The original author provided both un-
typed and fully typed variants.

4. Evaluating Typed Racket
Measuring the running time for the performance lattices of our
benchmarks means compiling, running, and timing thousands of
configurations. Each configuration is run 30 times to ensure that
the timing is not affected by random factors; some configurations
take minutes to run.

Here we present our measurements in terms of the metrics of
section 2. The first subsection discusses one benchmark in detail,
demonstrating how we create the configurations, how the bound-
aries affect the performance of various configurations, and how the
Typed Racket code base limits the experiment. The second subsec-
tion explains our findings. The last subsection interprets them.

Experimental setup Due to the high resource requirements of
evaluating the performance lattices, experiments were run on multi-
ple machines. Machine A with 12 physical Xeon E5-2630 2.30GHz
cores and 64GB RAM, Machine B with 4 physical Core i7-4790
3.60GHz cores and 16GB RAM, Machine C with with 4 physi-
cal Core i7-3770K 3.50GHz cores and 32GB RAM, and a set of
Machines D with identical configurations of 20 physical Xeon E5-
2680 2.8GHz cores with 64GB RAM. All machines run a variant of
Linux and all benchmarks were run on Racket v6.2. The following
benchmarks were run on machine A: sieve, kcfa, and gregor. On
machine B: suffixtree, morse-code, mbta, and lnm. On machine
C: zordoz and quad. On machine D: snake, synth, and tetris.
For each configuration we report the average of 30 runs. All of our
runs use a single core for each configuration. We performed san-
ity checks to validate that performance differentials reported in the
paper were not affected by the choice of machine.6

4.1 Suffixtree in Depth
To illustrate the key points of the evaluation, this section describes
one of the benchmarks, suffixtree, and explains the setup and its
timing results in detail.

Suffixtree consists of six modules: data to define label and
tree nodes, label with functions on suffixtree node labels, lcs to
compute longest common substrings, main to apply lcs to data,
structs to create and traverse suffix tree nodes, ukkonen to build
suffix trees via Ukkonen’s algorithm. Each module is available with
and without type annotations. Each configuration thus links six
modules, some of them typed and others untyped.

Typed modules require type annotations on their data definitions
and functions. Modules provide their exports with types, so that the
type checker can cross-check modules. A typed module may import
values from an untyped module, which forces the corresponding
require specifications to come with types. Consider this example:

(require (only-in "label.rkt" make-label ...))

The server module is called label.rkt, and the client imports
specific values, e.g., make-label. This specification is replaced
with a require/typed specification where each imported identifier
is typed:

(require/typed "label.rkt"
[make-label
(-> (U String (Vectorof (U Char Symbol))) Label)]

...)

6 The scripts that we use to run the experiments are available in our artifact:
http://www.ccs.neu.edu/racket/pubs/#popl15-tfgnvf

http://github.com/jbclements/morse-code-trainer
http://github.com/philnguyen/soft-contract
http://github.com/stamourv/synth
http://www.ccs.neu.edu/racket/pubs/#popl15-tfgnvf
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Figure 3: Performance lattice (labels are speedup/slowdown factors)

The types in a require/typed form are compiled into contracts
for the imported values. For example, if some imported variable is
declared to be a Char, the check char? is performed as the value
flows across the module boundary. Higher-order types (functions,
objects, or classes) become contracts that wrap the imported value
and which check future interactions of this value with its context.

The performance costs of gradual typing thus consist of wrapper
allocation and run-time checks. Moreover, the compiler must as-
sume that any value could be wrapped, so it cannot generate direct
field access code as would be done in a statically typed language.

Since our evaluation setup calls for linking typed modules
to both typed and untyped server modules, depending on the
configuration, we replace require/typed specifications with re-
quire/typed/check versions. This new syntax can determine
whether the server module is typed or untyped. It installs con-
tracts if the server module is untyped, and it ignores the annotation
if the server module is typed. As a result, typed modules function
independently of the rest of the modules in a configuration.

Performance Lattice. Figure 3 shows the performance lattice an-
notated with the timing measurements. The lattice displays each
of the modules in the program with a shape. A filled black shape
means the module is typed, an open shape means the module is un-
typed. The shapes are ordered from left to right and correspond to
the modules of suffixtree in alphabetical order: data, label, lcs,
main, structs, and ukkonen.

For each configuration in the lattice, the ratio is computed by
dividing the average timing of the typed program by the untyped
average. The figure omits standard deviations as they are small
enough to not affect the discussion.

The fully typed configuration (top) is faster than the fully
untyped (bottom) configuration by around 30%, which puts the
typed/untyped ratio at 0.7. This can be explained by Typed Racket’s
optimizer, which performs specialization of arithmetic operations
and field accesses, and can eliminate some bounds checks [27].
When the optimizer is turned off, the ratio goes back up to 1.

Sadly, the performance improvement of the typed configuration
is the only good part of this benchmark. Almost all partially typed
configurations exhibit slowdowns of up to 105x. Inspection of the
lattice suggests several points about these slowdowns:

• Adding type annotations to the main module neither subtracts
nor adds overhead because it is a driver module.

• Adding types to any of the workhorse modules—data, label,
or structs—while leaving all other modules untyped causes
slowdown of at least 35x. This group of modules are tightly
coupled. Laying down a type-untyped boundary to separate
elements of this group causes many crossings of values, with
associated contract-checking cost.

• Inspecting data and label further reveals that the latter depends
on the former through an adaptor module. This adaptor intro-
duces a contract boundary when either of the two modules is
untyped. When both modules are typed but all others remain
untyped, the slowdown is reduced to about 13x.
The structs module depends on data in the same fashion and
additionally on label. Thus, the configuration in which both
structs and data are typed still has a large slowdown. When
all three modules are typed, the slowdown is reduced to 5x.

• Finally, the configurations close to the worst slowdown case are
those in which the data module is left untyped but several of
the other modules are typed. This makes sense given the cou-
pling noted above; the contract boundaries induced between the
untyped data and other typed modules slow down the program.
The module structure diagram for suffixtree in figure 2 cor-
roborates the presence of this coupling. The rightmost node in
that diagram corresponds to the data module, which has the
most in-edges in that particular graph. We observe a similar
kind of coupling in the simpler sieve example, which consists
of just a data module and its client.

The performance lattice for suffixtree is bad news for gradual
typing. It exhibits performance “valleys” in which a maintenance
programmer can get stuck. Consider starting with the untyped pro-
gram, and for some reason choosing to add types to label. The
program slows down by a factor of 88x. Without any guidance, a
developer may choose to then add types to structs and see the pro-
gram slow down to 104x. After that, typing main (104x), ukkonen
(99x), and lcs (103x) do little to improve performance. It is only
when all the modules are typed that performance becomes accept-
able again (0.7x).
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typed/untyped ratio

max. overhead

mean overhead

3-deliverable

3/10-usable

(2 modules)

0.99x
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102.49x

2 (50%)

0 (0%)

morse-code
typed/untyped ratio

max. overhead

mean overhead

3-deliverable

3/10-usable

(4 modules)
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16 (100%)
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max. overhead

mean overhead

3-deliverable

3/10-usable
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typed/untyped ratio

max. overhead

mean overhead

3-deliverable

3/10-usable
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max. overhead

mean overhead
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3/10-usable
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max. overhead
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x-axis: overhead

y-axis: # configs

red line: 60% of configs.

blue line: # L-step N/M-usable

green line: N=3

yellow line: M=10

Figure 4: L-step N/M-usable results for the first six benchmarks



kcfa
typed/untyped ratio

max. overhead

mean overhead

3-deliverable

3/10-usable

(7 modules)

1.00x

22.67x

9.23x

32 (25%)

48 (38%)

snake
typed/untyped ratio

max. overhead

mean overhead

3-deliverable

3/10-usable

(8 modules)

0.92x

121.51x

32.30x

4 (2%)

28 (11%)

tetris
typed/untyped ratio

max. overhead

mean overhead

3-deliverable

3/10-usable

(9 modules)

0.97x

117.28x

33.34x

128 (25%)

0 (0%)

synth
typed/untyped ratio

max. overhead

mean overhead

3-deliverable

3/10-usable

(10 modules)

1.03x

85.90x

39.69x

15 (1%)

73 (7%)

gregor
typed/untyped ratio
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mean overhead

3-deliverable

3/10-usable

(13 modules)
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5644 (69%)

2548 (31%)

quad
typed/untyped ratio

max. overhead

mean overhead

3-deliverable
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(16 modules)
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5637 (9%)
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x-axis: overhead

y-axis: # configs

red line: 60% of configs.

blue line: # L-step N/M-usable

green line: N=3

yellow line: M=10

Figure 5: L-step N/M-usable results for the remaining benchmarks



4.2 Reading the Figures
Our method defines the number of L-step N/M-usable configura-
tions as the key metric for measuring the quality of a gradual type
system. For this experiment we have chosen values of 3x and 10x
for N and M, respectively, and allow up to 2 additional type con-
version steps. These values are rather liberal,7 but serve to ground
our discussion.

The twelve rows of graphs in Figures 4 and 5 summarize the
results from exhaustively exploring the performance lattices of our
benchmarks. Each row contains a table of summary statistics and
one graph for each value of L between 0 and 2.

The typed/untyped ratio is the slowdown or speedup of fully
typed code over untyped code. Values smaller than 1.0 indicate
a speedup due to Typed Racket optimizations. Values larger than
1.0 are slowdowns caused by interaction with untyped libraries or
untyped parts of the underlying Racket runtime. The ratios range
between 0.28x (lnm) and 3.22x (zordoz).

The maximum overhead is computed by finding the running
time of the slowest configuration and dividing it by the running time
of the untyped configuration. The average overhead is obtained by
computing the average over all configurations (excluding the fully-
typed and untyped configurations) and dividing it by the running
time of the untyped configuration. Maximum overheads range from
1.25x (lnm) to 168x (tetris). Average overheads range from 0.6x
(lnm) to 68x (tetris).

The 3-deliverable and 3/10-usable counts are computed for
L=0. In parentheses, we express these counts as a percentage of
all configurations for the program.

The three cumulative performance graphs are read as follows.
The x-axis represents the slowdown over the untyped program
(from 1x to 20x). The y-axis is a count of the number of configura-
tions (from 0 to 2n) scaled so that all graphs are the same height. If
L is zero, the blue line represents the total number of configurations
with performance no worse than the overhead on the x-axis. For ar-
bitrary L, the blue line gives the number of configurations that can
reach a configuration with performance no worse than the overhead
on the x-axis in at most L conversion steps.

The ideal result would be a flat line at a graph’s top. Such a
result would mean that all configurations are as fast as (or faster
than) the untyped one. The worst scenario is a flat line at the graph’s
bottom, indicating that all configurations are more than 20x slower
than the untyped one. For ease of comparison between graphs, a
dashed (red) horizontal line indicates the 60% point along each
project’s y-axis.

4.3 Interpretation
The ideal shape is difficult to achieve because of the overwhelming
cost of the dynamic checks inserted at the boundaries between
typed and untyped code. The next-best shape is a nearly-vertical
line that reaches the top at a low x-value. All else being equal, a
steep slope anywhere on the graph is desirable because the number
of acceptable programs quickly increases at that point.

For each benchmark, we evaluate the actual graphs against these
expectations. Our approach is to focus on the left column, where
L=0, and to consider the center and right column as rather drastic
countermeasures to recover performance.8

Sieve The flat line at L=0 shows that half of all configurations
suffer unacceptable overhead. As there are only 4 configurations in
the lattice for sieve, increasing L improves performance.

7 We would expect that most production contexts would not tolerate any-
thing higher than 2x, if that much.
8 Increasing L should remove pathologically-bad cases.

Morse code The steep lines show that a few configurations suffer
modest overhead (below 2x), otherwise morse-code performs well.
Increasing L improves the worst cases.

MBTA These lines are also steep, but flatten briefly at 2x. This
coincides with the performance of the fully-typed configuration.
As one would expect, freedom to type additional modules adds
configurations to the 2-deliverable equivalence class.

Zordoz Plots here are similar to mbta. There is a gap between the
performance of the fully-typed configuration and the performance
of the next-fastest lattice point.

Suffixtree The wide horizontal areas are explained by the per-
formance lattice in figure 3: configurations’ running times are not
evenly distributed but instead vary drastically when certain bound-
aries exist. Increasing L significantly improves the number of ac-
ceptable configuration at 10x and even 3x overhead.

LNM These results are ideal. Note the large y-intercept at L=0.
This shows that very few configurations suffer any overhead.

KCFA The most distinctive feature at L=0 is the flat portion
between 1x and 6x. This characteristic remains at L=1, and overall
performance is very good at L=2.

Snake The slope at L=0 is very low. Allowing L=1 brings a
noticeable improvement above the 5x mark, but the difference
between L=1 and L=2 is small.

Tetris Each tetris plot is essentially a flat line. At L=0 roughly
1/3 of configurations lie below the line. This improves to 2/3 at L=1
and only a few configurations suffer overhead when L=2.

Synth Each slope is very low. Furthermore, some configurations
remain unusable even at L=2. These plots have few flat areas,
which implies that overheads are spread evenly throughout possible
boundaries in the program.

Gregor These steep curves are impressive given that gregor has
13 modules. Increasing L brings consistent improvements.

Quad The quad plots follow the same pattern as mbta and zordoz,
despite being visually distinct. In all three cases, there is a flat
slope for overheads below the typed/untyped ratio and a steep
increase just after. The high typed/untyped ratio is explained by
small differences in the original author-supplied variants.

5. Quo Vadis Sound Gradual Typing?
Unsound type systems are useful. They document the code, find
bugs at compile-time, and enable the IDE to assist programmers.
Sound type systems are useful and meaningful. A soundly typed
program cannot go wrong, up to a well-defined set of run-time ex-
ceptions [29]. When a typed program raises an exception, the ac-
companying message usually pinpoints the location of the problem
in the program source.

From this description it is clear why programmers eventually
wish to annotate programs in untyped languages with types and,
ideally, with sound types. Types directly and indirectly increase
a programmer’s productivity, and sound types help with testing,
debugging, and other maintenance tasks. In short, sound gradual
typing seems to be a panacea.

The problem is that, according to our measurements, the cost
of enforcing soundness is overwhelming. Figures 4 and 5 clarify
just how few partially typed configurations are usable by devel-
opers or deliverable to customers. For almost all benchmarks, the
lines are below the (red) horizontal line of acceptability. Even with
extremely liberal settings for N and M, few configurations are N-
deliverable or N/M-usable. Worse, investing more effort into type



annotation does not seem to pay off. In practice, converting a mod-
ule takes a good amount of time, meaning that L=2 is again a liberal
choice. But even this liberal choice does not increase the number
of acceptable configurations by much; worse, it unrealistically as-
sumes those two modules best-suited to improve performance. Put
differently, the number of L-step N/M-acceptable configurations re-
mains small with liberal choices for all three parameters.

The application of our evaluation method projects an extremely
negative image of sound gradual typing. While we are confident
that the method captures the spirit of the goals of gradual typing,
our particular application of the method and its results must be put
in perspective. Section 5.1 explains why the evaluation of Typed
Racket may look overly negative. Section 5.2 presents an analysis
of the worst elements in the twelve lattices and highlights those
kinds of contracts that impose the most significant cost.

5.1 Threats to Validity of Conclusion
We have identified four threats to validity. First, our benchmarks are
relatively small due to constraints on our computing infrastructure,
but even those consume considerable resources. To obtain results
for these benchmarks in a reasonable amount of time, they are run
using multiple cores and the configurations are divided amongst
the cores. Each configuration is put into a single process running
a separate instance of the Racket VM pinned to a single core.
This parallelism may introduce confounding variables due to, e.g.,
shared caches or main memory. We have attempted to control for
this case and, as far as we can tell, executing on an unloaded
machine does not make a significant difference to our results.

Second, several of our benchmarks import some modules from
Racket’s suite of libraries that remain untyped throughout the pro-
cess, including for the fully typed configuration. While some of
these run-time libraries come in the trusted code base—meaning
Typed Racket knows their types and the types are not compiled
to contracts—others are third-party libraries that impose a cost on
all configurations. In principle, these interfaces might substantially
contribute to the running-time overhead of partially typed config-
urations. Regardless, given the low typed/untyped ratios, these li-
braries are unlikely to affect our conclusions.

Third, the feasible set of type annotations for a program compo-
nent is rarely unique in a gradually typed system. Since types are
translated into contracts in Typed Racket, the choice of type anno-
tations may affect performance. All of our case studies use reason-
able type annotations, but type annotations with superior perfor-
mance may exist. For example, one class-based benchmark (not in-
cluded, completed after submission) exhibits noticeable differences
though the overall result remains the same. Generally speaking, our
results may not be fully representative. Then again, it is still a fail-
ure of gradual typing if a programmer must divine the best possible
type annotations to obtain reasonable performance.

Finally, we articulate our conclusions on the basis of current im-
plementation technology. Typed Racket compiles to Racket, which
uses rather conventional JIT compilation technology. It makes no
attempt to reduce the overhead of contracts or to exploit contracts
for optimizations. It remains to be seen whether contract-aware
compilers can reduce the significant overhead that our evaluation
shows. Nevertheless, we are convinced that even if the magnitude
of the slowdowns are reduced, some pathologies will remain.

5.2 What are the Bottlenecks?
To analyze the cost of contract checks, we used the feature-specific
profiler [23] on each benchmark’s slowest configuration.9 Figure 6
summarizes our findings.

9 We found no statistically significant difference in the proportion of run-
times spent in garbage collection between the untyped & slowest configu-
rations of any benchmark.

The leftmost data column (%C) gives the percent of each bench-
mark’s total running time that was spent checking contracts. These
percentages are the average of ten trials; the numbers in parenthe-
ses (S.E.) represent the standard error. Except for the short-running
benchmarks (gregor, morse-code, and mbta), we see little variabil-
ity across trials. As expected, the programs spend a substantial pro-
portion of their running time checking contracts.

The remaining columns of figure 6 report what percentage of
each benchmark’s contract-checking execution time is spent on a
particular variety of contract:

• Adaptor contracts separate a typed module from an untyped
module with data structures.

• Higher-order contracts are function contracts with at least one
function in their domain or co-domain.

• Library contracts separate an untyped library from typed mod-
ules or vice versa (in the case of lnm).

• The shape (-> T any/c) refers to contracts with a protected
argument and an unchecked co-domain. Contracts of this shape
typically guard typed functions called in untyped modules.

• Conversely, (-> any/c T) guards functions with (any num-
ber of) unchecked arguments and protected co-domains. For
example, if a typed module calls an untyped function with im-
mutable arguments, Typed Racket statically proves that the un-
typed function is given well-typed arguments but must insert a
contract to verify the function’s result.

• The (-> any/c boolean?) column measures the time spent
checking functions that take a single argument and returning a
Boolean value. It is thus a subset of the (-> any/c T) column.

Other columns overlap as well. The mbta benchmark in particular
spends 65% of its contract-checking time on first-order library
functions. These checks are always triggered by a typed module
on immutable arguments, so Typed Racket optimizes them to (->
any/c T) contracts.

Most strikingly, the (-> any/c boolean?) column suggests that
on average twenty percent of the time our benchmarks spend check-
ing contracts goes towards checking that predicate functions satisfy
the trivial (-> any/c boolean?) contract. Moreover, nearly all of
these predicates are generated by Racket structure definitions, so
their type correctness might be assumed. Removing these contracts
or optimizing the cost of indirection seems like a clear place for
Typed Racket to improve.

In contrast, the adaptor and library columns suggest that the ap-
parently high cost of predicate contracts may just be a symptom of
placing a typed/untyped boundary between a structure type defini-
tion and functions closely associated with the data. One example
of this is zordoz; indeed, the purpose of that code is to provide an
interface to native compiler data structures. In nearly all worst-case
measurements for benchmarks using adaptor modules the adaptor
and (-> any/c boolean?) contracts seem to account for a huge
proportion of all contracts. The quad benchmark in fact spends 93%
of its contract-checking time validating data structures, which are
stored in fixed-length lists rather than in structure types. These lists
do not require an adaptor, but their types translate to contracts that
are far more expensive than plain structure type predicates. The
only exception is synth. It spends much more time creating struc-
tured data from raw vectors than accessing the data.

Higher-order contracts show up in only a few of the benchmark
programs. Specifically, only synth, sieve, and zordoz make heavy
use of higher-order functions across contract boundaries. Unlike
the cost of first-order contracts, the costs of these higher-order
contracts is quite apparent in these programs.



Project %C (S.E.) adaptor higher-order library (-> T any/c) (-> any/c T) (-> any/c boolean?)
sieve 92 (2.33) 0 46 0 0 54 31
morse-code 29 (6.8) 0 0 0 0 100 0
mbta 39 (3.65) 0 0 65 0 65 0
zordoz 95 (0.1) 0 55 45 0 99 43
suffixtree 94 (0.18) 98 ă1 0 2 94 18
lnm 81 (0.73) 0 9 99 91 0 0
kcfa 91 (0.26) 100 0 0 0 54 31
snake 98 (0.21) 93 0 0 1 99 49
tetris 96 (0.35) 89 0 0 11 89 44
synth 83 (1.22) 51 90 0 29 20 0
gregor 83 (4.01) 78 0 3 7 85 31
quad 80 (0.96) ă1 1 0 3 ă1 ă1

Figure 6: Profiling the worst-case contract overhead

Finally, the (-> T any/c) and (-> any/c T) columns give
a rough impression of whether untyped or typed modules trigger
more contract checks. We confirmed these findings by inspecting
the individual programs. For all but three benchmarks, the high-
cost contracts are triggered by calls from a typed module into an
untyped library or data definition. This includes kcfa, although
half its calls from typed to untyped code used mutable arguments
and hence could not be reduced to any/c. The exceptions are
lnm, synth, and quad, which suffer from slowdowns when untyped
modules import definitions from typed ones.

6. The State of the Related Work
Gradual typing is a broad area teeming with both theoretical and
practical results. This section focuses on implementations rather
than formal models, paying special attention to performance evalu-
ation of gradual type systems.

6.1 Sound Gradual Type Systems
Gradual typing has already been applied to a number of languages:
Python [28], Smalltalk [2], Thorn [7] and TypeScript [18, 19]. None
of the projects report on conclusive studies of gradual typing’s
impact on performance.

The authors of Reticulated Python recognized the performance
issues of gradual typing and designed the language to allow the
exploration of efficient cast mechanisms. However, Vitousek et
al. note that “Reticulated programs perform far worse than their
unchecked Python implementations” and that their slowSHA pro-
gram exhibits a “10x slowdown” compared to Python [28, pg. 54].

Gradualtalk’s evaluation is primarily qualitative, but Allende et
al. have investigated the overhead of several cast-insertion strate-
gies on Gradualtalk microbenchmarks and on two macrobench-
marks [4]. In addition, Allende et al. [3] investigated the effect of
confined gradual typing—an approach in which the programmer
can instruct the type system to avoid higher-order wrapping where
possible—in Gradualtalk on microbenchmarks. These efforts eval-
uate the cost of specific features, but do not represent the cost of
the whole gradual typing process.

Safe TypeScript’s evaluation is based on the TypeScript ports
of the Octane benchmarks. Unlike our lattice-based approach, it
compares only the performance of the fully untyped and fully typed
programs. Rastogi et al. report slowdowns in unannotated programs
in a “range from a factor of 2.4x (splay) to 72x (crypto), with
an average of 22x” [18, pg. 178]. On fully typed programs, the
overhead is “on average only 6.5%" [18, pg. 178].

Thorn combines a sound type system with an optional type
system, allowing programmers to choose between so-called con-
crete types and like types [7]. StrongScript follows Thorn’s lead by
adding a sound type system (with a limited form of higher-order
wrappers) to TypeScript. Thorn has a minimal performance evalua-
tion which shows that by sprinkling a few type annotations over toy
benchmarks, speed-ups between 3x and 6x can be obtained [30].
Richards et al. use the same microbenchmark suite as Safe Type-
Script and compare the runtimes of type-erased and fully-typed
versions using their optimizing compiler. They report “no bench-
marks demonstrated slowdown outside of noise” (and up to 20%
speedups) on the fully-typed versions [19, pg. 97]. In our lattice ter-
minology, the StrongScript comparison reports typed/untyped ra-
tios only. The performance of intermediate states are not evaluated.

6.2 Optional Type Systems
Optional typing can be traced as far back as MACLISP, which al-
lowed users to declare (unchecked) type specifications [15, §14.2]
in an otherwise untyped language. The flavor of these annotations,
and those in Lisp descendants such as Common Lisp, differ from
the contemporary view of optional types as statically-checked an-
notations for software maintenance. In Lisp systems, these annota-
tions are used for compiler optimizations and dynamic checking.

Pluggable type systems are a closely related idea [9, 10], and
also belong to the unsound camp. Recent implementations, e.g.
Papi et al.’s work for Java [17], layer additional typed reasoning
on top of existing typed languages rather than untyped languages.

Contemporary optional type systems have been developed for
Clojure [8], Lua [14], Python,10 PHP,11 ActionScript,12 Dart,13 and
JavaScript [6]. Since the type annotations in these systems are
unsound for typed-untyped interoperation, they incur no runtime
overhead from proxy wrapping or dynamic checks. The lack of
overheads obviates the need for a performance evaluation such as
the one in this paper.

Some publications have, however, investigated the performance
impact of optional typing with respect to compiler optimizations.
Intuitively, one would expect that a compiler could use these anno-
tations as hints to generate faster code. This intuition is borne out
by Chang et al. [11] who report significant speed-ups for typed Ac-

10 http://mypy-lang.org
11 http://hacklang.org
12 http://help.adobe.com/en_US/ActionScript/3.0_ProgrammingAS3/
WS5b3ccc516d4fbf351e63e3d118a9b90204-7f8a.html
13 http://dartlang.org

http://mypy-lang.org
http://hacklang.org
http://help.adobe.com/en_US/ActionScript/3.0_ProgrammingAS3/WS5b3ccc516d4fbf351e63e3d118a9b90204-7f8a.html
http://help.adobe.com/en_US/ActionScript/3.0_ProgrammingAS3/WS5b3ccc516d4fbf351e63e3d118a9b90204-7f8a.html
http://dartlang.org


tionScript code over untyped code. But one should take such results
with a pinch of salt as they are highly dependent on the quality of
the virtual machine used as the baseline. Richards et al. [19] report
at most 20% speed up for fully typed JavaScript. They ascribe this
unimpressive result to the quality of the optimizations implemented
in V8. In other words, V8 is able to guess types well enough that
providing it with annotations does not help much.

7. Long Live Sound Gradual Typing
In the context of current implementation technology, sound gradual
typing is dead. We support this thesis with benchmarking results
for all possible gradual typing scenarios for a dozen Racket/Typed
Racket benchmarks of various sizes and complexities. Even under
rather liberal considerations, few of these scenarios end up in de-
liverable or usable system configurations. Even allowing for ad-
ditional conversions of untyped portions of the program does not
yield much of an improvement.

Our result calls for three orthogonal research efforts. First,
Typed Racket is only one implementation of sound gradual typ-
ing, and it supports only macro-level gradual typing. Before we de-
clare gradual typing completely dead, we must apply our method to
other implementations. The question is whether doing so will yield
equally negative results. Safe TypeScript [18] appears to be one
natural candidate for such an effort. At the same time, we are also
challenged to explore how our evaluation method can be adapted
to the world of micro-level gradual typing, where programmers can
equip even the smallest expression with a type annotation and leave
the surrounding context untouched. We conjecture that annotating
complete functions or classes is an appropriate starting point for
such an adaptation experiment.

Second, Typed Racket’s implementation may not support run-
time checks as well as other JIT compilers. Typed Racket elaborates
into plain Racket, type-checks the result, inserts contracts between
typed and untyped modules, and then uses Racket to compile the
result [27]. The latter implements a JIT compiler that open-codes
primitive functions. One implication is that code from contracts
does not get eliminated even if it is re-evaluated for the same
value in a plain loop. A sophisticated JIT compiler may eliminate
some of the contract overhead in such cases, but we conjecture that
performance pathologies will still remain. Applying our method
to an implementation with a more sophisticated compiler, e.g.,
Pycket [5], may let us validate this conjecture.

Third, the acceptance of Typed Racket in the commercial and
open-source Racket community suggests that (some) programmers
find a way around the performance bottlenecks of sound gradual
typing. Expanding this community will take the development of
both guidelines on how to go about annotating a large system and
performance measurement tools that help programmers discover
how to identify those components of a gradually-typed configura-
tion that yield the most benefit (per time investment). St-Amour’s
feature-specific profiler [23] and optimization coaches [24] look
promising; we used both kinds of tools to find the reason for some
of the most curious performance bottlenecks in our measurements.

In sum, while we accept that the current implementation tech-
nology for gradually-typed programming languages falls short of
its promises, we also conjecture that the use of our method will
yield useful performance evaluations to guide future research.
Above we have spelled out practical directions but even theoret-
ical ideas—such as Henglein’s optimal coercion insertion [13] and
the collapsing of chains of contracts [22]—may take inspiration
from the application of our method.

Data and Code
Our benchmarks and measurements are available in our artifact:
http://www.ccs.neu.edu/racket/pubs/#popl15-tfgnvf
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