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Abstract—Passively detecting and counting the number of
swallows in food intake enables accurate detection of eating
episodes in free-living participants, and aids in characterizing
eating episodes. On average, the more food consumed, the greater
the number of swallows; and swallows have been shown to
positively correlate with caloric intake. While passive sensing
measures have shown promise in recent years, they are yet to
be used reliably to detect eating, impeding the development of
timely intervention delivery that change poor eating behavior.
This paper presents a novel integrated wearable necklace that
comprises two piezoelectric sensors vertically positioned around
the neck, an inertial motion unit, and long short-term memory
(LSTM) neural networks to detect and count swallows. A unique
correlation of derivative features creates candidate swallows. To
reduce the FPR features are extracted using symmetric and
asymmetric windows surrounding each candidate swallow to feed
into a Random Forest classifier. Independently, a LSTM network
is trained from raw data using automated feature learning
methods. In an in-lab study comprising confounding activities
of 10 participants, results show a 3.34 RMSE of swallow count
using LSTM, and a 76.07% average F-measure of swallows,
outperforming the Random Forest classifier. This system thus
shows promise in accurately detecting and characterizing eating
patterns, enabling passive detection of swallow count, and paving
the way for timely interventions to prevent problematic eating.

Index Terms—Eating Detection; Wearable; Piezoelectric; In-
ertial Motion Unit; Deep Learning; Recurrent Neural Network.

I. INTRODUCTION AND RELATED WORK

Employing passive sensors in wearable devices to detect
and characterize episodes of eating has been an important
research challenge to reduce the burden of participant self-
report. There are many aspects of the eating process that can
be characterized, such as hand-to-mouth gestures, bites, chews,
and swallows. Based on these building blocks, higher level
semantic information can be inferred such as the mass of
ingested food, caloric intake and ultimately eating behavior.
This paper focuses on the detection and characterization of
swallows, which has been shown to positively correlate with
caloric intake [1].

Miniature, low-power sensors are a key component that
makes swallow detection feasible. Based on the type of
sensors, swallow detection systems can be categorized as
acoustical or electrical. The acoustical approaches use a mi-
crophone to capture swallow sounds. The microphone can be
placed directly at the throat region [2], [3], or in the ear canal
capturing bone conduction [4]. It is understood that audio
sensors are affected by environmental noises, especially when

noises are in the same frequency range as the desired signal, a
challenge commonly known as ”the cocktail party problem.”
Rahman et al. [3] design a special piezoelectric microphone
system that reduces the interference of environmental noises.
Päßler et al. [5] propose an additional microphone to capture
environmental noise only, as a reference to denoise the signal
recorded from the in-ear microphone.

The other approach uses mechanoelectrical sensors placed
directly around the neck to track skin motion and muscle
activation during ingestion. Amft and Troster [2] measure
electromyography signals of muscle activation at infrahyoid
and submental positions. Kalatarian et al. [6], [7] place
piezoelectric film sensor at the lower region of the neck to
detect and classify swallows into different food categories.
Piezoelectric sensors are less intrusive than acoustic ones and
can be effective even in noisy environments.

Recognition algorithms play an equally important role in
detecting swallows. A tutorial by Bulling et al. [8] sketches
out a sample data processing pipeline for human activity
recognition. While the domain of the tutorial is different from
our application, it presents a summary of the standard data
processing techniques used to detect activities from time-series
based signals. However, every system adopts its own unique
approaches to preprocessing, feature extraction and classifi-
cation, depending on their intended outcome. In particular,
authors in [9] propose the usage of statistical features from
a spectrogram to perform feature extraction of piezoelectric
signals.

This paper focuses on a new design using piezoelectric
sensors to detect and count swallows. The main challenges
presented by piezoelectric sensors is that the signal can easily
be affected by head movement, talking, and even chewing.
This paper provides novel methods that help address those
problems both in hardware through a combination of multiple
sensors, and in software using advanced statistical machine
learning and deep learning. The main contributions of this
paper comprise:

• The design of a wearable necklace using two piezoelectric
sensors and an inertial motion unit to capture swallows
during eating episodes.

• Segmenting candidate swallows using a unique out-of-
phase feature calculated from piezoelectric signals. Fea-
tures are extracted in multiple symmetric and asymmetric



windows surrounding each candidate to capture different
parts of a swallow.

• SwallowNet: a recurrent neural network framework that
detect swallows on a continuous data stream after being
trained purely from raw data using automated feature
learning methods.

II. THE NECKLACE

A. Multiple piezoelectric sensor configuration

Prior literature of swallow detection using piezoelectric
sensors have focused on using a single sensor [10] [11]
[7]. Authors [7] further investigate placement of a single
piezoelectric sensor at different positions on the neck, and
conclude that measuring signal at lower regions of the neck
provides the highest accuracy.

The process of swallowing is a complex neuromuscular
activity comprising oral, pharyngeal and esophageal phase.
During the pharyngeal phase, the laryngeal closure occurs
to prevent aspiration during swallows, followed by hyoid
elevation, and then the food moves to the esophageal phase.
During this transition a differential in pressure is sensed
between the upper and lower part of the neck. As a result,
this effort presents a neckworn sensor combining multiple
signals from different positions on the neck to capture this
differential and reliably detect swallows. This paper refers to
the top signal as the laryngeal signal, and the bottom as the
esophageal signal. At the beginning of a swallow, the trachea
presses on the bottom piezoelectric sensor and creates a peak
in the bottom signal. This bottom peak is followed by another
peak in the top signal approximately one second later when
the larynx presses on the top piezoelectric sensor. Thus during
a swallow, there are several alternating peaks from both the
larynx and esophageal signal, spaced by a constant time. This
is illustrated in Figure 1, where vertical lines are placed at
alternating top and bottom peaks.
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Fig. 1: Piezoelectric signals during three consecutive swallows
of drinking water and eating bread (top and middle), and the
close up version of individual swallow (bottom).

Only the swallow produces this distinct pattern. Other
actions such as chewing, head movement, or speaking do alter

individual signals, however they do not generate alternating
top and bottom peaks. For example, when a subjects speaks,
the top and bottom sensors are usually activated at the same
time.

B. Inertial motion sensors
Beside the piezoelectric sensors, an inertial motion unit

(IMU) is used to track movement of the neck. The IMU
combines an accelerometer, gyroscope, and magnetometer to
monitor position and orientation of the neck. Theoretically, the
absolute position and orientation can be recovered through
double integration of acceleration and single integration of
angular velocity. However, the addition of noise from motion
and the sensor make this problem challenging and require
fusion algorithms [12] as integration of noisy signals drift over
time. This paper uses the BNO055 IMU from BOSCH, which
combines motion sensors and a processor running a fusion
algorithm in one single chip. Absolute orientation in the form
of quaternion and linear acceleration (without gravity effects)
are obtained from the BNO055.

C. The integrated necklace

Fig. 2: The necklace: piezoelectric sensors in the middle, IMU
in the back, microcontroller and battery on the side.

Piezoelectric sensors and the IMU are mounted on a wear-
able necklace, as in Figure 2. The necklace is worn low on
the neck as opposed to around the larynx, which would impact
aesthetic perception and user comfort.

Data is acquired at a sampling rate of 100Hz by a mi-
crocontroller running a 16MHz ARM Cortex-M0 processor.
Piezoelectric sensors are sampled through an internal analog-
to-digital converter, while the IMU transfers data directly
through I2C interface. The microcontroller then converts data
into a custom defined format and transmit data to a nearby
client using Bluetooth Low Energy (BLE). Since the maximum
size of a BLE packet is 20 bytes and our data exceeds this
limit (32 bytes), we perform a lossy compression through the
removal of least significant bits.

The following sections describe two approaches to ana-
lyzing the data from the necklace. The Statistical Machine
Learning approach (SML) applies preprocessing, segmenta-
tion, feature extraction, feature selection, classification, and
fusion algorithms to train and test a predictive model. The
Deep Learning approach (SwallowNet), however, trains com-
pletely from raw data, empowering the neural network to build
its own internal representation of the features and classification
boundaries of a swallow.



III. STATISTICAL MACHINE LEARNING

The diagram in Figure 3 summarizes the main stages of
the data processing pipeline for the SML approach. Firstly,
signal processing algorithms are applied to the raw data to
denoise and normalize the signals. Secondly preprocessed data
from two piezoelectric sensors are fed through a segmentation
algorithm to find candidate swallows. After that, a machine
learning algorithm is used to build a model that classifies
swallow candidates into true (positive) parts of swallows and
false (negative) swallows which correspond to other activities
such as head motion or talking). Finally, a postprocessing
fusion step merges the nearby positive candidates to produce
a single prediction for each swallow.
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Fig. 3: The data processing pipeline

A. Preprocessing

Data from two piezoelectric sensors and the IMU are
smoothed using a Savitzky-Golay filter, which has been
shown to be effective in retaining representative peaks of
swallows while increasing the signal-to-noise ratio in data
from piezoelectric sensors [13]. Empirical findings show best
performance using a window size of 9 (.09s) and a low degree
polynomial order of 3.

B. Segmentation

Given a continuous data stream, the segmentation algorithm
finds the candidate’s moments where swallows most likely
occur. The algorithm might return multiple candidates for one
swallow, or negative candidates created by other activities, but
it should identify a large part of the signal that corresponds
with a swallow. Thus the most important evaluation for the
segmentation algorithm is the recall rate, which is the ratio of
number of true swallows (that has at least one corresponding
candidate swallow identified by the segmentation algorithm)
to the total number of swallows.

While a sliding window approach is often used for segmen-
tation, prior to feature extraction, this approach generates an
imbalanced dataset since the proportion of swallows to non-
swallow events is small. To minimize the number of negative
candidates, another preprocessing step is performed to further
amplify the distinction of a swallow from a non-swallow.

As discussed above, a swallow happens when the top
and bottom piezoelectric signals exhibit alternating peaks. As
shown in Figure 1, when the top signal increases, the bottom
one decreases, and vice versa, creating an out-of-phase effect.
This phenomenon can be captured quantitatively by calculating

the correlation of derivatives between the two signals as in the
following equation:

corrt = −dTop

dt

dBottom

dt

= − (Topt − Topt−1)

dt

(Bottomt −Bottomt−1)

dt
A local maxima finding algorithm with the look up window

of 16 samples (0.16 seconds) is then applied to the correlation
of derivatives. These local maximas represent the center of
the swallow candidates. Figure 4 visualizes the segmentation
for drinking water and eating bread. While there are some
negative candidates due to chewing or head movement (false
positives), all of the true swallows are captured. In the next
step, the system relies on the classifier to reduce the false
positive rate.
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Fig. 4: Correlation of derivatives. Local maximas (green
points) are swallowing candidates. Note that eating bread
has many false positive candidates due to chewing, which
is filtered through feature extraction and classification in the
following stage.

C. Feature Extraction

In this step, the SML model is built to differentiate between
positive and negative swallow candidates.

1) Multiple windows for feature extraction: Feature ex-
traction is performed in multiple symmetric and asymmetric
windows of different sizes around each candidate to capture
the different temporal stages of a swallow. For example, a
window of [-3s, 0s] before the swallow captures a drop in the
lean forward angle which often precedes a swallow.

2) Lean forward angle from IMU: The IMU returns ab-
solute orientation in the form of quaternion. The quaternion
is a four dimensional vector q representing the rotation axis
and the angle of rotation around that axis. The quaternion can
be projected into different planes to gain physical angles and
infer activities such as leaning forward and to the side, and to
determine the orientation that the subject is facing. Not all of
these angles are related to the eating process, however. The
most informative one is the Lean Forward Angle (LFA), the
angle between the IMU and Earth’s surface for example, when
the subject sits straight, the LFA is close to 90 degrees. LFA is
calculated by applying the dot product of the normal vectors
of two planes:

LFA = acos < n1,n2 >



where the normal vector of Earth’s surface is simply the
z-axis, and the normal vector of the IMU is obtained through
the quaternion transformation:

n1 = [0, 0, 1] n2 = qn1q
−1

where q is a unit quaternion that rotates n1 to obtain the
normal vector of the IMU.

3) Features: Table I summarizes the statistical features
extracted from the signals, which have been shown to be useful
in representing time-series signals [8] [9]. We extract these
features for each of the laryngeal, esophageal, and LFA signals
and acceleration energy within each window as described
in Section C1. A correlation-based feature subset selection
(CFS-Subset) algorithm is applied to obtain nineteen optimal
features for swallow detection.

Statistical features Time series features
Mean, variation Count above mean
Median Count below mean
Max, min First location of maximum
Skew First location of minimum
RMS Longest strike above mean
Kurtosis Longest strike below mean
1st, 3rd quantile Number CWT peaks
Inner quantile range Number of peaks

Symmetry looking
Polynomial fitting features

TABLE I: List of features
D. Classification and Fusion

A Random Forest classifier is trained on the generated
features. A Random Forest model comprises multiple decision
tree classifiers which are trained on different subset of the
features, and corrects for decision trees habit of overfitting
the training set.

There might be multiple candidate swallows corresponding
to a single swallow since there are multiple peaks resulting
from the top-bottom out-of-phase shift. The fusion could have
been done prior to the classification stage, however, the pres-
ence of negative candidates makes merging more challenging
at that point, so the fusion is done post-classification. A
mean-shift clustering algorithm [14] is used since it does not
require prior knowledge of the number of clusters and does
not constrain the shape of the clusters.

IV. SWALLOWNET

The data from the necklace belongs to the sequential data
category. It has variable length, and contains temporal depen-
dencies across different data channels. In the previous section,
the temporal dynamics are represented through the usage of
multiple symmetric and asymmetric feature extraction win-
dows. However, these windows are fixed and thus sometimes
might miss a long range interaction, and at other times might
be redundant.

A recurrent neural network model [15] is designed specif-
ically for sequential data. RNN models can be trained on
one set of input sequence, and then generalized to a different
length test sequence. RNN achieves this property through the
inclusion of cycles in its computation graph, and also sharing
of parameters across time.

The following particular implementation of RNN is utilized
to capture swallows from the continuous data stream of the
necklace. First, supervised sequence labeling models are used
[16], where the output sequence has the same length as the
input sequence. Second, long short-term memory (LSTM) is
used as the recurrent layer to avoid the vanishing gradient
problem common when applying RNN [17]. LSTM has been
employed successfully in many applications related to se-
quential data such as speech recognition [18], video action
recognition [19] and wearable action recognition [20].

It is enticing to build a complicated model with multiple
recurrent and constitutional layers. The necklace data, how-
ever, is in fact simple and does not have many states. When
the subject rests, the piezoelectric signals always go back to
the original value of 0.5V. When the subject starts eating, the
signal alternates between the state of chewing, head movement
or swallows. The swallowing pattern does not exhibit large
variability in time since it is difficult to swallow faster or
slower involuntarily. The temporal dynamics of piezoelectric
signals and the lean forward angle are also much shorter
in range compared to speech or wearable gesture signals.
Thus the neural network model SwallowNet is designed to
have a single recurrent layer combined with one nonlinear
transformation layer for feature extraction.

A. Network architecture
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Fig. 5: SwallowNet architecture
Figure 5 shows the architecture of SwallowNet. The data

stream is split into chunks of 20 samples (0.2 second), which
spans approximately one fifth of one single swallow. These
chunks are then transformed through a nonlinear embedding
layer which resembles feature extraction:

et = relu(Wf ∗ xt + bf )

where relu is the rectified linear unit activation function,
Wf , bf are the parameters of the embedding layer, and xt,
et are the original data and output of the embedding layer
respectively. Feature extraction are no longer fixed functions,
instead the weights Wf , bf are updated during the training



process. The network learns the optimal representation to
differentiate between a swallow and a non-swallow chunk.

Feature ft is then fed into the LSTM layer to learn the
temporal dynamics of the signals. A LSTM layer has internal
state Ct and output ht, which are updated recurrently through-
out the sequence. LSTM utilizes forget gate ft, input gate it
and output gate ot to implement this update. The following
equations describe the update rules for the gates, where σ is
the sigmoid activation function:

ft = σ(Wf [et, ht−1] + bf )
it = σ(Wi[et, ht−1] + bi)
ot = σ(Wo[et, ht−1] + bo)

From these gates, the internal states and output can be
obtained as the following equation:

Ct = ft ◦ Ct−1 + it ◦ tanh(Wc[et, ht−1] + bc)

ht = ot ◦ tanh(Ct)

where ◦ represents the element wise vector multiplication.
Outputs from LSTM layers are transformed through another
linear transformation layer to obtain two dimensional outputs
for each chunk. The loss L of the network is then calculated
as the cross entropy loss between ground truth yt and the
soft-max activation of the output layer outt, summed over the
whole sequence:

L =
∑

t[yt log outt + (1− yt) log(1− outt)]

B. Training

SwallowNet is trained on piezoelectric signals, LFA, and
acceleration energy. At each iteration, 32 data sequences (a
sequence is one minute of data) and their corresponding labels
are fed into the optimization. To increase the training set, data
augmentation is used by scaling the sequences by a random
number between 0.8 and 1.2. This range is selected empirically
to introduce realistic noise into the data, while not drastically
distorting signal shape.

The dimension of the embedding layer et is selected to be 32
to compress the original data (20 samples * 4 channels = 80).
The dimension of LSTM layer is set at 32 (SwallowNet32) and
64 (SwallowNet64). The network is trained using the Adam
optimization algorithm [21] with a learning rate of 1e-3. The
number of training iterations is fixed throughout the whole
experiment. The backpropagation through time algorithm up-
dates both feature representation and LSTM weights at each
optimization iteration, instead of training each layer separately.

V. DATA COLLECTION

Data is collected from 10 subjects (7/3 male/female, mean
age=26, mean BMI=22). Each subject wears the necklace,
along with a chest-mounted GoPro camera (to closely record
the neck region) and in-ear microphone (to record eating
sounds) to aid reviewers in labeling swallows. The video
from the GoPro camera and the in-ear audio are merged
later and annotations of swallows are provided by independent
reviewers. The combination of audio and video further enhance
the quality of the ground truth data generated by the reviewers.

Fig. 6: Experiment setup
The experiment setup allows subjects to eat as freely as

possible, without disrupting the eating process by having to
report swallows. The subjects perform each of the following
activities for two minutes, followed by a 30 second rest
period: eat soup, eat bread, drink water from cup, eat salad,
drink water from straw, eat chicken, make a phone call, eat
chips, brush hair. There are two non-eating actions in the
experiment: make a phone call represents talking, and brushing
hair represents head movement.

VI. RESULTS

This section reports the optimal features selected for predic-
tion using a Random Forest. Results using Leave One Subject
Out Cross Validation (LOSOCV) are provided, along with the
root mean square error (RMSE) of predicted swallows for each
participant.

A. Statistical Machine Learning

Applying the correlation of derivative feature to generate
candidate swallows achieves a 99.4% recall rate. Compared
to a sliding window segmentation of 1 second, correlation of
derivatives segmentation reduce the number of false positives
by 39.5%.

Table II shows the resulting predictive features identified
by CFS-Subset feature selection, using different thresholds to
generate the ranking. The most predictive features ranked first
include all of the top, bottom, LFA and acceleration energy
signals.

B. SwallowNet

Detection of swallows is evaluated using the event-based
evaluation method [8] using a threshold of 1.5s. Concretely, a
prediction within 1.5s of the true swallow is considered a true
positive.

Table III shows both SwallowNet32 and SwallowNet64
outperform Random Forest in F-score. F-scores averaged over
male and female subjects are similar, although slightly better
for females. SwallowNet32 and SwallowNet64 also have sim-
ilar F-scores, even though they are both trained from scratch
using random weights.

SwallowNet32 and SwallowNet64 also outperforms Ran-
dom Forest in predicting the number of swallows for each
participant using LOSOCV (see Table IV). To count swallows,



Rank Signal Feature Window
1 Bottom max -2s 2s

Top quart1 0s 3s
Top 3rd coef 0s 3s
Lean Forward first location of maximum 0s 3s
Top skew -4s 1s
Top mean -1s 4s
Accel energy 3rd coef -1s 4s
Bottom mean -6s 0s

2 Top mean -2s 2s
Bottom kurtosis -2s 2s
Top mean 0s 3s

3 Top kurtosis -3s 0s
Top RMS 0s 3s
Bottom max -4s 1s
Bottom skew -4s 1s
Top number cwt peaks -1s 4s
Bottom number cwt peaks -1s 4s
Bottom median -6s 0s
Accel energy IRQ -6s 0s

TABLE II: Top 19 features
Subject Random

Forest
SwallowNet64 SwallowNet32

1 70.73 83.86 83.69
2 74.78 72.84 78.05
3 39.54 54.42 52.51
4 60.24 47.17 56.45
5 77.76 74.06 69.95
6 87.20 89.31 92.24
7 71.45 77.45 77.03
8 75.90 74.75 80.53
9 57.39 73.46 79.17
10 50.77 91.63 91.08
Average Males 65.86 73.32 74.85
Average Females 68.24 75.22 78.91
Average 66.58 74.16 76.07

TABLE III: F-score of swallows using event based evaluation
SML use the number of merged true positive candidates, while
SwallowNet use the number of positive prediction interval.

Subject Number of
true
swallows

Random
Forest

SwallowNet64 SwallowNet32

1 87 63 80 78
2 63 73 74 60
3 65 40 60 57
4 57 57 37 46
5 98 105 76 78
6 87 85 91 94
7 90 78 86 84
8 101 102 97 94
9 119 80 90 106
10 80 31 60 68
RMSE 5.88 4.87 3.34

TABLE IV: Counting swallows
VII. LIMITATIONS AND CONCLUSIONS

In summary, this paper presents an integrated wearable
necklace that combines two piezoelectric sensors with an
inertial motion unit. The placement of piezoelectric sensors at
the larynx and trachea is critical. Placing them elsewhere, such
as above and below the larynx, generates correlated signals
similar to each other, and thus limited information is gained
using multiple sensors.

The paper also shows that given enough labeled data, a
deep neural network model outperforms statistical machine
learning model in detecting swallows, resulting in a 76.07%
F-score compared to 66.6% F-score using LOSOCV, and

a RMSE of 3.34 in swallow count. SwallowNet does not
require segmentation, and generalizes well to variable length
test sequences. Thus SwallowNet proves to be a suitable
model for detecting and characterizing eating. Future work will
combine audio with piezoelectric signals to improve detection
of swallows.
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