
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Anomalous video event detection using spatiotemporal context

Fan Jiang a,⇑, Junsong Yuan c, Sotirios A. Tsaftaris a,b, Aggelos K. Katsaggelos a

a Department of Electrical Engineering and Computer Science, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA
b Department of Radiology, Northwestern University, 737 N Michigan Ave., Chicago, IL 60611, USA
c School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore

a r t i c l e i n f o

Article history:
Received 1 March 2010
Accepted 1 October 2010
Available online 18 November 2010

Keywords:
Video surveillance
Anomaly detection
Data mining
Clustering
Context

a b s t r a c t

Compared to other anomalous video event detection approaches that analyze object trajectories only, we
propose a context-aware method to detect anomalies. By tracking all moving objects in the video, three
different levels of spatiotemporal contexts are considered, i.e., point anomaly of a video object, sequential
anomaly of an object trajectory, and co-occurrence anomaly of multiple video objects. A hierarchical data
mining approach is proposed. At each level, frequency-based analysis is performed to automatically dis-
cover regular rules of normal events. Events deviating from these rules are identified as anomalies. The
proposed method is computationally efficient and can infer complex rules. Experiments on real traffic
video validate that the detected video anomalies are hazardous or illegal according to traffic regulations.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Discovery of suspicious or anomalous events from video
streams is an interesting yet challenging problem for many video
surveillance applications. By automatically finding suspicious
events, it significantly reduces the cost to label and annotate the vi-
deo streams of hundreds of thousands of hours. In many scenarios,
the video camera is fixed and the site being monitored is mainly
static. By modeling the statistics of the background and the appear-
ance and dynamics of the foreground (objects such as a person, car,
airplane), various features of the objects, such as location and
motion at different times, can be extracted from the video data.
These object features are useful in characterizing video events.
For instance, a video event can be defined by the motion trajectory
of any single object [1–7].

Anomalous video event detection is a challenging problem in
that it is difficult to define anomaly in an explicit manner. It is
possible that we may need to identify an anomalous event when
it appears, despite the fact that it had never occurred before. The
more practical approach is to detect normal events first (as they
follow some regular rules) and treat the rest as anomalies. In many
cases, however, a priori knowledge of regular rules is lacking and
no training data for normal video events are available. Therefore,
there is a need for an unsupervised approach to automatically
mine these rules directly from unlabeled data.

Clustering-based approaches have been recently investigated to
address this problem [1–3,5,8,7]. These approaches are based on
the fact that normal events appear frequently and dominate the
data, while anomalies are different from the commonality and ap-
pear rarely. For instance, a running person can indicate an anoma-
lous event if most people in the crowd are walking; similarly, a car
moving against the direction of most other moving vehicles can
indicate an anomalous event too. Therefore, unsupervised cluster-
ing can be performed on all video events. Those events clustered
into dominant (e.g., large) groups can be identified as normal,
representing the regular rules. Those that cannot be explained by
the regular rules (e.g., outliers distant from all cluster centers)
are defined as anomaly.

Despite the success of clustering-based approaches for anomaly
detection, there exist several limitations. Most clustering
approaches consider a video event as the motion trajectory of
one single object. However, this definition ignores important
spatial and temporal contextual information. On one hand, video
anomaly may not correspond to the whole trajectory, only to a part
of it. On the other hand, an anomaly can arise due to the inappro-
priate interactions among multiple objects (i.e., multiple trajecto-
ries), even though their individual behaviors are normal. Thus,
anomaly detection based on trajectory clustering can cause miss
detections.

Instead of relying solely on trajectories, we define video events at
different semantic levels considering both spatial and temporal con-
text. At each level, frequency-based analysis is performed. Events
appearing with high frequency are automatically discovered and
declared to be an explicitly description of the regular rules. The
events deviating from these rules are detected as anomalies. We test
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the proposed approach on real traffic videos, where vehicles have
been detected and tracked. The task is to discover anomalous events
from a collection of movement trajectories of vehicles. The results
show that our approach can automatically infer regular rules of traf-
fic motion of the specific scene (corresponding to the real traffic
rules) and detect anomalous events at three levels: motion of one
vehicle at any specific time, motion of one vehicle within a time
range, and co-occurrence of multiple vehicles. Most of the detected
video anomalies are proved to be hazardous or illegal, according to
vehicular traffic regulations.

The rest of this paper is organized as follows. Section 2 provides
an overview of the recent literature. Sections 3–5 describe our
approach in discovering anomalous video events at different
semantic levels. Experimental results are presented in Section 6,
and we conclude the paper in Section 7.

2. Related work

Many approaches of video event analysis are based on the
object trajectories extracted from video. Due to the lack of a priori
knowledge of normal events, unsupervised clustering is performed
on all trajectories and dominant trajectory clusters are identified
and modeled as normal event patterns (i.e., regular rules). Then
anomalous events can be detected from those trajectories not fit-
ting the normal models. Specifically, there are many different rep-
resentations of an object trajectory given, for example, by a
sequence of muti-dimentional features [1], the curvature feature
of the trajectory [9], a linear dynamical system [10], dynamic
Bayesian networks [7,11–13], the motion histogram [14], and the
multivariate probability density function of spatiotemporal vari-
ables [15]. Considering trajectory clustering, the classical k-means
algorithm is applicable if each trajectory is resampled to a fixed
length [12] and the number of clusters is estimated using the ap-
proach in [4]. The spectral clustering algorithm is another popular
choice [2,5,13] because the number of clusters can be well deter-
mined by performing eigenvalue decomposition of the affinity ma-
trix of all trajectories. Alternatively, a sequential grouping method
is used in [3], where each trajectory is sequentially taken from the
database and either matched to an existing group or used to initial-
ize a new group. Other algorithms used for trajectory clustering in-
clude hierarchical clustering [7], mixture model [11,14], mean shift
[6], SVM [8], and kernel density estimation [15].

In some noisy video data, however, the object trajectory cannot
be estimated accurately. Approaches are proposed to represent
video events based on features at the pixel-level or at local spatio-
temporal patches. Based on these representations, normal events
are discovered by capturing and modeling the dominant motion
of objects involved in the video stream. For example, Zhong et al.
[16] used spatiotemporal gradients of all pixels to represent video
motion and detected video anomalies by spectral clustering on this
gradient field. Boiman and Irani [17] used spatial-temporal patches
for event modeling. They considered video normality as being
composed from large chunks of spatial-temporal patches. Hamid
et al. [18] introduced a representation of activities as bags of event
n-grams, where they analyzed the global structural information of
activities using local event statistics. They detected anomalous
events based on discovering regular sub-classes of normal events.
Wang et al. [19] represented video events as distributions over
low-level visual features on a pixel basis and used hierarchical
Bayesian models for event clustering. In our previous work [20]
we proposed a representation of crowd motion in video using mov-
ing blobs and the spatial relationship among blobs, based on which
anomalous motion or interaction of pedestrians is detected.

Despite the many different representations of video event, spa-
tial and temporal contextual information is not typically used,

which limits the power of video anomaly detection. By consider-
ing spatial context, an anomalous video event may include not
only a single agent (e.g., a moving object or an image patch),
but also multiple spatially related agents and their interactions.
By considering temporal context, an anomalous video event
may include behaviors at multiple times, i.e., having an arbitrary
length of time. Many of the existing works fail to provide any
modeling of such contextual information. One of the attempts
to model spatiotemporal context for video event analysis is the
work of Oliver et al. [21], where a coupled HMM is used to model
the interaction between two object trajectories. Galata et al. [22]
used variable length Markov models to represent temporal
dependency of atomic behavior components. Yao et al. [23] repre-
sented the trajectories of multiple objects by a 3D graph which is
augmented by a number of spatiotemporal relations (links) be-
tween moving and static objects in the scene. The works in
[24–26] learned spatiotemporal dependencies of moving agents
in complex dynamic scenes, such as the right of way between
different lanes or typical traffic light sequences, using Markov
random field model, topic model, and dependent Dirichlet
processes. Wang et al. [19] used hierarchical Bayesian models to
connect three elements in visual surveillance: low-level visual
features, simple atomic activities, and interactions. Based on this
modeling a summary of typical atomic activities and interactions
occurring in the scene was provided and video anomalies were
detected at different levels.

Similarly to [19], we propose a hierarchical representation of
video events. Instead of intuitively considering two levels of video
events (i.e., atomic activities and interactions) as in [19], we define
three levels of events based on different spatial and temporal con-
text. In order to detect anomalous video events at different levels,
we perform frequency-based analysis which is a bottom-up meth-
od, differing from the top-down method (a generative model) used
in [19]. In addition, by utilizing the object tracking information, our
approach can detect anomalous events associated with specific ob-
ject(s) at specific time(s), instead of image pixels or patches as in
[19].

3. Point anomaly detection

In a video scenario with moving objects (e.g., vehicle, humans),
the most easily observed activity is the instant behavior of any sin-
gle object i at a specific time t, which we categorize as an atomic
event ea(i, t). Typically, an atomic event describes the location, mov-
ing direction, and velocity of the object at each video frame. It is
the basic unit for describing more complicated events and
interactions.

For any specific video scenario, the instant motion of a single
object usually follows certain rules. For example, road traffic in a
certain lane has to move in a determined direction, and the traffic
waiting for red lights must stop at a certain location. As most
atomic events follow some regular motion rules, we can detect
normal and anomalous ones based on their frequency of appear-
ance. By frequency we mean the number of appearances for each
different atomic event. Note that the same atomic event appearing
continuously for whatever time length only counts once. A simple
yet effective way of achieving the above is to represent each atomic
event (appearing continuously for arbitrary time) as one discrete
feature vector, compute the histogram of all feature vectors, and
use a threshold to identify bins of lower probability. Those atomic
events with low frequency are declared point anomalies (following
a similar definition given in [27]), because these anomalies con-
sider no contextual information. After this step we can readily de-
tect some obvious anomalies from the video, and exclude them
from subsequent analysis.
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4. Sequential anomaly detection

A video anomaly may not only consist of instantaneous behavior,
but may also be characterized by the ordering or transition of instan-
taneous behaviors. For example, in a traffic scenario, two atomic
events, such as entering an intersection from a straight-only lane
and making a left turn within the intersection, can be normal. But
their combination is anomalous (illegal). In order to exploit this tem-
poral context, we define a sequential event es(i) as a sequence of
atomic events associated with the trajectory of an object i. Note that
the same atomic event appearing continuously is regarded as only
one item in the sequence. For example, es(i) is represented by the se-
quence (ea(i,1),ea(i,2),ea(i,4), . . .), if ea(i,3) = ea(i,2).

Similarly to point anomaly detection, an anomalous sequential
event can be identified by finding sequences that appear rarely,
e.g., turning left from a straight-only lane must be rare compared
to other sequential events. However, a sequential anomaly may last
an arbitrary length of time (possibly only a part of the complete se-
quence). Techniques are needed to deal specifically with the varia-
tion of time length. Another difficulty is the effect of the noise
when counting the frequency of similar sequences. For example, if
each atomic event is denoted by a number 1, 2, 3, . . ., the sequence
of (1,6,2,3,4,5) might be counted as an appearance of the sequence
(1,2,3,4,5), because they are almost the same except for the inser-
tion of atomic event 6. Thus, small variations must be allowed for.

To accommodate this design constraint, we adopt the technique
of frequent subsequence mining [28]. Given two sequential events
defined in our work, es(i) = (ea(i,1),ea(i,2), . . .) and es(j) = (ea(j,1),
ea(j,2), . . .), the subsequence relationship between them is defined
as follows: es(i) is a subsequence of es(j), if and only if a monoton-
ically-increasing index mapping I for each element in es(i) can be
established, such that each element ea(i,k) is a subset of ea(j, I(k)).
That is, a sequence is a subsequence of another, if it can be
matched with arbitrary long gaps but preserving the order, such
that the matched elements satisfy a subset relationship. This
accommodates the design constraint of allowing for small varia-
tions that can be due to the presence of noise.

In practice, we apply the CloSpan algorithm by Yan et al. [28] on
all sequential events collected from the video. It automatically dis-
covers frequent subsequences (instead of the complete sequences)
with their frequency above a given threshold. In addition, this
algorithm ensures the discovered subsequences contain no
super-sequence with the same support (i.e., occurrence frequency).
Therefore, the resulting subsequences include all typical repetitive
patterns of the collected sequential events, and are thus regarded
as patterns of normal sequential events.

Based on these normal patterns, we can classify every sequen-
tial event and detect anomalous parts. To compare the similarity
between two sequences, we use the edit distance [29]. In our case,
the edit distance between two sequences is given by the minimum
number of operations (insertion, deletion, or substitution of an
atomic event) needed to transform one sequence into the other.
Therefore, any sequential event is classified to the normal pattern
with the minimum edit distance. Consequently, those atomic
events within a sequence, which need to be deleted to match the
normal patterns, are identified as anomalies. Video anomaly de-
tected at this level considers the temporal context of an object tra-
jectory and is referred to as sequential anomaly. Note that the
sequential anomaly is not necessarily a complete sequence, but
can be any part of a sequence with arbitrary time length.

5. Co-occurrence anomaly detection

The highest level of anomaly arises from the co-occurrence of
multiple objects. For example, in a traffic scenario, turning left

and going straight within the intersection are both normal events
when considered independently; however, making a left turn in
front of incoming traffic is illegal and thus anomalous. This co-
occurrence anomaly usually happens in the area with multiple ob-
jects and intensive interactions, e.g., within a road intersection. In
order to detect this kind of anomaly, we first define a co-occurrence
event eA

c ðtÞ as an instant event at time t for a specific area A of a vi-
deo frame. As every object appearing in this area at any time in-
stance has a label of atomic event pattern and sequential event
pattern (anomalies are excluded), a co-occurrence event can be
represented as an itemset, with each item corresponding to a label.
Possible definitions include an itemset of atomic event labels, i.e.,
eA

c ðtÞ ¼ feaði; tÞj all i appearing in area A at t}, and an itemset of
sequential event labels, i.e., eA

c ðtÞ ¼ fesðiÞj all i appearing in area A
at t}.

Similarly to point and sequential anomaly detection, an anom-
alous co-occurrence event is characterized by its rareness of
appearance compared to other co-occurrence events. In order to
find normal patterns of co-occurrences and detect anomalies, we
apply the frequent itemset mining algorithm [30,31] on all co-
occurrence events collected from the video (only one co-occur-
rence event is collected for the same event appearing continuously
for whatever time length), treating each co-occurrence event as a
transaction. This algorithm discovers frequent subsets of co-occur-
rences (frequency above a given threshold) and also ensures the
discovered subsets contain no superset with the same support.
The resulting subsets include all typical repetitive patterns of the
collected co-occurrence events, and are thus regarded as patterns
of normal co-occurrence events.

Based on these normal patterns, we can classify every co-occur-
rence event and detect the anomalous parts. A simple approach is
to classify each co-occurrence event to the normal pattern with
maximal overlapping items. Nevertheless, it neglects the temporal
constraint of co-occurrence events through video stream. For
example, in a traffic video of a road intersection, as a result of
the traffic light signaling, only a few combinations of driving
behaviors are allowed at one time. New behaviors appear only at
the time when traffic lights change. In other words, normal co-
occurrence events here correspond to a few traffic states and there
exist specific ways of transitioning among them. Therefore, in or-
der to classify co-occurrences at every time to a normal pattern
(state), we need to consider this temporal constraint.

Based on the above observation, the co-occurrences at all times
can be considered as an observation sequence Y generated from a
hidden Markov model (HMM), where Y ¼ eA

c ð1Þ; eA
c ð2Þ; . . .

� �
. The

hidden states correspond to normal co-occurrence events discov-
ered previously by frequent itemset mining. Therefore, in order
to classify every co-occurrence event to one of the normal co-
occurrence patterns, we need to determine the most likely se-
quence of hidden states that led to the observations in Y. Actually,
co-occurrence classification becomes an HMM decoding problem.

First we need to determine the parameters of the HMM. We de-
note aij as the transition probability from state i to state j, and bj(t)
as the probability of state j emitting a co-occurrence eA

c ðtÞ. Note
that bj(t) has a discrete probability distribution with infinite num-
ber of observed values, because eA

c ðtÞ may consist of an arbitrary
number of items. Due to the complexity of bj(t), the conventional
Baum–Welch algorithm may not be applicable. In the forward
algorithm, in order to calculate the forward probability aj(t) (the
probability that the HMM in state j at step t having generated
the first t observations), bj(t) needs to be specified.

To address this issue, we propose a special modeling of the dis-
tribution of bj(t), based on which the Viterbi algorithm can be used
iteratively to determine HMM parameters and finally solve the
decoding problem. As we know, the Viterbi algorithm computes
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the probability of the most probable state sequence responsible for
the first t observations dj(t) as

djð1Þ ¼ bjð1Þ; ð1Þ
djð2Þ ¼ bjð2Þmax

i
ðaijbið1ÞÞ; ð2Þ

djð3Þ ¼ bjð3Þmax
i

aijbið2Þmax
k
ðakibkð1ÞÞ

� �
; ð3Þ

� � �
djðtÞ ¼ bjðtÞmax

i
ðaijdiðt � 1ÞÞ: ð4Þ

The Viterbi path can be retrieved by saving all states i used in (1)–
(4). Obviously, each used state i does not rely on the exact value of
di(t) but on the comparison among all dj(t)’s for a fixed t. If di(t) is
comparable for different i, the Viterbi path can be successfully
determined.

Therefore, instead of specifying the exact value of bj(t), we may
just model the relationship among bj(t)’s for different j. Specifically,
we assume that for any co-occurrence eA

c ðtÞ, the probabilities of it
emitted from state i or j satisfy the relationship

biðtÞ
bjðtÞ

¼ miðtÞ
mjðtÞ

; ð5Þ

where mj(t) is the number of items in eA
c ðtÞ that belong to pattern

j. In other words, the emission probability is proportional to the
number of items shared by the emission itemset and the state item-
set. For example, eA

c ðtÞ ¼ f1;1;2;2;2;3;4;5;5gð1;2;3; . . ., are differ-
ent item labels), state i = {1,2,3}, and state j = {3,4,5}. We have bi(t)/
bj(t) = 6/4, because the items 1, 2 and 3 appear in eA

c ðtÞ six times in
total and the items 3, 4 and 5 appear in eA

c ðtÞ four times in total.
Alternatively, we can express bj(t) for any state j as

bjðtÞ ¼ cðtÞ �mjðtÞ; ð6Þ

where c(t) is the same constant for every state. Substituting (6) into
(1)–(4), we have

djð1Þ ¼ cð1Þ �mjð1Þ; ð7Þ
djð2Þ ¼ cð1Þcð2Þ �mjð2Þmax

i
aijmið1Þ
� �

; ð8Þ

djð3Þ ¼ cð1Þcð2Þcð3Þ �mjð3Þmax
i

aijmið2Þmax
k
ðakimkð1ÞÞ

� �
; ð9Þ

� � �

djðtÞ ¼
Yt

i¼1

cðiÞ
 !

� f fmg; fagð Þ: ð10Þ

Note that the c(t) term is constant and f(�) is only related to {m} and
{a}. Therefore, dj(t)’s can be compared for different j at any time t
without knowing the exact value of bj(t). Based on this modeling,
the Viterbi path can be determined.

Actually, we use an iterative approach to determine {aij} and to
decode states, as shown in Algorithm 1.

Algorithm 1

1:Set initial {aij} to uniform distribution;
2: Decode states by Viterbi algorithm based on (10);
3:{aij} by taking the ratio between the number of transitions

from state i to state j and the total number of any
transitions from state i. Go to step 2 to recalculate {aij} until
the error of {aij} is small enough (convergence is reached).

Once each co-occurrence event is associated with one of the
states (normal co-occurrence patterns), anomalies can be detected
by figuring out those items that are different from its correspond-
ing normal co-occurrence pattern. Specifically, if the co-occurrence
event eA

c ðtÞ is classified to the pattern j, all the items in eA
c ðtÞ that are

not included in the itemset of pattern j are identified as anomalies
(co-occurrence anomalies).

6. Experimental results

In this section, we present an experimental study in order to
evaluate our approach. As a general mining approach, the proposed
three levels anomaly detection is applicable to many different sce-
narios. These scenarios should include a large amount of objects
with continuous motion. The normal motion, both the motion of
a single object and the motion of multiple objects, follows some
intrinsic but unknown rules. Most motions in this scenario are nor-
mal while only a few outliers are not. Our task is to automatically
mine these rules of normal motion from all the data (no prior
knowledge, training data, etc.) and to detect any anomalous mo-
tions breaking rules. One good example is the traffic motion at
an intersection guided by traffic lights.

6.1. Traffic intersection scenario

The proposed approach was first tested with a surveillance
video monitoring traffic for a long time at a road intersection. This
video is taken from a large database of aerial traffic videos from the
Next Generation Simulation (NGSIM) project (http://ngsim.camsys.
com/). One example frame is shown in Fig. 1.This video monitors a
four-way intersection in Los Angeles, California. Each road is a two-
way road with multiple lanes (some with right turn or left turn
lanes). All moving traffic in this area is controlled by traffic lights
within the intersection. Thus, the underlying rule of normal motion
is the legal motion directed by the traffic lights. However, without
any prior knowledge (traffic signaling information), our goal is to
discover the traffic rules followed by most vehicles in this area
and to detect anomalies at different levels. In this database, de-
tailed trajectory information for all vehicles in this video are avail-
able, such as the position (lane information), the driving direction,
and the velocity of each vehicle at every time of its appearance.
This video contains 21,689 frames in total and 2230 vehicle trajec-
tories are tracked.

6.2. Point anomaly detection

For the point anomaly detection, we represent each atomic
event by three discrete features, i.e., the position of the vehicle,
the driving direction, and the velocity. Every feature is quantized
to discrete values. In our experiment, the vehicle position is
represented by the specific lane or intersection it occupies (the
lane information for each vehicle at every specific time is available
directly from this database). As shown in Fig. 1, all lanes are num-
bered from 1 to 29. The intersection area is numbered as 30. The
driving direction has four possible values (north, south, west, east).

2
3
4
5

1
14
13
12

29
28
27

15
16
17
18
19
20

10
119

2123
22

876

242526

30

NS

E

W

Fig. 1. Example frame of video monitoring traffic at road intersection (all lanes are
numbered from 1 to 29 and the intersection area is numbered as 30).
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The velocity is discretized to either moving (v > 0) or stopping
(v � 0).

A 3-D histogram for all the atomic events throughout the video
is established. By applying a threshold (10% of the average bin
height in our experiments), we detect 54 frequent (normal) behav-
iors, as shown and numbered in Fig. 2. Specifically, Fig. 2a shows
moving normal events (v > 0), with the red squares referring to
vehicle positions and the arrows indicating driving directions.
Fig. 2b shows stopping normal events (v � 0), with the arrows
showing the facing directions of the vehicles. It is observed that
these 54 normal atomic events include all the legal driving direc-
tions allowed in every lane. Consequently, the atomic events that
do not fall into any of these normal ones are illegal driving situa-
tions and are thus detected as anomalies. Two examples are shown
in Fig. 3,where tracked vehicles are indicated by green numbers.
Fig. 3a shows a vehicle (indicated by a red ellipse) moving east-
wards, since it moves sharply from lane 4 to lane 5 (see Fig. 1). This
anomalous movement is due to the fact that the vehicle is intended
to make a right turn at the intersection, but did not decide to
change lanes until the very last moment. Fig. 3b shows one vehicle
stopping in lane 12 (see Fig. 1) right after leaving the intersection.
Both of them are disruptive behaviors for normal traffic, as they
may block subsequent traffic.

6.3. Sequential anomaly detection

Based on the 54 normal instant behaviors we identified, all the
point anomalies can be excluded from the database. Then, sequen-
tial anomaly can be detected from the remaining data. For each
vehicle, from the time it appears in the video to the time it disap-

pears, all of its instant events are concatenated into a sequence.
The sequence of events encodes information on the temporal rela-
tionship of atomic events. For example, most of the vehicles start-
ing from atomic event 1 in Fig. 2a are going to proceed with atomic
event 31, followed by event 9, because vehicles are going straight
when starting with atomic event 1. The sequence (1,31,9) should
appear frequently (possibly as a subsequence) within all the se-
quences collected from the video. On the other hand, the sequence
(1,31,10) appears rarely if any, because few vehicles change lane
within the intersection when going straight (this is actually illegal).

Applying frequent subsequence mining on all sequences (the
threshold is set to 1% of the total sequence number), we detect 44
frequent (normal) sequential patterns, with some of them shown
in Fig. 4. It is observed that all possible traveling routes permitted
in this area are included. After that, we classify every sequential
behavior to one of the normal patterns with the minimal edit dis-
tance. The anomalous part of the sequential behavior is detected
as those atomic behaviors which need to be deleted so as to match
the normal pattern. Two examples are shown in Fig. 5, with the
anomalous part shown by a red dashed line. Fig. 5a shows a vehicle
changing lane within the intersection. Fig. 5b shows a vehicle mak-
ing a left turn from a no-turn lane. Both of them are illegal behaviors.

6.4. Co-occurrence anomaly detection

Finally, we detect co-occurrence anomaly. We constrain our co-
occurrence analysis to the region within the intersection (i.e., re-
gion 30 in Fig. 1), because this region most of the time has multiple
vehicles and intensive interaction. In this experiment, a co-occur-
rence event is defined as an itemset of intersection-passing types
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Fig. 2. Frequent atomic events: (a) moving normal events (v > 0) with the red squares referring to vehicle positions and the arrows indicating driving directions and (b)
stopping normal events (v � 0) with the arrows showing the facing directions of the vehicles. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 3. Example results of point anomaly (green label indicates ID of each vehicle): (a) shows a vehicle (indicated by a red ellipse) moving eastwards, since it moves sharply
from lane 4 to lane 5 (see Fig. 1) and (b) shows one vehicle stopping in lane 12 (see Fig. 1) right after leaving the intersection. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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of all vehicles within the intersection at this moment. Intersection-
passing types are clusters of normal sequential patterns with adja-
cent starting and ending atomic behaviors. For example, in Fig. 2,
the sequential patterns (1,31,9), (2,31,10), (3,31,11) fall in the
same intersection-passing type south-to-north, and the sequential
patterns (15,33,30,18), (16,33,30,19) fall in the same intersection-
passing type north-to-east. Clustering all normal sequential pat-
terns results in 12 intersection-passing types, as shown in Fig. 6.

By applying frequent itemset mining on all co-occurrences (the
threshold is set to 1% of the total co-occurrence number), we detect
a few frequent co-occurrence events. It is observed that several fre-
quent co-occurrences have large correlation because they share
very similar itemset. Thus we further cluster them into groups
using spectral clustering, where pointwise mutual information
[32] is used as the similarity measure. Specifically, for any two fre-
quent co-occurrences (subsets) i and j, the similarity s(i, j) is de-
fined as

sði; jÞ ¼ log
pði; jÞ

pðiÞpðjÞ ; ð11Þ

and is further estimated by

sði; jÞ ¼ log
ð# of i; j appearinginthesameco� occurrenceÞ
ð# of i’s appearancesÞ � ð# of j’s appearancesÞ : ð12Þ

The number of clusters is determined by the eigengap heuristic, i.e.,
to choose the number k such that all eigenvalues 1,� � �,k are very
small, but k + 1 is relatively large. Finally, we end up with 5 groups,
actually corresponding to the 5 states generated from the traffic
light signals. Fig. 7 depicts the driving directions allowed for each
state.

Subsequently, we label the state for every co-occurrence event
all through the video by the proposed iteration approach and
detect all co-occurrence anomalies. Fig. 8 shows the convergence

process of our iterative approach in Algorithm 1. P(Y), the probabil-
ity of the whole sequence Y generated from the HMM keeps
increasing, while the error of transition probability keeps decreas-
ing, until they both converge. Fig. 9 shows two examples of de-
tected co-occurrence anomalies, with the anomalous part shown
by a red dashed line. Fig. 9a shows a vehicle turning right while
there is left-turning traffic going to the same lane. Fig. 9b shows
a vehicle entering the intersection (passing the waiting line) trying
to turn left when the left-turning light is red. Both of them are ille-
gal behaviors.

6.5. Evaluation and comparison

The statistical results of anomalous event detection from the
traffic video are illustrated in Table 1. The ground truth is acquired
by incorporating traffic signaling information (only used for evalu-
ation) and manual labeling. Specifically, traffic signaling informa-
tion of every time (available as signal timing sheet) determines
the traffic state and all the events allowed at this time. The normal
or anomalous events can be manually labeled based on this infor-
mation. We use cross validation to evaluate the performance, i.e.,
one half video is used for normal pattern mining, the other half
is used for anomaly detection, and then we reverse. The average
performance is listed in Table 1. Note that in general only 1–10%
of the video events in this traffic scenario are anomalous events.
We achieve good results for point/sequential anomaly detection
and reasonable results for co-occurrence anomaly detection.
Co-occurrence analysis is a difficult task because it includes multi-
ple objects and their interactions. Fig. 10 shows two failure cases.
In Fig. 10a, the vehicle making a right turn at the bottom is de-
tected as having an anomalous behavior because it is in state 5
(see Fig. 7e) and such a turn is not included in the frequent routes.
However, this right turn is actually normal because there is no
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W

Fig. 4. Frequent sequential events indicated by red paths. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 5. Example results of sequential anomaly (the anomalous part is shown in red dashed line): (a) shows a vehicle changing lane within the intersection and (b) shows a
vehicle making a left turn from a no-turn lane. Both of them are illegal behaviors. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

NS

E

W

Fig. 6. Intersection-passing types indicated by red routes. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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oncoming traffic going straight (from west-to-east). The reason of
this failure is that a right turn has a higher priority to gain the
right-of-the-way, thus it is less restricted by the traffic state. In
US, a right turn is allowed as long as there is no oncoming traffic
going straight. Fig. 10b shows another failure case. When there

are very few vehicles within the intersection, determination of
the traffic state becomes problematic. Fig. 10b can be determined
as either of the two consecutive traffic states, state 4 (see Fig. 7d)
or state 5 (see Fig. 7e), because each state has only one route
appearing here. Due to an error state determination, the going
straight behavior is detected as anomalous (actually normal) and
the right turn is declared as normal (actually anomalous).

For the three types of anomaly detection, determining the
threshold for frequency-based analysis is an important issue. To
further test the robustness of our approach, we vary the threshold

Fig. 7. 5 normal co-occurrence patterns (states): red routes indicate the driving directions allowed for each state.

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Number of iterations

P(Y)
Error of {aij}

Fig. 8. Convergence of iteration.
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Fig. 9. Example results of co-occurrence anomaly (the anomalous part is shown in red dashed line): (a) shows two vehicles turning into the same lane and (b) shows a vehicle
entering the intersection trying to left when the left-turning light is red. Both of them are illegal behaviors. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Table 1
Statistical results of video event detection (three types).

Event type

Atomic Sequential Co-occurrence

Total # 7643 2230 21689
Anomaly (ground truth) 103 67 643
Anomaly (true positive) 95 58 504
Anomaly (false positive) 11 12 188
Detection rate (%) 92.2 86.6 78.5
False alarm rate (%) 10.7 17.9 29.2
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and plot ROC curves. From Fig. 11 We observe that our detection
performs well when the threshold is properly set, with a typical
detection rate above 90% for point anomaly, above 80% for sequen-
tial anomaly, and above 70% for co-occurrence anomaly. Note that
co-occurrence anomaly detection is comparably more sensitive to
threshold. Actually, it performs well as long as the five traffic states
(shown in Fig. 7) are discovered correctly, i.e., a proper threshold is
selected for frequent itemset mining. Otherwise, the HMM decod-
ing based on the incorrect states would make the results of co-
occurrence labeling even worse.

All experiments were performed on a PC platform with a
2.16 GHz Intel Core 2 Duo processor and 1.5 GB RAM. As all object
tracking information is available, the majority of the computa-
tional load is attributed to the frequent subsequence/itemset min-
ing and the iterative Viterbi decoding. In average, for our data,
point anomaly detection took less than 1 min and sequential/co-
occurrence anomaly detection took less than 10 min.

In addition, we compare the proposed approach to some exist-
ing approaches applicable to the same task as ours. For sequential
anomaly detection, one option is to cluster all trajectories based on
the (x,y) coordinates at every specific time and detect outliers as
anomalies. Specifically, we perform spectral clustering on all
vehicle trajectories in the video using a distance measure based
on dynamic Bayesian network (DBN) [13]. This approach ends up
with 12 clusters which are the same as the intersection-passing
types shown in Fig. 6 (this is because trajectories sharing similar
starting/ending positions are likely to be generated from the same
DBN). Obviously, this approach fails to detect any outliers (anom-
alies) based on the clustering results. For example, the anomalous
trajectories shown in Fig. 5a and b cannot be detected, because

they are classified as intersection-passing types north-to-south
and east-to-south, respectively. Actually, this failure is due to an
improper generative model (DBN) used in this scenario, as DBN
here encodes the main direction of motion but neglects the devia-
tion of trajectories. In contrast, the sequential anomaly detection
approach proposed in this paper is bottom-up and data-driven,
not relying on specific model selection.

For co-occurrence anomaly detection, we cannot identify any
existing method that can be used to accomplish the same task.
However, in the part of co-occurrence event classification, our
HMM decoding approach can be compared with a nearest neighbor
classification approach. After frequent itemset mining, we have
available the normal patterns of co-occurrence events, shown in
Fig. 7. Nearest neighbor classification classifies each co-occurrence
event to the normal pattern with maximal overlapping items,
without considering the temporal consistency of patterns/states.
By optimizing the threshold, this approach achieves around 60%
detection rate and 30% false alarm rate, which are worse than
the results presented for our approach. Fig. 12a–d show the inter-
section area of four consecutive video frames (t from 930 to 933).
Vehicles within the intersection are indicated by red ellipsis and
their moving routes are shown in red arrows. The classification re-
sults of the four co-occurrence events by the two approaches, i.e.,
nearest neighbor classification and the HMM decoding approach,
are both shown in Table 2. It is observed that the HMM decoding
approach correctly classifies all four time consecutive co-occur-
rences to state 2 (see Fig. 7b), while nearest neighbor classification
mistakenly classifies the co-occurrence at time 932 to state 3 (see
Fig. 7c). As can be seen in Fig. 12c, the co-occurrence at time 932
has no vehicle to match to the left-turning route. Instead, there is
an anomaly of right-turning vehicle (shown by a red dashed line)
that matches state 3 (see Fig. 7c). Therefore, nearest neighbor clas-
sification gives an incorrect result for this co-occurrence. In con-
trast, the HMM decoding approach is able to avoid this error by
considering the temporal consistency of states.

6.6. Application to other scenarios

The proposed approach is a data-driven multi-level process.
Theoretically, it can discover normal (frequent) motion patterns
automatically from a large motion database – may be extracted
from different video scenarios. It is important that in these video
scenarios most motion should follow some intrinsic rules while
only a few outliers do not. Furthermore, in order to detect
sequential anomaly or co-occurrence anomaly, motion from the
database need to have some intrinsic spatiotemporal constraints.
To show the generality of the proposed approach, we have per-
formed experiments on two additional scenarios.
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Fig. 10. Failure examples of co-occurrence anomaly detection (the detected anomaly is shown in red dashed line): (a) shows a right turn incorrectly detected as anomalous
(actually normal because there is no oncoming traffic going straight) and (b) shows a going straight behavior detected as anomalous (actually normal) and a right turn
declared as normal (actually anomalous), due to an error state determination. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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Fig. 11. ROC curves.
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The first one is similar to the previous used data, i.e., a surveil-
lance video monitoring traffic intersection (example frame shown
in Fig. 13a). With a much smaller observation region which
includes only the intersection area, this video data contains very
few point/sequential anomalies but many co-occurrence anoma-
lies. Our experiment detected 1338 co-occurrence anomalies from
the total 29,916 co-occurrence events. The acquired detection rate
is 81.7%, false alarm rate is 19.6%. Fig. 13b and c shows two

examples of detected co-occurrence anomalies, with the anoma-
lous part shown by a red dashed line. Fig. 13b shows a vehicle turn-
ing right while there is left-turning traffic going to the same lane.
Fig. 13c shows a vehicle turning left in front of oncoming going-
straight traffic. Both of them are illegal behaviors.

The second video scenario we experimented on is a surveillance
video with pedestrians/cyclers moving at multiple paths (example
frame shown in Fig. 14a). The motion trajectories have been ex-
tracted from video by background subtraction and object tracking.
The anomalous events detected in this scenario include people
deviating the normal routes or moving in the opposite direction
than most others. In our implementation, we first divide the walk-
ing areas into 4 sections (similar as different lanes in the traffic
intersection video), as shown in Fig. 14b. At the first level, an atom-
ic event is represented by the position of the pedestrian/cycler
(section #) and the moving direction (north, south, west, east).
Two thousand three hundred and six atomic events are detected

Fig. 12. Intersection area of four consecutive video frames (t from 930 to 933): vehicles within the intersection are indicated by red ellipsis and their moving routes are
shown in red arrows. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
Comparison results of nearest neighbor classification and the HMM decoding
approach for the example shown in Fig. 12 (states are shown in Fig. 7).

t (Frame) 930 931 932 933

Ground truth State 2 State 2 State 2 State 2
HMM decoding State 2 State 2 State 2 State 2
Nearest neighbor classification State 2 State 2 State 3 State 2

(a) (b) (c)
Fig. 13. Example results of co-occurrence anomaly (the anomalous part is shown in red dashed line): (a) shows an example frame of the video; (b) shows two vehicles turning
into the same lane and (c) shows a vehicle turning left in front of oncoming going-straight traffic. Both of them are illegal behaviors. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

(a)

1 2 3
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(b)
Fig. 14. Pedestrian walking video scenario: (a) shows an example frame of the video and (b) shows the division of walking areas (4 sections).
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from the video and eight normal patterns are mined (shown in
Fig. 15a). Two point anomalies are shown in Fig. 15b and c, which
are instant moving behaviors of two pedestrians walking in anom-
alous directions. At the second level, a sequential event is repre-
sented by sequence of atomic events, i.e., trajectories. Nine
hundred and eighty-seven sequential events are detected from
the video and 4 normal patterns are mined (shown in Fig. 16a).
Two sequential anomalies are shown in Fig. 16b and c: one cycler
making a U turn and one pedestrian trespassing bushes (the anom-
alous parts of their trajectories are shown in red dashed line). Since
in this video scenario, there is not much constraint of motion co-
occurrence, we did not perform co-occurrence event analysis.

7. Conclusion

With no prior knowledge about anomalous behaviors in a spe-
cific video scenario, it is necessary to follow an unsupervised ap-
proach in automatically detecting video anomalies from the data.
Our approach is data-driven and applicable to many different video
scenes. The major contribution of this approach is analyzing video
events at different levels considering both spatial and temporal
context. In detail, considering spatial context, we analyze events
of a single object and events of multiple spatially related objects.

Considering temporal context, we analyze both short time (instant)
events and long time events (including several short time events
and their transitions). Accordingly, anomalous video events can
be detected at different levels. In fact, we can categorize video
anomaly in four types, according to different spatiotemporal
context considered, as shown in Table 3. We have investigated
the detection of point anomaly, sequential anomaly, and co-occur-
rence anomaly. The detection of interaction anomaly involves
multiple objects with complicated temporal logic and will be our
future work. Furthermore, we will consider how to incrementally
update the current models as new video observations stream in,
so that the model can efficiently adapt to visual contextual changes
over a long period of time, as in [25].
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