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Abstract. Video retargeting aims at transforming an existing videorider to
display it appropriately on a target device, often in a lowesolution, such as
a mobile phone. To preserve a viewer's experience, it igel@so keep the im-
portant regions in their original aspect ratio, i.e., to mtain them distortion-
free. Most previous methods are susceptible to geomestortions due to the
anisotropic manipulation of image pixels. In this paper,wepose a novel ap-
proach to distortion-free video retargeting by scale-smmatiotemporal saliency
tracking. An optimal source cropping window with the targsipect ratio is
smoothly tracked over time, and then isotropically resiwethe retargeted dis-
play. The problem is cast as the task of finding the most Seatiporally salient
cropping window with minimal information loss due to resigi We conduct the
spatiotemporal saliency analysis in scale-space to battsount for the effect
of resizing. By leveraging integral images, we develop dicieht coarse-to-fine
solution that combines exhaustive coarse and gradiemtebfise search, which
we term scale-space spatiotemporal saliency trackingeffixents on real-world
videos and our user study demonstrate the efficacy of theopeapapproach.

1 Introduction

Video retargeting aims at modifying an existing video inartb display it appropri-
ately on a target display of different size and/or differaspect ratio [1-3]. The vast
majority of the videos captured today ha3&) x 240 pixels or higher resolutions and
standard aspect ratio 4:3 or 16:9. In contrast, many moligiglals have low reso-
lution and non-standard aspect ratios. Retargeting isehessential to video display
on these mobile devices. Recently, video retargeting has bpplied in a number of
emerging applications such as mobile visual media brow@nr§], automated lecture
services [7], intelligent video editing [8, 9], and virtuditectors [10, 7].

In this work, we focus on video retargeting toward a smaligplay, such as that of a
mobile phone. Directly resizing a video to the small disptegy not be desirable, since
by doing so we may either distort the video scene, which igalig disturbing, or pad
black bars surrounding the resized video, which wastesqusdlisplay resources. To
bring the best visual experiences to the users, a good et¢algideo should preserve
as much the visual content in the original video as possidié, it should ideally be
distortion-free. To achieve this goal, we need to addressitmportant problems: 1)
how to quantify the importance of visual content? 2) How tesarve the visual content
while ensuring distortion-free retargeting?
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Fig. 1. Retargeting system overview: scale-space spatiotempaligncy map (b) is calculated
from consecutiven video frames (a). A minimal information loss cropping wimdwith the
target aspect ratio is identified via smooth saliency tragKic), and the cropped image (d) is
isotropically scaled to the target display (e). This examptarget852 x 288 images tal 00 x 90.

Previous works [11, 12,1, 4, 2] approach to the first probl&wovea by combining
multiple visual cues such as image gradient, optical flose fand text detection re-
sults etc. in an ad hoc manner to represent the amount ofrdanfermation at each
pixel location (a.k.a. the saliency map). It is desirabld&ve a simple, generic and
principled approach to accounting for all these differestial information. In this pa-
per, we improve and extend the spectrum residue methodlfensg detection in [13]
to incorporate temporal and scale-space information, laekby obtain acale-space
spatiotemporal saliency map to represent the importance of visual content.

Given the saliency map, retargeting should preemptivedg@ive as many salient
image pixels as possible. Liu and Gleicher [1] achieve tlisdentifying a cropping
window which contains the most visual salient pixels andhtarisotropically scale it
down to fit with the retargeting display (i.e., allowing @fent scaling in horizontal
and vertical directions). The cropping window is restritte be of fixed size within
one shot, and the motion of the cropping window can only beadrtee three types,
i.e., static, horizontal pan, or a virtual cut. It can notfpan online live retargeting
since the optimization must be performed at the shot leveildan and Shamir [11]
use dynamical programming to identify the best pixel pathpdrform recursive cut
or interpolation for image resizing. Wolf et. al [2] solverfa saliency aware global
warping of the source image to the target display size, aed tasample the warped
image to the target size. Nevertheless, it is not uncommpoalfdhe aforementioned
methods to introduce geometry distortions to the videodaibjdue to the anisotropic
manipulation of the image pixels.

In this paper, we propose to smoothly track an optimal cnogmiindow with the
target aspect ratio across time, and then isotropicallizeeis to fit with the target
display. Our approach is able to perform online retargetiilg propose an efficient
coarse-to-fine search method, which combines coarse éieesarch and gradient
based fine search, to track an optimal cropping window owee.tMoreover, we only
allow isotropic scaling during retargeting, and therefguarantee that the retargeted
video is distortion-free. An overview of our retargetingm is presented in Fig. 1.

There are two types of information loss in the proposed getarg process. First,
when some regions are excluded due to cropping, the infasmttat they convey are
lost. We term this theropping information loss. Second, when the cropped image is
scaled down, details in the high frequency components aogvthaway due to the low
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pass filtering. This second type of loss is calledrisizing information loss. One may
always choose the largest possible cropping window, wirdiges the smallest crop-
ping information loss, but may potentially incur huge amioinresizing information
loss. On the other hand, one can also crop with exactly tlyetalisplay size, which
is free of resizing information loss, but may result in enotrs cropping information
loss. Our formulation takes both of them into consideratiod seeks for a trade-off
between the two. An important difference between our wortk [@n is that the resiz-
ing information loss we introduce ntent dependent, which is based on the general
observation that some images may be downsized much morestima@ other images
without significantly degrading their visual quality. Tléssuperior to the naive content
independent scale penalty (a cubic loss function) adopt€.i

The main contributions of this paper therefore reside ireHiold: 1) we pro-
pose a distortion-free formulation for video retargetimpich yields to a problem of
scale-space spatiotemporal saliency tracking. 2) By leveraging integral images, we de-
velop an efficient solution to the optimization problem, afhcombines a coarse ex-
haustive search and a novel gradient-based fine searchdiersgace spatiotemporal
saliency tracking3) We propose a computational approach to scale-space gpagiot
ral saliency detection by joint frequency, scale space spatiotemporal analysis.

2 Distortion-Free Video Retargeting

2.1 Problem Formulation

Consider an original video sequence withframesV = {I;,t = 1,--- ,T}. Each
frame is an image array of pixels = {I;(i,7),0 <i < Wy,0 < j < Hy}, whereW,
and H,, are the width and height of the images. For retargeting, tiggnal video has
to be fit into a new display of sizZ@&,. x H,.. We assuméV,. < Wy, H, < H,.

To ensure that there is no distortion during retargetingallasv only two operations
on the video — cropping and isotropic scaling. ¥et= {(z,y), (W, H)} be arectangle
region in the image coordinate system, wherey) is the top-left corner, ant¥ and
H are the width and the height. The cropping operation on frénmean be defined
asCw(l;) & {Ii(m +z,n+y),0 <m < W,0 < n < H}, wherem andn are
the pixel index of the output image. The isotropic scalingmion is parameterized
with a single scalar variable (for scaling down,1.0 < s < S,42), I-€., Ss(I;) =
{Li(s-m,s-n),s-m < Wy,s-n < Hy}. Distortion-free video retargeting can be
represented as a composite of these two operations on alidke frames such that
It(St, T, yt) = Sst (CWr (It)), t=1,---,T, WhereWt = {A(.Tt, yt), (StWT, StHT)} is
the cropping window at framé&. We further denot®’ = {I;,¢ = 1,--- , T} to be the
retargeted video, arll = {(s;, x4, y:),t = 1,--- , T} to be the set of unknown scaling
and cropping parameters, whefec R = {s;, x4, y:/1.0 < s8¢ < Spmaw, 0 < a¢ <
Wy —seWp, 0 < yy < Hy — StHT}.

Both cropping and scaling will lead to information loss fréme original video. We
propose to exploit the information loss with respect to thginal video as the cost
function for retargeting, i.e.:

P* = argmaxL(V, V), 1)
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whereL(V, V) is the information loss function, which shall be detailedSec. 2.2.
Since ensuring the smooth transition of the cropping andineggparameters is essential
to the visual quality of the retargeted video, we also inticela few motion constraints
that shall be included when optimizing Eg. (1) in Sec. 2.3.

2.2 Video Information Loss

Thecropping andresizing information loss are caused by very different reasons,denc
they can be computed independently. We represent the wideariation loss function
with two terms, i.e., A A

LV, V) =L.V,V) + AL, (V, V), 2)

where) is the control parameter to obtain a tradeoff between theping information
lossL, and the resizing information lods., which are detailed as follows.

Cropping information loss We compute the cropping information loss based on spa-
tiotemporal saliency maps. We assume in this section sualiemsy map is available
(see Sec. 4 for our computation model for the spatiotemsatency map).

For framel;, we denote the per-pixel
saliency map a§S, (i, j),0 < i < Wy, 0 <
j < Hy}. Without loss of generality, we
on0s assume that the saliency map is normal-
ized such thad ;. S:(i,j) = 1. Given
W, the cropping information loss at time

0.0003

Information Loss

instantt is defined as the summation of
the saliency values of those pixels left out-
, Resiing o Loss —— side the cropping window, i.e.,
LWV)=1- > Si(i.j). (3
(4,7)EW

Fig. 2. Resizing information loss curve. o )
The cropping information loss between the

original video and the retargeted video is thereby defindd.&3, f)) = ZL L.OWV,) =
T - Zthl Z(i,j)ewt St(iaj)-

Resizing information loss The resizing information loss,. (V, V) measures the amount
of details lost during scaling, where low-pass filtering ecessary in order to avoid
aliasing in the down-sampled images. For a given frdmthe larger the scaling factor
s, the more aggressive the low-pass filter has to be, and the details will be lost
due to scaling. In the current framework, the low-pass élieimage is computed as
I, = Gy(s,)(I1), whereg, (-) is a 2D Gaussian low-pass filter with isotropic covariance
o, which is a function of the scaling factey, i.e.,o(s:) = logy(st), 1.0 < st < Spmaa-
The resizing information loss is defined as ¢hjeared error between the cropped image
in the original resolution and its low-pass filtered imagé®be down-sampling, i.e.,

L) = Y (L(i,§) = 1., (i, 5))% (4)

(4,7)EW
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The image pixel values are normalized to bglnl] beforehand. For the whole video
sequence, we haile. (V, V) = S/ Lo (W) = Y-, 3 e, (T (i, 5) = I, (i, ).
Fig. 2 presents the resizing information loss curve catedféor the cropping window
presented in Fig. 1(c) using Eqg. 4. As we expected, the losgifan increases monoton-
ically with the increase of the scaling factor.

2.3 Constraints for video retargeting

If there is no other additional cross-time constraints, Egan indeed be optimized
frame by frame. However, motion smoothness constraintiseo€topping window, for
both scaling and translation, is very important to produiseially pleasant retargeted
video. To ease the optimization, we do not model motion cairds directly in our
cost function. Instead we pose additional smoothness i@ntst on the solution space
of P at each time instartt i.e., the optimalV; is constrained by the optimal solutions of
W,_1 andW,_». By doing so, an additional benefit is that retargeting capdséormed
online. Mathematically, we have

65,5 3:025 6yt 825t 82.§Ct 82yt
= Uhaxo ’( o’ 875) = Ymax; | 597 | = U (W? W) < amax (5)
wherev? . ., Umax, @5, aNdamax are the maximum zooming and motion speed, and the

maximum zooming and motion acceleration during croppirgystaling, respectively.
Such first and second order constraints ensure that the viewemment of the retar-
geted video is small, and ensure that there is no abrupt ehafnigiotion or zooming
directions. They are both essential to the aesthetics afettaegeted video. Additional
constraints may be derived from rules suggested by prafieakvideographers [7]. It
is our future work to incorporate these professional vidaphy rules.

3 Detecting and tracking salient regions

We develop a two stage coarse-to-fine strategy for deteatidgracking salient regions,
which is composed of an efficient exhaustive coarse seanchaagradient-based fine
search as well. Since this two stage search process is perdicat each time instant, to
simplify the notation and without sacrificing clarity, weadhleave out the subscript
for some equations in the rest of this section.

Both search processes are facilitated by integral imagesemploy the follow-
ing notations for the integral image [14] of the saliency tij(x Y) and its partial
derivatives, |e T(z,y) = [ [ S(x,y)dedy, T,(z,y) = = | S(z,y)dy, and
Ty(x,y) = fo (x,y)dz. All these integral i |mages can be calculated very effi-
ciently by accessmg each image pixel only once. We furtkaotei(x, s) = x + sW,,
andg(y, s) = y+ sH,.. Using7 (x, y), the cropping information loss can be calculated
in constanttime, i.eL.(s,z,y) =1 — (7(2,9) + T (x,y)) — (T (Z,y) + T (2, 9)).

The calculation of the resizing information loss can alssfeeded up greatly using
integral images. We introduce the squared difference infage, y) for scaling bys as
Dy(z,y) = (I(x,y) — Is(z,y))?. We then also define the integral imagedaf(z, y)
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and its partial derivatives, which are denoted¥$z, y), D;(z,y), andD, (z,y). We
immediately havd, (s, z,y) = (D*(Z,9) +D*(x,y)) — (D*(Z,y) + D*(x,9)). Inrun
time, we keep a pyramid of the integral imageddf(«x, y) for multiple s. Since both
L. andL,. can be calculated in constant time, we are able to afforddhgpatation of
an exhaustive coarse search over the solution space foptimead cropping window.

Once we have coarsely determined the location of a croppindow W, we fur-
ther exploit a gradient-based search to refine the optinmgdping window. By sim-
ple chain rules, it is easy to figure out th?éé = T (2,y) + To(,9) — Talz,y) —
To(Z,9) + N\[D2(2,y) + Di(x,9) — Di(x,y) — Di(&,9)], fora = z ora = y, and
%—I; = A(z,y,s)W, + B(x,y,s)H, + /\BL" whereA(xz,y, s) = T, (%, y) — T.(%,9),
B(a,y,s) = Ty(2,9) — Ty (#, ), Lerltow: 5 L Luta, st 80 L5229 s evaluated
numerically. Then we perform a gradient descent step Wldktbackmg line search to
refine the optimal cropping window. Note that the gradiergodat step is also very
efficient because all derivatives can be calculated vergieffily using integral images
and its partial derivatives. This two-step coarse-to-fis@rsh ensures us to obtain the
optimal cropping window very efficiently.

The feasible solution®, = {[x"", zi"e®], [ymin, ymaer]  [smin) siee]} are de-
rived from Egs. 5 and strictly reenforced in tracking. Dexot* | = (¢, y;_1,57_1)
be the optimal cropping at the time instant 1, and let the optimal cropping window
after these two stage search process at time instat);, we perform an exponential
moving average scheme to further smooth the parameters oftipping window, i.e.,
Wi = aW; + (1 — a)W;_,. We usen = 0.7 ~ 0.95 in the experiments. It in general
produces visually smooth and pleasant retargeted videshagn in our experiments.

4 Scale-space spatiotemporal saliency

We propose several extensions of the spectrum residue th&hsaliency detection
proposed by Hou and Liu [13]. We refer the readers to [13] fier details of their al-
gorithm. Fig. 4(a) presents one result of saliency detaaiiging the spectrum residue
method proposed in [13]. On one hand we extend the spectrsiciueemethod tem-
porally, and on the other hand, we extend it in scale-spabe.jdstification of our
temporal extension may largely be based on the statistioptafal flows in natural im-
ages revealed by Roth and Black [15], which shares some coroharacteristics with
the natural image statistics. It is also revealed by Hou and13] that when apply-
ing the spectrum residue method to different scales of theesmage, different salient
objects of different scales will pop out. Since for retaiggtwe would want to retain
salient object across different scales, we aggregate tlensga results from multiple
scales together to achieve that.

Moreover, we also found that it is the phase spectrum [16twiideed plays the
key role for saliency detection. In other words, if we repldlee magnitude spectrum
residue with constarit, the resulted saliency map is almost the same as that cdula
from the spectrum residue method. We call such a modified adetih be thephase
spectrummethod for saliency detection. The difference of the resiibaliency maps is
almost negligible but it saves significant computation wid¢alculating the magnitude
spectrum residue, as we clearly demonstrate in Fig. 4. K&). i the saliency map
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obtained from the spectrum residue and Fig. 4(b) is thersalimap produced from the
phase spectrum only. Note the source image from which thesealiency maps are
generated is presented as the top image in Fig. 3(a). Trexelifte is indeed tiny. This
is a common phenomenon that has been verified constantly iexperiments.

More formally, letVi (i, j, k) = {Li—n+1(4,J), Li—n+2(%,7), ..., I, (i, j)} be a set
of n consecutive image frames akdndexes the image. Denofe= (f1, f2, f3) as
the frequencies in the fourier domain, whérg, f2) represents spatial frequency and
f3 represents temporal frequency. The following steps arf@peed to obtain the spa-
tiotemporal saliency map fas;*:

1. LetO(f) = Pha(F[V}']) be the phase spectrum of the 3D FFTWJf.

2. Performthe inverse FFT and smoothing, 88(j, j, k) = g(i, j)*§ " [exp{iO(£)}]°.
The smoothing kernel(i, j) is applied only spatially, since the temporal informa-
tion will be aggregated.

3. CombineS(i, j, k) to be one single map, i.65;(i,5) = = 31 Si(i, j, k)

The above steps present how to compute the spatiotempbealksamap at a single
scale. We aggregate the visual saliency information catedl from multiple scales
together, this leads to ttseal e-space spatiotemporal saliency. More formally, letV;*(s)
be the down-sampled version bf* by a factor ofs, i.e., each image iw;* is down-
sampled by a factor ofin V}*(s). DenoteS; (4, j) as the spatiotemporal saliency image
calculated from/*(s) based on the algorithm presented above. We finally aggrtgate
saliency map across different scales togetherSi.@,,j) = ni >S5, 5), wheren,
is the total number of levels of the pyramid. Fig. 3 preséhtsr‘esults of using the
proposed approach to scale-space spatiotemporal satletegtion. The currentimage
frame is the top one showing in Fig 3(a). We highlight the efi#ihces between the
scale-space spatiotemporal saliency image (Fig. 3(c)ftedaliency maps (Fig. 4(a)
and (b)) produced by the spectrum residue method [13] anghthse spectrum method,
using color rectangles.

The proposed method successfully identified the right aineréd rectangle) of the
singer as a salient region, while the saliency map in Fig). d@da (b) failed to achieve
that. The difference comes from the scale-space spatiaeahmtegration (the arm
is moving) of saliency information. Moreover, in the origlnmage, the gray level of
the string in the blue rectangle is very close to the backggolt is very difficult to
detect its saliency based only on one image (Fig. 4 (b)).6Sihe string is moving, the
proposed method still successfully identified it as a saliegion (Fig. 3 (c)).

5 Experiments

The proposed approach is tested on different videos foowarietargeting purpose,
including both standard MPEG-4 testing videos and a vaétyideos downloaded
from the Internet. All experiments are running with= 0.3 in Eq.2, which is empiri-
cally determined to achieve a good tradeoff. Furthermore, 5 video frames and an
ns = 3 level pyramid are used to build the scale-space spatioteahpaliency map.
We recommend the readers to look into the supplemental ¥atenore details of our
experimental results.
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Fig. 4. Saliency detection using (a) spectruffig.5. Left column: the source image and its
residue [13], and (b) phase spectrum. TBaliency map. Right column: the progress of the
source image is shown in Fig. 3(a). gradient search.

5.1 Spatiotemporal saliency tracking

To better understand the proposed approach to scale-gpattetesmporal saliency de-
tection and tracking, we show a retargeting example on aowéguence from the bat-
tle scene of the movie “300”. The video sequence I frames in total, we present
some sample results in Fig. 6. As we can clearly see, the pegpsaliency detection
and tracking algorithms successfully locked onto the mabest regions. The fifth
column of Fig. 6 presents our retargeting results. For caisga, the sixth column of
Fig. 6 shows the results of directly resizing the originahge frame to the target size.
Itis clear that in our retargeting results, the objects laokonly larger but also keep
their original aspect ratios even though the image asp#otafaanged froni.53to 1.1.
To demonstrate the effectiveness of the gradient-basetreént step, we present the
intermediate results of the gradient search at frg80 in in Fig. 5.

5.2 Content-aware v.s. content independent resizing cost

One fundamental difference between our approach and LiuGlaeither [1] is that
our resizing cost (Eq. 4) is dependent on the content of thepad image. In contrast
Liu and Gleicher only adopt an naive cubic lggs— 1.0)? to penalize large scaling.
To better understand the difference, we implemented ardifteretargeting system by
replacing Eq. 4 with the naive cubic loss. The other stepsanetine same. Therefore
the differences in results are solely decided by the twerbfft resizing costs. We call
themcontent aware scheme andontent blind scheme, respectively.

We analyze the behaviors of the two methods based on theyetitay results of
“300” video. Both cost values are normalized to be betwieand1 for fair comparison.
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Fig. 6. Retargeting fron868 x 240 to 132 x 120 for movie video “300". The first four columns
present the saliency tracking results and the correspgrsditiency map. The fifth column shows
our retargeting results. The sixth column shows the rebyltdirectly scaling.

Fig. 8. The scaling factors associated with each
video frame of the retargeting video “300op:
content awareBottom: content blind.

Fig. 7. Retargeting MPEG-4 standard test se- (a (B

quence ‘“tennis”. From left to rightfirst

column—our approachsecond columa- Wolf

et. al[2]'s method (by courtesybhird column— Fig. 9. Retargeting MPEG-4 standard test se-

direct scaling. quence “Akiy” to be half of its original size: (a)
direct scaling; (b) proposed approach; (c) Wolf
et. al [2] (by courtesy).

For the content blind scheme, thés empirically determined on this video to be for
the best retargeting result. All other parameters are timedar the two methods. The
curves in the upper and lower part of Fig. 8 present the sgalimameters from content
aware resizing, and content blind resizing across the yidgspectively.

It is clear that the content blind loss strongly favors smsaliling. This bias may
be very problematic because of the potentially large crogpiformation loss. In con-
trast, the content aware resizing does not have such a hilealsmshows much larger
dynamic range. This indicates that it is more responsiveafiwe the video content
change. To achieve good results, we find that for the contardt scheme, the. needs
to be carefully tuned for each video, and its variance isdaoss different videos. In
contrast, for the content aware scheme, a constant).3 usually works well.
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Fig. 11.Retargeting td 28 x 160.

Fig. 12.Retargeting td 28 x 128. Fig. 13.Retargeting td 28 x 128.

5.3 Video re-targeting results

We tested the proposed approach in a wide variety of longeraiuigo sequences for dif-
ferent retargeting tasks. We mainly show the retargetiaglte from the source video to
128 x 160 displays (Motorolaf' 7xx, NEC-Hx5, SonyEricssorF610,7'620, SumSung-
V' 1660) or 128 x 128(SumSungF175, SonyEriccsonz200), since these are the two
widely adopted resolutions for mobile phones.

The first retargeting result we present is performed on taedstrd MPEG-4 test
video sequence“tennis”. We re-target the source videbrtox 240. The retargeted
results from our approach on frangel0 and #15 are shown in the first column of
Fig. 7. For comparison, we also present the retargetindtsefsam Wolf et. al[2f, and
the results by direct scaling, in the second and third cokiafifrig. 7, respectively. Due
to the nonlinear warping of image pixels in Wolf et. al's madH2], visually disturbing
distortion appears, as highlighted by the red circles in Figin Fig. 9, we further
compare our results with Wolf et. al [2] on the standard MPEtBsting video “Akiy”.
The task is to re-target the original video down to half ofotginal width and height.
As we can clearly observe, the retargeted result from WoHlg2] (Fig. 9 (c)) induces

1 We thank Prof. Lior Wolf and Moshe Guttmann for their resujufies.
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Fig. 14. The distribution of all the scores givenFig. 15.The score of each individual video clip.
by 30 users on 8 video clips. A score of 1 (5) ig'he horizontal bars and vertical lines show the
strongly positive (negative) about our approactaverage scores and the standard deviations.

heavy nonlinear distortion, which makes the head size op#rson in the video to be
unnaturally big compared to her body size. In contrast, &salt from the proposed
approach keeps the original relative size and distortiea.fMoreover, compared with
the result from the direct scaling method in Fig. 9 (a), osuteshows more details of
the broadcaster’s face when presented in a small display.

Fig. 10, Fig. 11, Fig. 12 and Fig. 13 present the video retargeesults on stan-
dard MPEG-4 testing video “stef”, the best fighting scene@fduching Tiger” (2329
frames), a “Tom and Jerry” video (5692 frames), and a fobthdéo (517 frames). In
all these figures, the first and third image in the first row pnés the retargeting re-
sults from our approach, while the second and fourth imageise first row presents
the results from direct scaling. The second and third rowstie saliency tracking
results, and the corresponding scale-space spatiotehgadiency map, respectively.
Compared with the direct scaling method, our retargetisglte show significant bet-
ter visual quality. In Fig. 11, when performing retargetiwg purposely include the
padding black bars in the original video to demonstrate tfeetveness of our saliency
detection method. Notice how the caption text has been etes salient region. These
results demonstrate the advantages of the proposed appkactrongly recommend
the readers to watch our supplemental video for detailadtses

5.4 User study

We also performed a user study to evaluate the results. Witleoealing to the users
which results are from which methods, we ask the particptmtook side-by-side the
retargeting results on 8 video clips from the proposed agpgrpand those from the
direct scaling (please refer to the supplemental video,hiicwvideo clips are shown
in the same order as in our user study.). The users then méarkdales regarding their
preferences of the results, wittbeing preferring much more of the proposed approach,
3 being neutral, and being preferring much more of the direct scaling approach. S
the smaller the score, the more preference over the resoittsthe proposed approach.
There are30 users with various background who participated in our utsetys

We first present the distribution of all the scores over thig® ¢rom all the 30 users
in Fig. 14. Over all the score®2.5% strongly prefer an@2.92% moderately prefer the
retargeted video from our approach, which add upia2%. While 17.08% vote that
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our results and the results from direct scaling are almass#tme. In contrast, there
are als031.25% moderately prefer and onl§.25% strongly prefer the direct scaling
results, i.e.37.5% in total. This shows that2.50% of the time, the users would feel
that the results from the proposed approach are better owoiste than those from

direct scaling. We also present the mean scores and stadduaiations of each test
video clip in Fig. 15. In total five clips got average scoresdo than 3, two clips got

average scores slightly higher than 3, and the last one gnterage score of 3. This also
manifests that users generally prefer the retargetindtssfsom the proposed approach.

6 Conclusion and future work

We proposed a novel approach to distortion-free video getarg by scale-space spa-
tiotemporal saliency tracking. Extensive evaluation oradety of real world videos
demonstrate the good performance of our approach. Our wsbr also provide strong
evidences that users prefer the retargeting results frenptbposed approach. Future
works may include further investigating possible meansntégrating more profes-
sional videography rules into the proposed approach.
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