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Abstract

A novel approach is proposed to analyzing and tracking the motion of structured deformable shapes, which consist of multiple cor-
related deformable subparts. Since this problem is high dimensional in nature, existing methods are plagued either by the inability to
capture the detailed local deformation or by the enormous complexity induced by the curse of dimensionality. Taking advantage of
the structured constraints of the different deformable subparts, we propose a new statistical representation, i.e., the Markov network,
to structured deformable shapes. Then, the deformation of the structured deformable shapes is modelled by a dynamic Markov network
which is proven to be very efficient in overcoming the challenges induced by the high dimensionality. Probabilistic variational analysis of
this dynamic Markov model reveals a set of fixed point equations, i.e., the sequential mean field equations, which manifest the interac-
tions among the motion posteriors of different deformable subparts. Therefore, we achieve an efficient solution to such a high-dimen-
sional motion analysis problem. Combined with a Monte Carlo strategy, the new algorithm, namely sequential mean field Monte
Carlo, achieves very efficient Bayesian inference of the structured deformation with close-to-linear complexity. Extensive experiments
on tracking human lips and human faces demonstrate the effectiveness and efficiency of the proposed method.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Structured deformable shapes consist of multiple
correlated deformable subparts. For example, a human face
is composed of outer face contour, eyebrows, eyes, nose,
and mouth. Analyzing the motion of structured deformable
shapes has many real applications such as tracking human
lips for speech recognition [1], locating human faces for face
recognition [2], and medical applications such as tracking
the endocardial wall [3]. The structured deformation is
different from articulated motion. In structured deforma-
tion, each subpart is a deformable shape while articulation
consists of a linked structure of rigid subparts.

For structured deformation analysis, the first problem is
how to represent the deformable shapes. Existing methods
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either represent the deformable shapes as spline curves [4–
7], or as a set of control points [2,8]. The second problem is
how to recover the structured deformation from the video
sequences. There are mainly two approaches: the top-down
approach and the bottom-up approach. The top-down ap-
proach takes a two-step strategy, i.e., the hypothesis gener-
ation and image observation verification as in the particle
filtering algorithm [5–7]. The bottom-up approach esti-
mates the motion parameters by minimizing deterministic
cost functions. The SNAKES [4] is the representative using
such an approach.

The high-dimensional nature of the structured
deformable shapes causes a lot of challenges. Both
approaches mentioned above are confronted by the high
dimensionality: for the first approach, e.g., the particle
filtering algorithm [5–7], the number of particles needed
to achieve a good result may increase exponentially with
the dimensionality, so does the computation cost; for the
second approach, e.g., the SNAKES [4], the cost function
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needs to be optimized in a very high-dimensional space. It
is confronted by the enormous local minima induced by the
high dimensionality. In addition, since these methods treat
the deformable shapes as a whole part, detailed local defor-
mation of a structured deformable shape is hardly to be
analyzed.

Our method employs a Markov network to represent
the structured deformable shapes. The structural con-
straints are modelled in the Markov network as potential
functions, which are in fact the measures of the probability
of two constrained subparts being in certain states of
deformation. The structured deformation is then modelled
by a dynamic Markov network, which is a temporal exten-
sion of the Markov network that models the structured
deformation at each time instant. The probabilistic mean
field variational analysis of the dynamic Markov network
results in a set of mean field fixed point equations. Since it
is difficult to obtain the closed form solution to such a set
of fixed point equations, a sequential mean field Monte
Carlo (SMFMC) [9] algorithm is proposed as a non-para-
metric approximation. Under this formulation, different
subparts are tracked by different trackers while these
trackers exchange information with one another to rein-
force the structural constraints at the mean time. By way
of this, we achieve very efficient Bayesian inference of
the posterior deformation with near-to-linear complexity
and the local deformation of each subpart can be recov-
ered very well.

The remainder of this paper is organized as follows: in
Section 2, related work in the literature is discussed; then
in Section 3, we propose the Markov network represen-
tation of the structured deformable shapes and the
MFMC [9] algorithm which can perform efficient
approximate Bayesian inference in such a Markov neto-
wrk; in Section 4, by extending the Markov network
and the MFMC algorithm temporally, we propose a
dynamic Markov network to model the structured defor-
mation and a SMFMC algorithm to efficiently implement
the Bayesian inference in the dynamic Markov network;
experimental results are presented and discussed in Sec-
tion 5; and we present the conclusion and the future
work in Section 6.

2. Related work

Because of the high-dimensional nature of the motion of
the structured deformable shapes, the analysis of them fac-
es many problems. We use a dynamic Markov network
representation to approach to the high-dimensional prob-
lem and the tracking algorithm is formulated as the Bayes-
ian inference in this graphical model. Therefore, related
work in the literature can be categorized into three: the first
category addresses the formulation of visual tracking algo-
rithm; the second category refers to the endeavors to con-
quer the curse-of-dimensionality; and the third category
is the Bayesian inference algorithms in complex graphical
models.
For visual tracking algorithms, there are two main
approaches just as briefly mentioned in Section 1. For the
top-down approach, there is a significant literature in the
particle filtering tracker [5–7] and its numerous variants
[10–14], which basically formulate the visual tracking algo-
rithm as the propagation of the conditional probability of
the target state at the current time instant given the image
observations up to the current time instant. For the bot-
tom-up approach, the mean-shift blob tracker [15,16], the
SNAKES [4], and the efficient region tracker with the para-
metric model of geometry and illumination [17] are the rep-
resentatives, to list a few.

To attack the problems caused by high dimensionality,
there are mainly two methodologies. The first methodology
is to learn the intrinsic lower-dimensional description of the
manifold spanned by the valid states in the very high-di-
mensional state space. To mention some, the active shape
model [2] uses PCA to find the best possible low-dimen-
sional linear approximation to the valid shape model state
space. The same approach has also been adopted to learn a
union of linear manifolds spanned by a set of basis config-
urations for articulated natural hand motion [18]. While
the Bayesian PCA [19,20] provides a more principled way
to learn both the intrinsic dimensionality and the statistical
mixture model for the valid states. More recent work in-
cludes using ISOMAP algorithm for dimension reduction
[21]. However, learning a lower-dimensional description
of the object needs a set of training data and sometimes
it would be very difficult to obtain. On the other hand,
the second methodology to attack the curse-of-dimension-
ality focuses on using more efficient means of computation.
Partitioned sampling [22] samples different parts in a hier-
archical way and thus achieves linear complexity w.r.t. the
number of parts, but the information flow is unidirectional
and it violates the symmetric constrains of the different
subparts in a structured deformable shape. The MFMC
algorithm actually has been used for tracking articulated
human body motion [9], which keeps the symmetric con-
strains between two different articulated links. In this pa-
per, we adopted the same MFMC algorithm to analyze
structured deformable shapes, which can keep the symmet-
ric constrains between two different deformable subparts as
well as achieve very efficient Bayesian inference with near-
to-linear complexity w.r.t. the number of subparts.

For Bayesian inference in graphical model, belief prop-
agation can achieve exact results in the case of directed acy-
clic graphical model (DAG). When the graphical model has
loops, loopy belief propagation [23] or generalized belief
propagation (GBP) [24] can obtain good approximate re-
sults in many applications [25,26]. Probabilistic variational
analysis is a principled approximate inference technique. It
uses a more tractable approximate form of the true joint
posterior probability [13,20,27–29] and an approximate
inference is achieved by minimizing the Kullback–Leibler
(KL) divergence between the approximated posterior and
the real posterior distribution. Particle filtering or sequen-
tial Monte Carlo (SMC) [5–7,30] employs a set of weighted
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Fig. 1. Markov network for human face.
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samples to represent the real distributions and statistical
inference is implemented based on these samples. More re-
cent work using particle filtering to perform the inference
of general graphical model includes the non-parametric be-
lief propagation (NBP) algorithm [31] and the PAMPAS

algorithm [32], where Monte Carlo method is used in the
message passing process in belief propagation. In both
algorithms, the messages are modelled as Gaussian mix-
tures and Markov chain Monte Carlo (MCMC) samplers
are designed to draw the samples of the components of
the Gaussian mixtures for the newly updated messages
from the old message distributions. Applications of these
probabilistic modelling and inference algorithms for com-
puter vision problems include the part-based object recog-
nition by mixture of trees [33], finding deformable shape by
loopy BP [34], tracking 3-D human body motion through a
loose-limbed model [35], and the multiple frame articulated
motion inference using BP [36], to list a few.

In the proposed method, each subpart of the structured
deformable shape is modelled by a parametric description
of a spline curve in themotion space. The constraint between
each two correlated subparts is modelled explicitly in the
dynamic Markov network representation. As described in
the following sections, our method of performing inference
in such a dynamic Markov network actually combines the
idea of variational inference methods [13,20,27–29] with
the idea of particle filtering [5–7]. Different from NBP [31]
and PAMPAS [32], which combines the BP algorithm with
MCMC sampler and all the distributions are modelled as
Gaussian mixtures, the proposed SMFMC is a fully non-
parametric inference algorithm with close to linear
complexity.

3. Markov network representation of structured deformable

shapes and mean field Monte Carlo

Suppose the structured deformable object consists of K
subparts, then we denote the state of each subpart of the
object as a random variable xi, which can be any paramet-
ric description of the motion such as the affine motion in
our experiment. Then, we can construct a suitable potential
function w (xi,xj) between two different subparts, which in
fact models the probability of two random variables being
subject to a certain constraint. In addition, suppose the im-
age observation for each xi is zi, and the observation func-
tion is / (zi|xi), a Markov network can thus be constructed
to model the structured deformable object.

Fig. 1 shows a Markov network of human face where
the subscripts �Of,� �Leb,� �Reb,� �Le,� �Re,� �N,� and �M� cor-
respond to outer face contour, left eyebrow, right eyebrow,
left eye, right eye, nose, and mouth, respectively. Each
undirected link in the graphical model represents a poten-
tial function w (xi,xj) and each directed link in the graphical
model represents an observation function / (zi|xi).

Denote X ¼ fxi; i ¼ 1 . . .Kg and Z ¼ fzi; i ¼ 1 . . .Kg,
the joint probability corresponding to the graphical model
in Fig. 1 is
pðX;ZÞ ¼ 1

ZC

Y
ði;jÞ2E

wðxi; xjÞ
Y
i2V

/ðzijxiÞ; ð1Þ

where ZC is a normalization constant, E denotes the set of
undirected link and V denotes the set of directed links in
the graphical model.

The inference problem of such a loopy graphical model
is to calculate the posteriori probability p (xi|Z). We employ
a variational mean field inference algorithm to obtain an
approximate solution to it, i.e., the joint posterior probabil-
ity is approximated by

P ðXjZÞ �
Y
i

QiðxiÞ; ð2Þ

where Qi (xi) is an independent approximate distribution of
P (xi|Z). Assuming such an fully factorized mean field
approximation which has independent posterior marginal
distribution does not mean that the correlation of the
group of random variables in the graphical model is in any-
way lost or ignored, all it means is that any dependencies
among this set of random variables X remained given the
observation Z cannot be captured in the mean field approx-
imation [20]. Then, we can construct a cost function

JðQÞ¼ logðP ðZÞÞ�KL
Y
i

QiðxiÞkP ðXjZÞ
 !

ð3Þ

¼ logP ðZÞ�
I
X

Y
i

QiðxiÞ � log
Q

iQiðxiÞ
P ðXjZÞ

� �
dX ð4Þ

¼�
X
i

H iðQiÞþ
Z
xi

QiðxiÞEQ logP ðX;ZÞjxif gdxi; ð5Þ

where the KL (Æ) is the KL divergence and

HiðQiÞ ¼
X
xi

QiðxiÞ log½QiðxiÞ� ð6Þ

is the entropy of the distribution Qi (xi) and

EQflog PðX;ZÞjxig ¼
I
fxjgnxi

Y
fjgni

QjðxjÞ � log P X;Zð Þ½ �dX. ð7Þ
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Maximizing J (Q) with the constraint that
R
xi
QiðxiÞdxi ¼ 1

will lead to Qi (xi)fi P (xi|Z). Taking the derivative of J (Q)
w.r.t. Qi (xi), and setting it to zero, we obtain that

QiðxiÞ ¼ eEQflog PðX;ZÞjxig. ð8Þ
In conjunction with the constraint that

R
xi
QiðxiÞdxi ¼ 1,

we can solve the equation set to obtain a set of fixed point
equations for Qi (xi) [27,9]:

QiðxiÞ  
1

ZE

eEQflog P ðX;ZÞjxig; ð9Þ

where

ZE ¼
Z
xi

expfEQflog P ðX;ZÞjxiggdxi ð10Þ

is a normalization constant to constrain that Qi (xi) is a val-
id probabilistic distribution. Embedding the factorized
joint distribution of the graphical model in Eq. (1) into
Eqs. (7) and (9), we can obtain a set of factorized mean
field fixed point equations [9]:

QiðxiÞ  
1

Z 0E
/ðzijxiÞ

� exp
X
j2N ðiÞ

Z
xj

QjðxjÞ logwðxi; xjÞdxj

( )
; ð11Þ

where

Z 0E ¼
Z
xi

exp
X
j2N ðiÞ

Z
xj

QjðxjÞ logwðxi; xjÞ
( )

dxi ð12Þ
Fig. 2. Mean filed Mon
is again a normalization constant and N ðiÞ denotes the set
of subscripts of the neighboring nodes of xi. Since this set
of fixed point equations involves integration of complex
probabilistic distributions, closed form solution would be
difficult. We simulate it by Monte Carlo techniques where
several sets of weighted samples are used to represent the
probabilistic distributions, i.e., QiðxiÞ � fsðnÞi ; pðnÞi g. The
iteration of the fixed point equation set is then implement-
ed based on these samples. This leads to the MFMC algo-
rithm, which is shown in Fig. 2.

Compared with the NBP algorithm [31] and the PAMPAS

algorithm [32], the MFMC algorithm employs weighted
samples for all the distributions while both NBP and PAM-

PAS model all the distributions as Gaussian mixtures. In this
sense, our algorithm is fully non-parametric while theirs are
semi-parametric. Also, our algorithm employs importance
sampling thus it avoids using slow MCMC samplers which
have been used in both NBP and PAMPAS. Although how to
determine the best importance function is still an art more
than science, the use of importance sampling has two
advantages: first, it avoids sampling directly from the com-
plex Gibbs distribution of Eq. (9) or Eq. (11); second, we
can easily integrate both our domain knowledge and heu-
ristics into the importance function to generate samples
from more confident areas. A natural choice of the impor-
tance function would be the potential function w (xi,xj)
since it is like a conditional probability if one of the xi
and xj is fixed. In our experiments in Section 5, we indeed
adopted the potential function as the importance function,
te Carlo algorithm.
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i.e., if one subpart is connected with several other subparts,
we mix the samples from each potential function together.

4. Modelling structured deformation by dynamic Markov

network and sequential MFMC

Assuming each subpart of the structured deformable
shape has an independent dynamic motion model
p (xi,t|xi,t�1), we can describe the motion of a structured
deformable object through a dynamic Markov network
as in Fig. 3. It is the temporal extension of the Markov net-
work in Fig. 1. Each horizontal arrow represents the
dynamic motion model of the corresponding subpart. De-
note Xt ¼ fxi;t; i ¼ 1 . . .Kg, Zt ¼ fzi;t; i ¼ 1 . . .Kg, and
Z1:t = {Z1, . . . ,Zt}, we can easily figure out that:

P ðXt;Z1:tÞ /
Y
ði;jÞ2Et

wðxi;t; xj;tÞ
Y
i2Vt

/ðzi;tjxi;tÞ

�
Z
X t�1

P ðXtjXt�1ÞP ðXt�1jZ1:t�1ÞdXt�1. ð13Þ

Here, the inference problem is to recover
P ðxi;tjZ1:tÞ; i ¼ 1 . . .K at time instant t based on the infer-
ence result P ðxi;t�1jZ1:tÞ; i ¼ 1 . . .K at time instant t � 1.
Under the context of mean field variational analysis, sup-
pose we already have

P ðXt�1jZ1:t�1Þ �
Y

Qi;t�1ðxi;t�1Þ ð14Þ

and then we need to find the best�Qi,t (xi,t) to approximate
the real P (Xt|Z1:t). Assuming independent dynamic model
for each subpart, i.e.,

P ðXtjXt�1Þ ¼
Y
i

Pðxi;tjxi;t�1Þ. ð15Þ

Embedding Eqs. (14) and (15) into Eq. (13), we have
Fig. 3. DMN for huma
P ðXt;Z1:tÞ /
Y
ði;jÞ2Et

wðxi;t;xj;tÞ
Y
i2Vt

/ðzi;tjxi;tÞ

�
Z
X t�1

Y
i

P ðxi;tjxi;t�1Þ
Y

Qi;t�1ðxi;t�1ÞdXt�1 ð16Þ

/
Y
ði;jÞ2Et

wðxi;t;xj;tÞ

�
Y
i2Vt

/ðzi;tjxi;tÞ
Z
xi;t�1

P ðxi;tjxi;t�1ÞQi;t�1ðxi;t�1Þdxi;t�1

" #
.

ð17Þ

The mean field approximation of P (Xt|Z1:t) is

P ðXtjZ1:tÞ �
Y

Qi;tðxi;tÞ. ð18Þ

Then, following almost the same steps in Section 3, we first
construct the cost function Jt (Q) as in Eq. (21):

J tðQÞ ¼ logðP ðZ1:tÞÞ � KL
Y
i

Qi;tðxi;tÞkP ðXtjZ1:tÞ
 !

ð19Þ

¼ log P ðZ1:tÞ �
I
Xt

Y
i

Qi;tðxi;tÞ � log
Q

iQi;tðxi;tÞ
P ðXtjZ1:tÞ

� �
dXt ð20Þ

¼ �
X
i

H i;tðQi;tÞ þ
Z
xi;t

Qi;tðxi;tÞEQflog P ðXt;Z1:tÞjxi;tgdxi;t;

ð21Þ

where

Hi;tðQi;tÞ ¼
X
xi;t

Qi;tðxi;tÞ log Qi;tðxi;tÞ
� �

ð22Þ

is the entropy of the distribution Qi,t (xi) and

EQ log P ðXt;Z1:tÞjxi;tf g ¼
I

fxj;tgnxi;t

Y
fjgni

Qj;tðxj;tÞ � log P Xt;Z1:tð ÞdXt. ð23Þ

Taking the derivative of Jt (Q) w.r.t. Qi,t (xi,t) and setting it
to zero, with the constraint that

R
xi;t
Qiðxi;tÞdxi;t ¼ 1, we can

solve the equation set to get the following fixed point
equation:
n face deformation.



92 G. Hua, Y. Wu / Computer Vision and Image Understanding 101 (2006) 87–99
Qi;tðxi;tÞ  
1

ZE;t
eEQflog PðXt ;Z1:tÞjxi;tg; ð24Þ
where ZE;t is a normalization constant. By embedding Eq.
(13) into Eq. (24), we obtain the following fixed point
equation:

Qi;tðxi;tÞ  
1

ZC

/ðzi;tjxi;tÞ

�
Z
xi;t�1

Pðxi;tjxi;t�1ÞQi;t�1ðxi;t�1Þdxi;t�1

� exp
X
j2N ðiÞ

Qj;tðxj;tÞ logðwðxi;t; xj;tÞÞ
 !

; ð25Þ

where ZC is a normalization constant which can make sure
that Qi,t (xi,t) is a valid probabilistic distribution. There-
fore, by using the mean field variational analysis, we actu-
ally approximate the propagation of the conditional
posterior probability of P (Xt|Z1:t) [5–7] to the propaga-
tion of the variational mean field distribution �iQi,t (xi,t).
This is the sequential version of the mean field variational
method, which we call sequential mean field variational
analysis.

Comparing Eq. (25) with Eq. (11), we can see that there
is one more item in Eq. (25), which exactly models the
dynamic prediction prior. If we do know the priori proba-
bility of each node in Fig. 1, we can also incorporate a local
prior item in Eqs. (9) and (11).

This set of fixed point equations is more complex be-
cause they involve more multiple integrations of complex
probabilistic distributions. Again, we adopt a Monte Carlo
strategy to implement it. We call it the SMFMC algorithm,
as shown in Fig. 4.

The SMFMC algorithm has two steps, the first step is
the SMC process; then, the result is used as the initiali-
zation of the MFMC process. The MFMC process runs
until convergence. One question here would be the choice
of the importance function, here we can construct a suit-
able importance function through our domain knowledge
and valid heuristics, e.g., a more accurate dynamic model
of the structured deformation, or a rough detection re-
sult of the different subparts of the structured deformable
shape, or a learned conditional probability of one sub-
part given one of the connected subparts, which in fact
could be from the learned potential function w (xi,xj),
etc.
i

5. Experiments and discussion

To demonstrate both the effectiveness and the efficiency
of the SMFMC algorithm, it has been implemented to
track both human lips and human faces. All the experi-
ments run on a PC with 2.4 GHz CPU. The code is pro-
grammed with C++ and no code optimization is
performed.
5.1. Tracking human lips

5.1.1. Potential function and observation likelihood for lip

tracking

Ahuman lip can be decomposed into upper-lip and lower-
lip, each of them is represented by an affine deformation of a
spline curve. Thus, a two-nodeMarkov network can be con-
structed and each node represents a six-dimensional random
variable of the affine deformation. The constraint between
the upper-lip and lower-lip is that the two pairs of the end
points should be as close as possible, thus a potential func-
tion can be constructed based on this. Denote xu and xl as
the affine motion of the upper-lip and lower-lip, Ptu1 and
Ptu2 as the two end points of the upper-lip curve, and Ptl1
andPtl2 as the two end points of the lower-lip curve, we adopt
a Gaussian potential function to model the constraint, i.e.,

wðxu; xlÞ ¼
1ffiffiffiffiffiffi
2p
p

r

� exp �kPt
u
1 � Ptl1k

2 þ kPtu2 � Ptl2k
2

2r2

 !
.

ð26Þ
Since it is a zero mean Gaussian distribution, the only
parameter which needs to be estimated is r2. It can be
easily trained from a set of manually labelled lip images
by the maximum likelihood (ML) estimation. Neverthe-
less, our experiments show that this parameter is not that
sensitive, it can be set in a large range around the trained
one. Therefore, another choice to save the tedious man-
ually labelling work is to manually set the parameter to
see whether it can achieve good empirical results or
not.

The observation function / (zs|xs), s 2 {u, l} is similar as
that in [14]. We follow the idea of using a set of n normal
measurement lines of length L to collect image features
[7,5]. For the ith measurement line, i = 1, . . . ,n, we denote
the contour point position by xi. A 1-D edge detection is
performed along the measurement line to find all the mi

locations of the edge points fz1i ; . . . ; z
mi
i g. It is easy to ob-

serve that only one of the fzki g could be produced by the
object contour and all the other edge points should be pro-
duced by the cluttered background.

Therefore, we assume a Gaussian distribution of the
location of the edge point produced by the object bound-
ary, which could only be one of the mi (W) edge points in-
side a window W < L around xi, and a poisson distribution
with spatial arrival rate k on the number of edge points
produced by the cluttered background. Then, the likeli-
hood p (zs,i|xi) is calculated as
pðzs;ijxiÞ ¼ aN
W
2

0; r2
0

��� �
kLmi

mi!
e�kL þ ð1� aÞ

�
P

zki 2W
N zki jxi; r2

0

� �
mðW Þ

kLmi�1

ðm � 1Þ! e
�kL; ð27Þ
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where a is the probability of missing detection of the edge
point produced by the object boundary. Introducing such a
probability may increase the robustness of the observation
likelihood function [14,7,5].

Then, the full observation likelihood is simply the
product of the likelihood of all the measurement lines,
i.e.,

/ðzsjxsÞ ¼
Yn
i¼1

pðzs;ijxiÞ; s 2 fu; lg. ð28Þ

We refer the reader to [14] for a more detailed discussion of
the observation likelihood function used here. The same
observation likelihood function is also adopted in the face
tracking experiment in Section 5.2.
5.1.2. Convergence of the MFMC iterations

To demonstrate the convergence of the proposed
MFMC algorithm, we manually initialize the MFMC
algorithm from different initial points on the first frame
of the lip video. Our experimental results show that the
MFMC algorithm usually converges into the correct re-
sults after five iterations, even with initializations which
are significantly deviated from the real result, as shown
in Fig. 5.



Fig. 6. The MFMC algorithm failed to converge under this kind of wild
initialization.

Fig. 5. Convergence of the MFMC iterations: A.(a)–A.(g), the convergence of the iteration under initialization A; B.(a)–B.(g), the convergence of the
iteration under initialization B.
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Fig. 5 presents the convergence of the MFMC iterations
under two initializations. The first two rows and the last
two rows show the convergence of the MFMC iterations
under initialization A and initialization B, respectively.
As we can observe in the figure, both initializations are
largely deviated from the real locations of the lip but the
MFMC iteration does converge to the correct result in five
iterations. We extensively run the experiments many times
and obtained similar results as shown in Fig. 5.

However, the convergence of the MFMC algorithm
does depend on the initialization, i.e., with a better initial-
ization in the sense that it is nearer to the real result, the
convergence of the MFMC iteration is faster, and vice ver-
sa. Too wild initialization may result in the failure of the
MFMC iteration to converge in a reasonable times of iter-
ation, e.g., for the initialization shown in Fig. 6. Since dur-
ing tracking, we usually try to manually initialize the
tracker as accurate as possible, the MFMC iteration usual-
ly needs less iterations to converge. We generally set the
number of iterations to three during the tracking process
using the SMFMC algorithm.
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5.1.3. Lip tracking by SMFMC

The lip video sequence has more than 150 frames. Sam-
ple frames of the results of the SMFMC algorithm are
shown in Fig. 7.

For comparison, a single SMC tracker and a multiple
independent SMC (MiSMC) tracker are also implemented.
The results are shown in Figs. 8 and 9, respectively. From
the results, we observe that the single SMC tracker cannot
catch the detailed local deformation well. The reason is
that the upper-lip and lower-lip are actually subject to dif-
ferent correlated affine motion instead of the same motion,
but the single SMC algorithm treats them as the same. We
also observe that the MiSMC cannot keep the structure of
the upper- and lower-lip, and it easily loses track because of
the lack of constraints between the two independent track-
ers. On the contrary, the proposed SMFMC algorithm
achieves much better results. It tracks both the upper-lip
and lower-lip deformation very well, and the structure of
the combined upper-lip and lower-lip has also been kept
because it has been reinforced by the dynamic Markov
network.
Fig. 7. Tracking huma

Fig. 8. Tracking human lip v
5.1.4. A unified view of SMFMC, MiSMC, and single SMC

In fact, if a very tight potential function is used in the
Markov network, i.e., the state of one node can fully decide
the state of the other, then the SMFMC tracker degener-
ates to a single SMC tracker. On the contrary, if the poten-
tial function is very loose, i.e., each node is almost
independent with the others, then the SMFMC tracker
degenerates to a MiSMC tracker. Thus, we can treat
SMC and MiSMC as two extreme cases of the SMFMC
tracker, as showing in Fig. 10.

5.2. Face alignment and tracking

5.2.1. Potential function and observation likelihood for face
Just as we have shown in Fig. 1, the face contour are

modelled by a seven-node Markov network. It is obvious
that two subparts on the face are constrained by the rigid-
ity of the human face, e.g., the relative location of the eye
and the nose can only be changed in certain range. Denote
the centroid point of the subpart curve i as Pti and the cen-
troid point of the subpart curve j as Ptj, then the potential
n lip via SMFMC.

ia a single SMC tracker.



Fig. 9. Tracking human lip via a MiSMC tracker.

loose constraint tight constraint

Single SMC MiSMCSMFMC

Fig. 10. The relationship of SMFMC, SMC, and MiSMC.
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function between these two is defined by a Gaussian distri-
bution as

wðxi;xjÞ¼
1

2pjRijj

�exp �1
2
ðPti�Ptj�~lijÞ

TR�1ij ðPti�Ptj�~lijÞ
� �	 


;

ð29Þ

where~lij and Rij are the two-dimensional mean vector and 2
by 2 covariance matrix of the relative translation between
two sub-parts. We easily obtained the ML estimation of
the~lij and Rij from a set of manually annotated face images.
The trained potential functions are then adopted to perform
the face tracking. Just as we have stated, the observation
likelihood function is the same as that in Section 5.1.1.

5.2.2. Face tracking by SMFMC

The proposed SMFMC algorithm achieves good results
for automatic face alignment and face tracking over the vid-
eo sequence of more than 200 frames. After manual initiali-
zation in the first frame, the algorithm automatically aligns
and tracks the face over the sequence. Sample frames of
the experimental result are shown in Fig. 11. Compared with
the ASMmodel [2], our face prior model is actually a Gibbs
model while the ASM uses a Gaussian model. Thus, our
distributed model is more general than the ASM model,
and more capable of capturing detailed shape deformation.

Just as we have mentioned in Section 4, the first step of
the SMFMC algorithm is the SMC step, then the result is
used as the initialization of the MFMC step. In most cases,
the result of the SMC step is unsatisfactory, then the
MFMC step will use the structure information of the face
to guide an iterative alignment to a better result.
5.2.3. Quantitative analysis

By manual labelling the tracked face video sequence,
quantitative evaluation of the proposed SMFMC algo-
rithm was performed. Since during the SMFMC tracking
process, the affine parameters are estimated with respect
to the manually initialized B-spline curve in the first frame,
we are facing the problem of recovering the ground-truth
affine motion from the manually labelled video sequence.
Denote the labelled curve at the first frame as x1 and the
labelled curve at time instant t as xt, this could be achieved
to solve a least square fitting problem, i.e.,

A�t ¼ min
At

kAtðx1Þ � xtk2; ð30Þ

where At denotes the affine motion, A�t denotes the estimat-
ed ‘‘ground-truth’’ affine motion, and i Æ i denotes the
Euclidean distance.

However, solving the above least square fitting prob-
lem involves the evaluation of the squared residue error
on certain selected points on the two curves. And using
the fitted affine motion as the ground-truth may intro-
duce more numerical errors. Therefore, instead we take
a direct evaluation approach by using the recovered af-
fine motion from the motion tracking algorithm to trans-
form the reference curve in the first frame to the current
time instant. We can then evaluate the root mean square
error (RMSE) between the transformed curve and
ground-truth labelled curve on certain selected points.
The selected points are sampled evenly from the spline
curve. For example, denote the evenly sampled n points
on the reference curve as {s1, . . . , sn}, the n points on
the ground-truth curve at the current time instant as
fst1; . . . ; stng, and the recovered affine motion as At, then
the RMSE is evaluated as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i

kAtðsiÞ � stik
2

s
; ð31Þ

where i Æ i is again the Euclidean distance. Our face model
contains sever subparts. Each of them has its own curve



Fig. 11. Tracking human face via sequential MFMC.
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representation and individual but correlated affine motion.
We evenly sampled ni points from the curve of different
subparts. Then, the overall RMSE is calculated as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

7

X7
j¼1

1

ni

Xni
i

kAj
tðs

j
iÞ � sj;ti k

2

vuut . ð32Þ

The number of points evenly sampled from each subpart
curve is proportional to the length of the curve, e.g., 30
points are sampled for face outer contour, 20 points are
sampled for mouth contour, and 12 points are sampled
for the other subpart. We show the overall RMSE of the
SMFMC tracker, the MiSMC tracker, and the single
SMC tracker on the tested face video sequence on
Fig. 12. We can observe that the proposed SMFMC track-
ing algorithm generally achieved better accuracy than the
Fig. 12. The overall RMSE of the SMFMC, the SMC, and the MiSMC
on the test face video sequence. The green line, the red line, and the blue
line represent the overall RMSEs of the SMFMC algorithm, the MiTSMC
algorithm, and the single SMC algorithm, respectively. (For interpretation
of the references to color in this figure legend, the reader is referred to the
web version of this paper.)
MiSMC tracking algorithm and the single SMC tracking
algorithm on the tested video sequence.

5.3. Computation efficiency

In the SMC algorithm, the major computation comes
from the evaluation of the observation likelihood. Since
in each time step, the SMC algorithm needs to evaluate
the observation likelihood once for each sample, the com-
putation complexity is almost proportional to the number
of samples. For conventional particle filtering methods,
the needed number of samples is exponential increasing
w.r.t. the dimensionality. Suppose for a single object, the
number of samples needed to make the tracker work is
N . Then, for a structured deformable shape with K sub-
parts, if mean field iteration converges in M steps, the com-
putation complexity is OðMKN Þ [9], which is clearly linear
w.r.t. the number of subparts, thus to the dimensionality.

Moreover, our algorithm can let us allocate the compu-
tation resources to different subparts according to their
needs, i.e., some of the more complex subparts may need
more samples while some of the others may need less sam-
ples. In this way, the computation resources can be used
more efficiently as we have done in the experiments. Table
1 shows the rough processing frame rates of different meth-
ods in our experiments. Notice that the lip has two subparts,
the face has seven subparts and the number of mean field
iteration is three, it verifies that the SMFMC tracker does
have linear complexity w.r.t. the dimensionality.

6. Conclusion and discussion

In this paper, a novel SMFMC algorithm is proposed to
analyze and track structured deformable shapes based on a
Table 1
Processing frame rate of different trackers

Algorithms: SMCLip MiSMCLip SMFMCLip SMFMCFace

Frame rate (F/s): 16.5 10.9 4.0 1.6
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dynamic Markov network representation. It approximates
the propagation of the posterior motion of the structured
deformable shapes to the propagation of the variational
mean field distributions. The SMFMC algorithm combines
both analytical and non-parametric inference methods, i.e.,
the probabilistic mean field variational analysis and Monte
Carlo methods. More interestingly, it has linear complexity
w.r.t. the dimensionality. In addition, it shows that the sin-
gle SMC tracker and the MiSMC tracker can be regarded
as two extreme cases of our algorithm. Experiments have
demonstrated the effectiveness and efficiency of the pro-
posed SMFMC algorithm.

Although the SMFMC algorithm is employed in this pa-
per for analyzing structured deformable shapes, it is actu-
ally generalizable for many other vision problems such as
articulated motion analysis [9]. The idea of dealing with
the local subparts while reinforcing the global constraint
proved to be an effective way to overcome the curse-of-di-
mensionality. Our future work includes applying SMFMC
to other vision problems and more thorough theoretical
study of the SMFMC such as the theoretic analysis of
the convergence rate.
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