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Abstract

The ever-increasing gigantic amount of images over the
web necessitates automatic schemes for meta-tagging con-
tent descriptions such as object categories. These meta-tags
are essential to text-based image search engines to improve
their search relevance. Traditional supervised scheme is not
suitable for this task because it needs too much manual la-
belling efforts and yet is hard to scale to a large number
of object categories. Notice that in the search scenarios,
the meta-tagging does not need to be perfect to help im-
prove relevance because the available text tags and user
click-through logs can partially rectify the inaccurate infor-
mation. A weakly supervised scheme would be ideal when
only sporadic labelled examples are exploited in spite of the
expected loss in tagging accuracy. In this paper, we develop
a novel weakly semi-supervised ensemble classifier trained
based on a co-training framework for this tagging task. In
essence the meta-tags are recursively propagated from the
sparsely tagged examples to the un-tagged ones. Prelimi-
nary experiments on benchmark database such as Graz02
demonstrate the efficacy of the proposed approach.

1. Introduction

Since the start of the internet era, a gigantic amount (e.g.,
at the magnitude of billions) of images have been accumu-
lated over the web. Although the research on content-based
image retrieval [14] has been there for decades, it seems
that we are still far from any practical systems which can
be commercialized. Nevertheless, text-based image search
systems have been successfully deployed by main stream
search engines such as Google, Yahoo, as well as Microsoft.

All these commercial internet image search engines start
by crawling and indexing the web images based on the sta-
tic rank of the web-pages the images are associated with.
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The surrounding texts of the web images are also extracted
and stored during the crawling time. When a user types in a
text query, the text information, along with some other ad-
ditional information sources, will be used to calculate the
relevance of the images with respect to the query the user
typed in. This is called the dynamic rank of the images. The
features used to calculate the dynamic rank, either from the
surrounding texts or other information sources, are called
ranking features.

To the best of our knowledge, the majority of the ranking
features used by mainstream image search engines nowa-
days are from the surrounding texts and the image click-
through information from the query logs. This largely
ignores the relevance of the real image content to the queries
the users typed in, and makes the current dynamic ranking
system vulnerable to web stuffing attacks from malicious
content providers such as adult sites. Web stuffing is a trick
where malicious content providers intentionally and repeat-
edly embed texts highly related to one specific query to a
web-page or the surroundings of web images, and thus fool
the dynamic ranking system to falsely boost the ranking of
these images. This will seriously hurt the search relevance
when evaluated, for example, by the normalized discounted
cumulative gain (NDCG) score [8].

It is obvious that automatic analysis of the image con-
tent and adding meta-tags such as the category information
to describe the image content would be an effective way of
countering such kind of web-stuffing attacks. Previous su-
pervised image categorization methods are not suitable for
this task because they need a lot of labelled examples, and
thus are difficult to scale to a large number of object cate-
gories. When only sporadic labelled examples are used, a
weakly supervised scheme would be ideal for this task al-
though the tagging accuracy may not be as good as a fully
supervised method. Notice that in the space of web images
(at the magnitude of billions), scalability is the first priority.
Moreover, we do not need to achieve perfect tagging results
before we can help improve the search relevance, because



surrounding texts and click-through logs would be able to
counter some of the inaccurate meta-tagging information.

We explore the ability of an ensemble of decision trees
induced from very weak supervision under a co-training
framework [1], where new training examples with pseudo-
labels for each decision tree are bootstrapped from all the
other decision trees in the ensemble. The framework es-
sentially behaves like that the meta-tag is propagated recur-
sively from the tagged training examples to un-tagged new
examples, which we name meta-tag propagation. Our pre-
liminary evaluation on benchmark data-set such as Graz02
demonstrates the efficacy of the proposed method.

Related work are summarized in Sec. 2. The proposed
method for co-training an ensemble of decision trees is pre-
sented in Sec. 3. Experimental results are reported and dis-
cussed in Sec. 4. Finally we conclude in Sec. 5.

2. Related work

Related work spans two different fields in machine learn-
ing and computer vision, and more specifically, weakly su-
pervised or semi-supervised learning, and visual object cat-
egorization.

Semi-supervised learning exploits both labelled and un-
labelled data for classification, clustering, and regression.
In this paper, we focus on semi-supervised classification.
Semi-supervised learning has been extensively studied (see
[18] for a survey). Different semi-supervised learning meth-
ods employ different properties of the structure of the data
to leverage the unlabelled examples. For example, semi-
supervised EM [11] exploits the cluster structure of the data.
While spectral-graph based method [17] relies on the gen-
eral assumption that two examples which are close in the
feature space should be in the same class.

A seminal work of semi-supervised learning is the co-
training framework proposed by Blum and Mitchell [1].
Co-training assumes that the feature space can be naturally
partitioned into two. Then two classifiers are trained on
these two feature subsets. In the co-training process, each
of the classifiers will expand its set of training examples by
those unlabelled examples which are classified with high
confidence by the other classifier. This process will be it-
erated until there is no more unlabelled data examples. For
example, Levin et al [6] applied it to co-train two boosting
classifiers for pedestrian detection from surveillance videos.

Zhou and Li [3] extend the co-training framework to a
tri-training method where three classifiers are co-trained si-
multaneously. They used it for text classification. In this
paper, we go one step further and exploit the co-training
frame work to train an ensemble classifier which can con-
tain any number of classifiers (e.g., > 3.). Besides we apply
the proposed method to perform image categorization.

For any image categorization task, a good image repre-
sentation is essential to achieve reasonable results for this

challenging task. We adopt the popular bag-of-feature rep-
resentation [10, 13, 4, 16, 5] in our meta-tagging propaga-
tion task. To construct the bag-of-features, two steps are
needed: first, sample local image patches and their descrip-
tors are extracted; second, all these local descriptors are ag-
gregated to be a set, which we call bag-of-features. Note
that we do not quantize the local descriptors for simplicity
and better understanding of the behavior of the co-trained
ensemble classifier. Previous work has performed such kind
of quantization [4, 16, 2] to obtain the so-called bag-of-
visual-words model. It could easily be embedded in as an
additional step in the proposed method, though.

There are various options in this two-step process. For
example, different sampling strategies [12] can be em-
ployed in the first step, such as using random sampled
patches, or using patches generated from any interest point
detectors such as Harris, DOG [7] or Harris-Laplace [9].
Different local image descriptors can also be exploited such
as color [10], texture, or more advanced SIFT descrip-
tors [7].

Since any co-training schemes assume that different
views of the data are used in the different co-trained clas-
sifiers, we leverage the different options presented above to
achieve that. The details will be presented in the following
section.

3. Co-training an ensemble of decision trees

Figure 1 is an overview of our algorithm which consists
of an ensemble of six decision trees. We use DL to denote
the labelled example set and DU to denote the unlabelled
example set.

The basic idea of our algorithm is to start with a small set
of labelled images, and gradually propagate the labels to the
rest of the images which do not have labels. As more images
have labels (predicted labels), we add these new images to
the training set to improve the decision trees. The improved
decision trees are used to propagate labels to more images,
and the process continues.

In order to ensure the decision trees are sufficiently inde-
pendent for each other, the trees are built with different lo-
cal image descriptors and different sampling strategies. We
use two different local image descriptors: SIFT descriptor
and wavelet-based color descriptor, and three different sam-
pling strategies: uniform sampling, SIFT feature detector,
and center-focused sampling. In center-focused sampling,
the likelihood of drawing a subwindow at a certain position
depends on how close the position is to the image center.
The intuition is that for the majority of images, the object
of interest is usually located near the image center. There
are in total six different combinations resulting in six deci-
sion trees.

In Figure 1, we use t to denote the iteration counter, and j
to denote the index of the six decision trees. We use D′

t,j to



Figure 1. The decision tree ensemble co-training algorithm

denote the unlabelled images which have been augmented
to the training set for tree j prior to tth iteration. The union
of the original labelled image set DL and D′

t,j , which is
denoted as Dt,j , is used to train the jth decision tree Tt,j . To
avoid building a tree from scratch at each iteration, we use
an incremental tree induction algorithm [15] which adjusts
a decision tree locally based on newly added data.

For each tree Tt,j , j = 1, ..., 6, we aggregate the other
five trees {Tt,k}k �=j to form an auxiliary ensemble classi-
fier which is denoted as Ct,j . The reason we do not use Tt,j

itself is because we would like to avoid the potential prob-
lem of self-training. We use a method similar to what was
used in [10] to construct an ensemble classifier from multi-
ple decision trees. Basically, for each visual feature vector,
we pass it through each tree and obtain the leaf node index.
For each tree, the votes for each leaf node index are accumu-

Figure 2. Sample images of the three object categories in the
Graz02 data set. Each column presents three sample images of
each category.

lated into a histogram which are used for labelling the leaf
node. For each tree and each image, the leaf node labels
corresponding to all of its feature vectors are accumulated
into a histogram which are used to classify the image. For
each image, the results of the five individual tree classifiers
are combined by majority voting to determine the final label
of the image.

For each image in DU \ Dt,j , we use Ct,j to predict its
label. For each class label l, to be conservative, we select
two images from DU \Dt,j whose confidences are the high-
est among all the images with predicted labels equal to l.
The two selected images together with their predicted labels
are added to the augmented image set D′

t+1,j which will be
used at the next iteration to improve the jth tree Tt+1,j .

To evaluate the performance of our algorithm, we use
a separate set of images, which is disjoint from DL and
DU , to measure the classification performance of the deci-
sion tree ensemble at each iteration. The classification re-
sults provide an objective measurement on the quality of the
propagated labels.

4. Experiments

We evaluate the efficacy of our approach by conducting
experiments on publicly available Graz02 database. The
database consists of three object categories - Bike (365 im-
ages), Car (420 images) and Person (311 images). Some
sample images of each category are showing in Fig. 2.

The database is challenging in the sense of variable illu-
mination, large background clutter, variable objects scales
and perspectives, as well as occlusions. High variation with



Figure 3. The incremental accuracy changes of 5 different runs of
co-training the ensemble classifier. Each curve shows the accuracy
of the ensemble classifier on the testing data set at each iteration
of the co-training process.

respect to background makes it difficult to detect objects on
the basis of context alone. For the purpose of experimen-
tation, 900 images (300 per class) are randomly selected.
These images are then randomly partitioned into two equal
sized sets (150 per class) for training and testing purposes.
The results are reported in the form of classification accu-
racy on the testing set.

For co-training, initial labelled set is randomly selected
from the training set with 5 images per class. Rest of the
training images form the unlabelled set which are used to
augment the labelled training set as the co-training pro-
gresses. A total of 14 iterations of co-training are con-
ducted, after which almost all the training examples will
have been propagated with an label. During each iteration
for each tree, 6 images (2 per class) with highest confidence
of labelling from its auxiliary ensemble classifier are added
to its training set. Each tree is then incrementally updated
based on the newly added training examples.

4.1. Accuracy of the ensemble classifier

The incremental accuracy changes of the co-trained en-
semble classifiers over 5 different runs are shown in Fig. 3.
Note the classification accuracy reported in Fig. 3 is eval-
uated on the testing data-set. The performance on the un-
labelled training data-set is indeed better than the perfor-
mance value reported here. That is expected so we omit
the results here to focus on demonstrating the generalization
ability of the co-trained ensemble classifier on new data.

As we can clearly observe from Fig. 3, the initial per-
formance of the ensemble classifier can indeed vary a lot
based on the different initial training examples chosen. For
example, the lowest initial accuracy in these 5 runs is nearly
52.0%, and the highest initial accuracy is 61%, there is an
absolute accuracy gap of 9%. As we can clearly observe
from Fig. 3, although the co-training process can not guar-
antee to absolutely increase the testing accuracy at each iter-

Figure 4. The average incremental accuracy change of the 5 dif-
ferent runs.

Table 1. The classification confusion matrix for another run of the
co-training scheme with random initialization.

ation, overall it is able to improve the classification accuracy
as the co-training progresses.

Fig. 4 presents the average incremental accuracy change
over the 5 different runs. On average, we can obtain an
absolute accuracy gain of 6.41% after 14 co-training itera-
tions. Table 1 presents the confusion matrices of one run of
the co-training of the ensemble classifiers. The upper part
presents the confusion matrix from the initial training. As
we can see, the recognition accuracy of person is more or
less like random. After the co-training process, the recogni-
tion accuracy of person is significantly improved. It is at the
expense of a small degradation of the recognition accuracies
of the bike and car category, though.

In Fig. 5, we present some sample images which are clas-
sified incorrectly from each of the three categories. There
are some information we may be able to infer by observ-
ing these mis-classified examples. For example, the ob-
jects of the target category inside most of these images
are fairly small and the bag-of-feature representation is just
overwhelmed by the background clutters. What is worse,
in some of these misclassified images, only small portion of
the target objects are shown in the scene. They are either oc-
cluded by some other objects, or are partially out of the im-



Figure 5. Some sample images which are erroneously classified
after the co-training process. The first, second and third columns
show the miss-classified images of person, car and bike, respec-
tively. All the images in the first and second columns are mis-
classified as bikes. The top two images in the third column are
mis-classified as cars, and the last one is mis-classified as person.

Figure 6. The progressive performance change of the three deci-
sion tress using SIFT features during one run of the co-training.

age view. Nevertheless, it may be just OK to mis-categorize
these images, especially in the internet image search sce-
nario. Users may not be interested in these images anyway
because the objects they are interested in are not fully shown
in these images.

4.2. Accuracy of individual trees

Fig. 6 and Fig. 7 present the progressive performance
change of each of the individual decision trees during one
run of the co-training process. In Fig. 6 the progressive per-
formance changes of the three decision trees using the SIFT
features are presented, while in Fig. 7 the progressive per-
formance changes of the other three decision trees using the
color Haar wavelet features are presented. Notice each of

Figure 7. The progressive performance change of the three deci-
sion tress using color Haar wavelet features during one run of the
co-training.

Figure 8. The testing accuracy of fully supervised trained ensem-
ble classifier with different number of training examples.

these decision trees employed a different combination of the
sampling strategies and the feature descriptors. As we can
clearly observe, the performance of any of the individual
decision trees in the ensemble is progressively improved in
the co-training process without any exception. This demon-
strates the efficacy of the co-training process from another
view regarding the augmentation of the labelled training ex-
amples. What we also observe is that the decision trees uti-
lizing the SIFT feature overall obtain better accuracy than
those using the color wavelet features. This indicates that
the SIFT features may be more powerful for the object cat-
egorization task, at least on the Graz02 data set.

4.3. Comparison with fully supervised training

One may wonder what would be the recognition perfor-
mance if we perform fully supervised learning of the ensem-
ble classifiers. Fig. 8 presents the recognition performance
of a fully trained ensemble decision tree classifiers with dif-
ferent number of training examples. As we can clearly ob-
serve, the testing accuracy is almost the same after using 30
training examples per category (i.e., 90 in total). This may



on one hand reflect the difficulty of this data set. On the
other hand, it also reflects the limited classification power of
the decision tree classifier we employed to form the ensem-
ble. In our future work, we will also investigate whether or
not using other stronger classifier such as SVM or Boosting
to form the ensemble could help improve the performance.

5. Conclusion and future work

We have presented a meta-tag propagation algorithm by
co-training an ensemble of decision trees. To ensure the
independence among the different decision trees in the en-
semble, we use different combination of feature descriptors
and sampling strategies for each of the individual decision
trees. Our preliminary experiments show that we are able
to use an extremely small set of labelled images to achieve
the classification performance which cannot be obtained by
a regular decision tree ensemble unless using a much larger
set of labelled images.

The proposed approach targets at the task of meta-
tagging image categories for mainstream text-based im-
age search engines. This type of image meta-tagging will
greatly help image search engines to mitigate malicious
web-stuffing attacks and thus improve image search rele-
vance. Our future work includes larger scale evaluation
on images from mainstream image search engines and fur-
ther investigate how much it can improve image search rel-
evance.
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