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We propose a generative model approach to contour
tracking against non-stationary clutter and to coping with
occlusions by explicit modelling and inferring. The pro-
posed dynamic Bayesian networks consist of multiple hid-
den processes which model the target, the clutter and the
occlusions. The image observation models, which depict
the generation of the image features, are conditioned on all
the hidden processes. Based on this framework, the tracker
can automatically switch among different observation mod-
els according to the hidden states of the clutter and occlu-
sions. In addition, the inference of these hidden states pro-
vides self-evaluations for the tracker. The tracking and in-
ferencing are implemented based on sequence Monte Carlo
techniques. The effectiveness of the proposed approach to
robust tracking and inferring non-stationary clutter and oc-
clusion is demonstrated for a variety of image sequences.

1 Introduction
Contour tracking is challenged by cluttered environ-

ments and occlusions. The difficulty lies in the fact that
the image measurements, which are used to infer the tar-
get, are not produced by the target alone, but jointly by the
target and the clutter interference generated by the environ-
ment, while there are in general no easy ways to differ-
entiate these two sources. This situation is more apparent
and difficult when the contour is partially or completely oc-
cluded. Thus it is important to accommodate the interfer-
ence models (e.g., background models and occlusion mod-
els) in tracking. In addition, since the image observations
are the sources for both target and interference, naturally, it
should be feasible to estimate the clutter interference as well
as the interaction between the target and the environment, if
modelled appropriately.

Learned background and clutter models [5, 15] can
greatly alleviate the interference induced bystationaryclut-
ter. However, in many applications, the clutter presents non-
stationary spatial characteristics, e.g., the degrees of clut-
ter interference may vary in different image regions. Thus
using different clutter and occlusion models according to
different situations is more appropriate than using a fixed

model. The question is how to automatically determine a
suitable model to use. In addition, it is important for the
tracker to have a mechanism of self-evaluation, e.g., eval-
uating the environment clutter interference, and knowing if
the target is tracked, occluded or lost.

To approach to these questions, this paper presents a
generative model approach that enables automatic switch-
ing among different image observation models for differ-
ent clutter characteristics (and degrees of occlusion). Target
tracking and tracker self-evaluation can be done simulta-
neously by inferring the hidden states of these generative
models.

Specifically, a class of dynamic Bayesian networks are
presented in the paper. In addition to the target dynamics,
the models incorporate an hidden process that models the
clutter and selects image observation models. In our for-
mulation of contour tracking, the image observations are
generated from a product of a Gaussian process and a non-
stationary Poisson process. The Gaussian process repre-
sents the uncertainty of the model for the target contour,
while the non-stationary Poisson process models the clutter
from the environment.

Within the same framework, an additional hidden pro-
cess for occlusions can also be incorporated in the genera-
tive models. Different degrees of occlusion are formulated
as different weights in the linear mixture of the clutter ob-
servation and the joint target-clutter observation. By esti-
mating the weighting process, we can easily infer the de-
grees of occlusion for evaluating the tracker.

Since the above dynamic Bayesian networks are densely
connect graphical models, it is difficult to obtain analytical
results for the probabilistic inference. Thus, we approxi-
mate the inference by sequential Monte Carol strategies.

The proposed generative model approach naturally com-
bines different hidden factors, i.e., the target, the clutter and
the occlusion. Thus, the tracking algorithms based on these
models are robust with respect to non-stationary environ-
ments and occlusions. In addition, the inference of the hid-
den states of the clutter and occlusion provides more com-
prehensive information for online tracking evaluation.
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The paper is organized as follows. Details of the im-
age observation models for contours are presented in Sec-
tion 3. Section 4 describes the dynamic Bayesian network
for switching different clutter models. The occlusion model
and the inferencing of occlusions can be found in Section 5.
Section 6 reports a set of experiments for theses generative
models, and a brief discussion is given in Section 7.

2 Previous Work
We denote thetarget stateat time t by Xt. The task

of visual tracking is to inferXt based on all the observed
image evidenceZt = {Z1, · · · ,Zt}, whereZt is the im-
agemeasurement(or observation) at time t, i.e., to esti-
matep(Xt|Zt). The tracking process can be viewed as the
density propagation [2, 5] fromp(Xt−1|Zt−1) to p(Xt|Zt),
and it is governed by the dynamic modelp(Xt+1|Xt) and
the observation modelp(Zt|Xt), since we have

p(Xt|Zt) ∝ p(Zt|Xt)
∫

p(Xt|Xt−1)p(Xt−1|Zt−1)dXt−1.

Such a probabilistic dynamic system can be depicted graph-
ically by a dynamic Bayesian network in Figure 1.

t+1 tp(X      |X  )

t
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Figure 1: The tracking problem could be represented by a dy-
namic Bayesian network graphically.

The tracking and identification problems have been well
studied for the linear dynamic systems, and the Kalman fil-
tering (KF) technique provides a closed form solution un-
der the assumptions of linear dynamics, linear observations
and Gaussian noise. Extended Kalman filters (EFK) can be
derived by linearizing the nonlinear dynamics and observa-
tions if possible. To approach to the problem of random
interference (clutter), the data association approaches have
been investigated, e.g., the probabilistic data association fil-
ter (PDAF) [1] for tracking a single target in clutter and
the joint probabilistic data association filter (JPDAF) [1] for
tracking multiple targets. All of these methods imply that
the detection (or search) of the target can be easily done,
and the the positions of the detected targets are treated as
the observations directly. Then, the Kalman innovation, the
difference between the predicted observation and the true
observation, can be obtained to calculate the Kalman gain
to correct the state predictions.

Unfortunately, for contour tracking and many other vi-
sual tracking scenarios where the target is more complex
and higher level than a point or a line segment, target detec-
tion in images is much more difficult than we can assume,

since what we can detect directly from images are low-level
image features rather than a target candidate itself.

Thus, a special difficulty for visual tracking roots in the
matching between the target model (e.g., a parametric shape
model) and the noisy image features (e.g., a set of edge
points). The search for the target contour from noisy image
features is generally quite difficult [3, 8], especially when
we need to maintain multiple hypotheses of the target for ro-
bust tracking. To alleviate this difficulty, we can embed the
search for target candidates into a top-down process con-
sisting of the motion prior prediction step and the observa-
tion likelihood correction step as inCONDENSATION [2, 5],
where the observation modelp(Zt|Xt), which measures the
likelihood of the image features, plays a critical role.

It is clear that the image observations are jointly pro-
duced by the target and the clutter from the environments.
We can assume the presence of the clutter bear a Poisson
process with parameterλ encoding the clutter density [1]. It
is plausible to use a learned clutter model in calculating the
image observation likelihood [12]. Having a clutter model
would also allow the discrimination of the sources [11], i.e.,
to tell if the image observation is generated by the target or
the cluttera posteriori. Thus the knowledge of the back-
ground [14] and the foreground [16] would greatly enhance
the robustness for tracking in clutter. To cope with occlu-
sions explicitly, an exclusive principle for modelling the oc-
clusion of multiple known contours has been proposed [12].

However, the clutter interference may present non-
stationary characteristics in different image regions, which
prevents the tracker from using a single observation model
with a preset clutter model. The following sections present a
solution of switching multiple observation models for non-
stationary clutter and occlusions based on a class of gener-
ative models.

3 The Observation Models
The calculation of the observation likelihoodp(Z|X) is

critical for contour tracking. Now, the first question we
should answer is:what are the measurementsZ for con-
tours?or how to modelp(Z|X) analytically?

We follow the idea of using a set of measurement lines
to collect image features [2], but end up with a slightly dif-
ferent answer. The length of the measurement line isL.
For thei-th measurement line, wherei = 1, · · · , n, we de-
note the predicted contour point position byxi, so that the
contour is discretized by the set of{xi}. After applying
1-D edge detection along the measurement line, all the lo-
cations of the edge points{z1

i , · · · , zmi
i } (mi is the number

of detected feature points) on the measurement line are col-
lected as illustrated in Figure 2(a). Obviously, these features
points{z1

i , · · · , zmi
i } are jointly produced by the target and

the clutter.
However, different from [2], the observation like-

lihood is not the joint probability of the positions of
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Figure 2: (a) Contour observations on an image. (b) The edge
points on a measurement line.

{z1
i , · · · , zmi

i }, since different measurement lines would
have different numbers of such feature points and then the
likelihoods for different contour hypotheses would not be
comparable. On the other hand, since at most one of the
{zk

i } is produced by the target pointxi, we should be con-
cerned about its position. And the other feature points are
associated with the clutter which are modelled by a Pois-
son process, thus we should be only concerned about their
numbers instead of their actual positions. In this sense, the
likelihoods calculated for different contour hypotheses can
be compared. Therefore, the observations for calculating
the likelihood consist of (a) the position of one edge point
(which is not known yet), and (b) the number of detected
feature points.

We assume that the detected feature points associated
with the clutter distribute along the measurement line and
bear a Poisson processN (m : λ), wherem is the number
of features. Ifm features are associated with clutter, then

p(m(L)|C) = N (m(L) : λ) =
λLm

m!
e−λL, (1)

wherem(L) is the number of features along the measure-
ment line, andC denotes the clutter.

We also assume the feature points associated with the tar-
get contour pointxi is produced by a Gaussian distribution
G(z : xi, σ) within a windowW , i.e.,

p(z|xi) = G(z − xi : 0, σ), (2)

where z is a feature point located insideW . We de-
note the features inside the windowW by zi(W ) =
{z1

i , · · · , z
m(W )
i }. But at most one of these features should

be associated with the target. We denote it byz∗i (W ).
Therefore, different from [2], for thei-th measurement

line, the observationsZi consist of the number of detected
featuresm(L), and the location of the featurez∗i in the
window W , i.e., Zi = {z∗i (W ),m(L)} as shown in Fig-
ure 2(b).

Since we can not determine which feature insideW
should be associated with the target, we integrate all the
possibilities. In addition, since accommodating the missing
detection of the feature associated with the target can make

the tracker more robust, we denote events:ψ0 = {z∗i (W )
is miss detected}, andψ1 = {z∗i (W ) is detected}. Condi-
tioned onψ0, the likelihood is set as:

p(Zi|xi, C, ψ0) = G(W/4 : 0, σ)N (m(L)). (3)

Similarly, the likelihoodp(Zi|xi, C, ψ1) is

G(W/2 : 0, σ)N (m(L)); m(W ) = 0 (4)

∑
zk

i ∈W G(zk
i : xi, σ)

m(W )
N (m(L)− 1). m(W ) 6= 0 (5)

wherem(W ) andm(L) denote the number of detected fea-
tures inside the windowW and the measurement lineL,
respectively. Therefore,

p(Zi|xi, C) = p(Zi|xi, C, ψ0)p(ψ0)+p(Zi|xi, C, ψ1)p(ψ1).

Since we assume that the measurement lines are inde-
pendent, the target observation models are:

p(Z|X, C) =
n∏

i=1

p(Zi|xi, C). (6)

4 Switching Observation Models
Since the feature detectors are unable to differentiate the

associations of the detected image features, i.e., which fea-
tures should be associated with the target and which should
not, we face a situation where the observation likelihood
models have to take both into account jointly, and the like-
lihood probability has to be conditioned on both targetX
and the clutterC. In our contour observation models, the
clutterC is characterized byλ, the parameter of the Poisson
process. Differentλs reflect different clutter.

If the clutter C is spatially stationary, i.e.,λ does not
change too much, we can obviously treatλ as a fixed pa-
rameter and the observation modelp(Z|X, C) reduces to
p(Z|X : λ). The value ofλ affects the likelihood and thus
affects the posterior densityp(Xt|Zt). Once aλ is preset by
learning from training sequences [2], the observation model
reflects a class of backgrounds whose clutter can be charac-
terized by theλ.

Figure 3:The image contains three cluttered regions.

However, we always encounter the situation where dif-
ferent regions of the environments generate different clut-
ter, e.g., some part of the background is quite clean while
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other areas are rich in terms of image edges (See Figure 3).
It means that the clutterC is not spatially stationary. Pre-
setting a singleλ for the observation model would make
the tracker sensitive to different backgrounds. We often ob-
serve that a discrete set of clutter models are good enough
to capture complex environments. Thus, we need to have
a mechanism to switch among different observation models
for different clutter. For example, in our experiments, we
train three clutter models (Nβ = 3): light (β = 1), medium
(β = 2) and heavy (β = 3). Different values ofλs are
trained for differentβs. Our scheme is shown in Figure 4.

Z t t+1Z
t-1Z

t-1 β

t-1 t+1

t+1t

t XX X

ββ

Figure 4:The observations are produced jointly by the target and
the clutter.β is a hidden variable which switches different obser-
vation models.

Comparing with Figure 1, the dynamic Bayesian net-
work in Figure 4 introduces one more hidden Markov pro-
cess{βt}, which switches different observation models ac-
cording to different classes of clutter. In this approach,
βt ∈ {1, · · · , Nβ} is a discrete variable to indicate which
clutter model is selected. The different clutter models are
learned from training sequences. (See Section 6.)

Based on the graphical model in Figure 4, tracking be-
comes the propagation ofp(Xt, βt|Zt), and we have

p(Xt+1, βt+1|Zt+1) ∝
p(Zt+1|Xt+1, βt+1)p(Xt+1, βt+1|Zt), (7)

wherep(Xt+1, βt+1|Zt) =
∫ ∫

p(Xt+1|Xt)p(βt+1|βt)p(Xt, βt|Zt)dXtdβt, (8)

wherep(Xt+1|Xt) describes the dynamic model of the tar-
get andp(βt+1|βt) stipulates the transition which is speci-
fied by a finite state machineTβ , i.e.,

Tβ = [Tβ(i, j)] = [p(βj |βi)], i, j ∈ {1, · · · , Nβ}.
The structure of this densely connected graphical model

in Figure 4 is complex for straightforward analytical in-
ference. Thus, we approximate the probabilistic inference
based on sequential Monte Carlo techniques [4, 9, 10]. The
posterior densityp(Xt, βt|Zt) is represented by a set of
weighted particles{x(n)

t , β
(n)
t , π

(n)
t }. Then the estimates

X̂t andβ̂t are given by:

β̂t = arg max
k

∑

n∈Bk

π
(n)
t ; X̂t =

∑
n∈Bk

x
(n)
t π

(n)
t∑

n∈Bk
π

(n)
t

,

whereBk = {n|β(n)
t = k}.

The graphical model in Figure 4 is related to the co-
inference model [18], since in both cases the observations
are jointly determined by a set of factors. But our case does
not involve as high dimensionality as the case in [18]. Cer-
tainly, the co-inference algorithm can apply here.

In our experiments, we found that each type of clutter
is generally associated with a range ofλ values instead of a
fixed value. To make the switching more flexible, we should
allow the uncertainties inλt associated withβt, instead of
keeping a set of fixed values. Since the change of the clutter
could be dramatic, e.g., the target moves from a light clut-
ter to a heavily cluttered region, we modelled it by a hidden
Markov model{βt, λt}, whereβt is the discrete variable as
before, butλt is continuous and it is the output ofβt. The
graphical model for this HMM-driven observation model
switch is illustrated in Figure 5. The transition ofβt trigs

t XX X

Z t-1
Zt+1tZ

t-1 t+1t ββ β

t-1 λ t+1t λλ

t+1t-1

Figure 5: The switch of the observation models is driven by a
hidden Markov model{βt, λt}.

the switch of the observation models. The output of the
HMM {βt, λt} is theλt, the parameter controlling the clut-
ter observations. We model the output probabilityp(λt|βt)
of the HMM as a Gaussian model.

Since the exact inference of such a Bayesian network in
Figure 5 is difficult, we still approximate the inference by
the sampling-based sequential Monte Carlo techniques. The
algorithm of the HMM-driven observation model switching
is elaborated in Figure 6.

Our approach is also different from the idea of the
mixed-state tracker [6, 13], which switches among differ-
ent motion models. To see the difference, a graphical rep-
resentation of the mixed-state tracker can be illustrated in
Figure 7. Our approach is symmetric to the mixed-state ap-
proach by switching the observation models.

5 Inferring Occlusion
Is the observation likelihood uniquely determined once

conditioned on the target stateXt and the clutter model?
It is true if there is no occlusion. However, when the

target is partially or fully occluded in the environment, the
image observation likelihood has a different story, since the
occluded part of the target becomes invisible and should not
produce image features anymore. Thus, the occlusion in-
troduces more hidden factors into the generative model for
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Generate{x(n)
t+1, β

(n)
t+1, λ

(n)
t+1, π

(n)
t+1} from {x(n)

t , β
(n)
t ,

λ
(n)
t , π

(n)
t }.

1. Re-sampling. Resample{x(n)
t , β

(n)
t , λ

(n)
t } to

produce{x′(n)
t , β

′(n)
t , λ

′(n)
t } based on{π(n)

t }.

2. Prediction. For each(x′(n)
t , β

′(n)
t , λ

′(n)
t ):

(a) sample the density of the target dynamics
p(xt+1|xt) to producex(n)

t+1;

(b) sample the transition densityp(βt+1|βt) to
produceβ(n)

t+1;

(c) sample the HMM(βt, λt) observation pro-
cessp(λt+1|βt+1) to produceλ(n)

t+1.

3. Correction. Re-weight each particle by calcu-
lating the likelihoodπ

(n)
t+1 = p(Zt+1|x(n)

t+1, λ
(n)
t+1).

Then normalize all the new weights so that∑
n π

(n)
t+1 = 1.

Figure 6:The algorithm for the HMM-driven observation model
switching.

t+1t XX X

Z Zt+1Z tt-1

t-1 α t+1t αα

t-1

Figure 7:A hidden variableα is used to indicate different motion
models. The{αt} process switch the target state process{Xt}.

image observation. A question of great interests is: can we
infer the occlusion situation from the image sequences? To
answer it, we need to modelp(Z|X, C,O), whereO indi-
cates the occlusion factor.

To take the occlusion into account, we introduce an
event decomposition:φ0 = {z∗i (W ) is invisible}, and
φ1 = {z∗i (W ) is visible}, wherez∗i (W ) is the features as-
sociated with the target on thei-th measurement line. Thus,
we can write the likelihood conditioned on occlusion:

p(Zi|xi, C, φ1) = p(Zi|xi, C), (9)

p(Zi|xi, C, φ0) = p(Zi|C). (10)

Thus, the likelihoodp(Z|X, C,O) conditioned on the oc-
clusionO can be modelled as:

p(Z|X, C,O) =
n∏

i=1

{p(Zi|C)γ+p(Zi|xi, C)(1−γ)}, (11)

where

p(Zi|C) =
1
W
N (m(L) : λ), (12)

and0 ≤ γ ≤ 1 models the degree of occlusion, e.g.,γ = 0
means no occlusion, whileγ = 1 means complete occlu-
sion. The denominatorW in Equation 12 is induced be-
causeZi = {z∗i (W ),m(L)}, andz∗i (W ) is now uniformly
distributed in the windowW sincez∗i is invisible, and all
the feature points are associated with the clutter.

ββ

t-1 t XX X

Z t-1

t+1

t+1Z t

t t+1

Z

t-1 t+1t γγ γ

βt-1

Figure 8:The occlusion process{γt} contributes another hidden
Markov chain in the generative model.

As a hidden factor, occlusion introduces another con-
tinuous Markov process{γt} in the generative model as
illustrated in Figure 8, compared with the model in Fig-
ure 4. Then, the observation should be conditioned on the
occlusionγt additionally, i.e.,p(Z|X, β, γ). A different γ
switches to a different observation model according to a dif-
ferent degrees of occlusion. The dynamics for the process
{γt} is modelled by a Gaussian random walk, i.e.,

p(γt|γt−1) =





0; γt < 0;
G(γt : γt−1, σγ); 0 ≤ γt ≤ 1
1. γt > 1

(13)
Given the complexity of the graphical model, the infer-

ence of occlusion is also approximated by sequential Monte
Carlo. The algorithm is straightforward to augment the par-
ticle by one more variableγt. The transition ofγt is sam-
pled from p(γt+1|γt), and the estimate ofγt is approxi-
mated by:

γ̂t = E[γt|Zt] =
n∑

i=1

γ
(n)
t π

(n)
t . (14)

The estimates ofγt would roughly reveal if the occlusion
occurs (ends) and the degrees of occlusion.

When the target is occluded, the tracker would be follow-
ing the occluding environments, although some hypotheses
for the occluded target can be kept based on its motion tra-
jectories. During the occlusion, these hypotheses will be-
come weaker and weaker, since no image evidence can be
used to support the existence of the target, and the uncer-
tainty of the occluded target increases and thus enlarges the
search area for the target candidates. It eventually becomes
a detection (or re-initialization) problem if the duration of
occlusion is long. Therefore, occlusion can be viewed as a
temporary loss track.

5



Then we differentiate three situations indicated by a dis-
crete variableαt: ”target is locked” where γt tends to
have small values ,”target is partially occluded”whereγt

should uniformly distributed in a large range, and”target is
lost” whereγt likely to have large values. Interestingly, a
HMM {αt, γt} can be used to modelled this hidden relation
by specifyingp(αt+1|αt) andp(γt|αt). Different values of
αt output different distributions ofγt, and the hidden vari-
ableαt indicates different status of the tracker. Then, it is

t-1 t+1t X

Z t-1
Zt+1Z t

X X

t-1 t+1t γγ γ

α

β βt t+1βt-1

t+1tα αt-1

Figure 9: Incorporating the occlusion HMM{αt, γt} into the
generative model to drive the switch of observation models.

natural to incorporate the occlusion HMM into the genera-
tive model to drive the model switch. The model in Figure 8
can be augmented to the model in Figure 9, where the pro-
cess{γt} is replaced by the HMM{αt, γt}. By inferencing
αt, we can have a rough online evaluation for the tracker.

6 Experimental Results
Since the contours were roughly round-shaped in all of

our experiments, we employed a conics model to simplify
the shape representation1, i.e.,y′Ay′ + 2By + C = 0. A
shape template was initialized by conics fitting. The defor-
mation of the shape was governed by an affine transforma-
tion,

y′ = Ay + t =
[

a11 a12

a21 a22

]
y +

[
t1
t2

]
.

Following the shape space [2], given a shape template,
a contour can be represented by the affine parameters,
i.e., X = (a11, a12, a21, a22, t1, t2)′. The dynamic model
p(Xt+1|Xt) of the target contour was assumed a constant
acceleration model.

To measure the likelihood of the features given a con-
tour hypothesis, a set ofm measurement lines were cast
along the contour (herem = 15). The lengthL of the mea-
surement line was20 pixels. The standard deviationσ in
Equation 2 was set to2 pixels in our experiments.

1Of course, our methods are also applicable to complex shapes using
B-spline representations as in [2].

6.1 Inferencing Clutter
Contour tracking and clutter inferencing were handled

by the method shown in Figure 5 and 6, i.e., the HMM-
driven model switching. In our experiment, the scene con-
sisted of three distinguishable types of clutter, each of which
was parameterized by an individual Poisson distribution,
thenβt = k, k ∈ {1, 2, 3} indicated the switch of thek-
th clutter model with parameterλk.

The parametersλ of these Poisson processes were learnt
from a set of training images. A measurement line with
lengthL was thrown to the images20, 000 times, and the
number of detected edge points on the line was collected
each time. Then the k-means clustering was performed to
learn the values ofλ for three dominate clusters. The output
densityp(λ|β = k) was modelled by a Gaussian density
G(λ : λ̄k, σλk) . These parameters were learnt from the
clustering. Specifically,̄λ1 = 0.01, σλ1 = 0.002, λ̄2 =
0.0824, σλ2 = 0.01, λ̄3 = 0.2144, σλ3 = 0.05.

We used a finite state machine (FSM) to model the state
transitionp(βt+1|βt) of the switching process{βt}. The
FSM parameters were manually set:

Tβ = p(βj |βi) =




0.8 0.1 0.1
0.1 0.8 0.1
0.1 0.1 0.8


 . (15)

We tried different parameters forTβ and found it was not
sensitive and could tolerant large inaccuracy. That was the
reason that we used manually set parameters.

The results of using the HMM can be seen in the se-
quence named as “mclutter.mpg ”2. Different βs are
shown in different colors (G/B/R is for 1/2/3 respectively).
Some sample frames are shown in Figure 10. In this result,
when the target was in a relatively clean background, the
tracker gave an estimate of̂βt = 1 as expected. When the
target moved to a region with medium clutter, the tracker
automatically switched to an appropriate clutter model and
showβ̂t = 2. Although the target visited the heavily clut-
tered regions less frequently than the other two, the switch
to the modelβt = 3 was still observed in our experiments.
In addition, the recovered switch processes{β̂t} and{λ̂t}
are shown in Figure 11. We can see that the curves do reflect
the clutter model transitions for different cluttered regions.

0 100 200 300 400 500 600
0

0.5

1

1.5

2

2.5

3

Figure 11:The recovered switching processes{β̂t} and{λ̂t}.

2All the results can be accessed from http://www.ece.nwu.edu/˜yingwu
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Figure 10:Different clutter situations are inferred in addition to the tracking, and the tracker switches to the corresponding observation
models accordingly. (B/G/R representsβ = 1/2/3 respectively.) (Seemclutter.mpg for details.)

Figure 12:The switching of different cluttered regions are clearly shown in the sequencegirl.mpg .

We also compared this algorithm with the one without
using the HMM. The transition ofβt was modelled the same
as Equation 15. By allowing continuousλts, the method
using HMM provided better tracking results than the one
without, since the scene contained many small regions that
can not be well represented by a fixed set ofλs as in the
method without the HMM.

This HMM-driven switching was also applied to an-
other sequence “girl.mpg ”, which clearly showed that the
switching of clutter models in different backgrounds, e.g.,
the door area and the blind window area. Sample images
are shown in Figure 12.

6.2 Inferencing Occlusion
The algorithm in Figure 8 was applied to infer the de-

grees of occlusion. Since the occlusion process{γt} is a
continuous process, the dynamicsp(γt+1|γt) is modelled
as in Equation 13, andσγ = 0.1.

The results can be seen in the two sequences named
as “occlusion 1.mpg ” and “occlusion 2.mpg ”. Some
sample frames are shown in Figure 13. Different colors
show the starting and ending of occlusion (B/G/R showsγ
from low to high). In addition, the recovered occlusion pro-
cess{γ̂t} is shown in Figure 14. We can see from Figure 14,
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Figure 14:The recovered occlusion process{γ̂t} of occlusion1.

the curve ofγt does reflect the evolution of the degrees of
occlusion in the sequence where the target moves into, un-
derneath and out from an occluding object, as expected in
our theory.

6.3 On-line Tracking Evaluation
The algorithm in Figure 9 was applied to provide a rough

on-line tracking evaluation, i.e., to tell whether or not the
target is locked, partially occluded or lost. The parameters
of the transition of{αt} were manually set:

Tα = p(αj |αi) =




0.8 0.1 0.1
0.4 0.5 0.1
0.3 0.2 0.5


 .

And the output densityp(γ|α = k) was modelled by a
uniform densityU([ak, bk]). There parameters were set as
a1 = 0.0, b1 = 0.2, a2 = 1, b2 = 0.9, a3 = 0.8, b1 = 1.0.

The result is in “eval.mpg ”. Some sample frames are
shown in Figure 15. Different colors show the status of a
tracker. B/G/R representsα = 1/2/3. In addition, the re-
covered processes{α̂t} and{γ̂t} are shown in Figure 16.
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Figure 16:The recovered occlusion process{α̂t} and{γ̂t}.

7 Discussion and Conclusions
Since the detected image features are jointly produced by

both the target and the environment, the observation likeli-
hood model plays a key role in tracking. When the environ-
ment clutter presents different characteristics in different re-
gions, using a single observation model is not appropriate.
Taking into account of different clutter models and degrees
of occlusion in the proposed models, more accurate tracking
results have been achieved. Additionally, with the proposed
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Figure 13:Since the degrees of occlusion are inferred, the tracking of the occluded contour is very robust due to the use of more accurate
observation models. B/G/R represents no/partial/full occlusion, respectively. (Seeocclusion 1.mpg andocclusion 2.mpg .)

Figure 15:The tracker is able to tell if the target is tracked (in blue), partially occluded (in green), or lost (in red). (Seeeval.mpg )

dynamic Bayesian network models, the tracker begins to
have a capacity of self-evaluation by estimating clutter in-
terference and occlusions.

The generative model approaches have demonstrated
their effectiveness in many applications such as video mod-
elling [7], examplar-based tracking [17], etc. The learning
tasks, i.e., identifying the model parameters, are challeng-
ing and computationally expensive. Our future work in-
clude the development of efficient learning algorithms for
the generative models described in this paper.
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