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Abstract

A novel statistical method is proposed in this paper to over-
come abrupt motion for robust visual tracking. Existing
tracking methods that are based on the small motion as-
sumption are vulnerable to abrupt motion, which may be
induced by various factors, such as the unexpected dynam-
ics changes of the target, frame dropping and camera mo-
tion, etc. Although with computational benefits, methods
based on hierarchical search is inadequate to this problem
because the propagation of the searching error may end up
with bad estimates in fine scales. Since different scales con-
tain different salient image features, we propose a new for-
mulation in which searching and matching will be done col-
laboratively in different scales. The theoretical foundation
of this new approach is based on dynamic Markov networks,
where the bi-directional propagation of the belief of the tar-
get’s posteriors on different scales reveals the collaboration
among them. A nonparametric sequential belief propaga-
tion algorithm for the dynamic Markov network is devel-
oped by implementing the collaboration of a set of particle
filters. Extensive experiments have demonstrated the effec-
tiveness and efficiency of the proposed method to cope with
various types of abrupt motions.

1. Introduction
Visual tracking involves many basic computer vision prob-
lems. It infers the target states based on image observations
at each time instant by searching and matching in the video.
Narrowing down the searching range to facilitate efficient
tracking, in general, the small motion assumption is made
or accurate dynamic models are assumed in advance. In
practice, however, we often encounter situations where un-
expected abrupt motion between consecutive image frames
invalidates the small motion assumption, or prevents the use
of accurate dynamic models, and thus fails the trackers in-
stantly.

Some abrupt motions are due to the target itself. For
example, the target’s dynamics may be changed by an un-
expected outer force such as in the case of a bouncing ball;

and the target may also intentionally change its dynamics
such as the cobra maneuver of a jet fighter. In addition,
some other abrupt motions are induced by the video sen-
sors, e.g., frame dropping in video grabbing and shaking
cameras. Since these factors are common in practice, deal-
ing with abrupt motion can make visual tracking algorithms
more robust.

It is indeed very difficult to cope with abrupt motion due
to the large motion uncertainty, a direct but naive solution
is to simply enlarge the searching range to make sure it
covers motion uncertainty. However, this is not appropri-
ate due to the polynomial increase of the searching volume,
which may still demand tremendous computation especially
when the dimension of the target state is more than 2. Al-
though the Kalman filters can adaptively change the search-
ing range based on covariance of target state prediction,
they are not adequate to solve the abrupt motion problem
as well, since such a prediction capacity mainly depends
on the employed dynamic models which may be under un-
expected changes in real scenarios. To make the dynamic
model as accurate as possible, many sophisticated meth-
ods have been investigated such as to employ good dynamic
models that are learned from training data [1] and to design
automatic switching schemes to switch among several pre-
defined dynamic models [2]. However, in practice, it is gen-
erally difficult to learn accurate dynamic models for track-
ing and prediction, although the learned models may be use-
ful for recognition. In addition, the learned models largely
depend on the training data. Switching dynamic models is
a good strategy, however, specific prior knowledge on the
switching models makes this approach less scalable.

Nevertheless, the motion uncertainty may be approached
efficiently by using multiscale strategy. The hierarchical
search strategy aims at efficient search, since the results in
large scales may be refined by that in small scales. This
strategy has been widely used in stereo matching and flow
computation. Recently, it has been explored in particle fil-
tering techniques for human body tracking [3] and hierar-
chical face alignment [4]. A potential problem of the above
methods is the accumulation of searching error which prop-
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agates from large scales to small scales, and the mechanism
that rectifies the error in such a hierarchical strategy is very
limited. Thus, if the results on the large scales are noisy or
even wrong, the final result on the smallest scale will largely
deviate from the truth.

Integrating multiple scales may result in more robust
tracking, since different image features will be more salient
in different scales. For example, we see textures of a tree
in large scale and structures of the twigs and leaves in small
scale [5]. Conventional way of integrating multiscale visual
information is to vectorize them for visual inference, but
this is only true when the image observations in different
scales are conditional independent which may not be true
for multiscale visual features.

In this paper, we propose a new method to conquer the
abrupt motion difficulty by providing a new and rigorous
formulation for visual tracking through multiple scales. The
theoretic foundation of the new approach is based on a
dynamic Markov network, where target states in different
scales are represented as different but correlated random
vectors and image observation in one scale is only asso-
ciated with the target state in the same scale. The search-
ing processes in each scale will interact with each other to
form a collaborative searching scheme which largely alle-
viates the error accumulation problem as indicated in the
hierarchical search methods. An efficient sequential belief
propagation algorithm is proposed and the Monte Carlo im-
plementation is used to perform the Bayesian inference in
such a complex dynamic model. This algorithm is a new
nonparametric and sequential version of the belief propa-
gation algorithm ever proposed in the literature [6–9]. Our
method is more robust to motion uncertainties and abrupt
motion because of the collaborative searching through mul-
tiscales, which have been demonstrated by the experiments
in various scenarios.

2. Related Work

There are two approaches for visual tracking: the top-down
approach and the bottom-up approach. The top-down ap-
proach takes a two step strategy, i.e., target state hypothe-
sis generation and image observation verification as in the
sequential Monte Carlo trackers [2,10]. The bottom-up ap-
proach estimates the motion parameters by minimizing de-
terministic cost functions. To list a few, the mean-shift blob
tracker [11] and the efficient region tracker with the para-
metric model of geometry and illumination [12] are the rep-
resentatives using such an approach.

Almost all the existing methods using multiscale search-
ing and matching take a hierarchical search strategy. The
pyramid representation of the image makes this strategy a
really efficient searching scheme and it has been applied
successfully in fast stereo matching and face alignment [4].

The idea behind the hierarchical strategy is that the search-
ing and matching in large scale can be very fast and it will
guide more efficient search in fine scale. However, the in-
accuracy and failure of the search in large scale may put the
search in fine scale into risk.

For Bayesian inference based on graph models, the sum-
product algorithm [6] can obtain the exact inference result
but it only viable for small directed acyclic graph (DAG)
models. When there is no loop in the graph model, be-
lief propagation (BP) [6, 7] can obtain the exact inference
more efficiently through a local message passing process.
When there are loops in the graph model, the loopy BP [13]
can obtain good approximate results [7]. As an approxima-
tion, Monte Carlo techniques can be used for simulation of
Bayesian inference [10]. In addition, statistical variational
approach provides a principled way for approximate infer-
ence such as the mean field variational method [14] which
seeks the best approximate result by minimizing the K-L
divergence between the mean field approximation and the
real posterior distributions.

The Non-parametric BP [8] and the PAMPAS algo-
rithm [9]combine the BP algorithm with MCMC technique
to implement the inference. Also, a mean field Monte Carlo
algorithm (MFMC) has been proposed in [15] for track-
ing articulated body by integrating sequential Monte Carlo
technique with the mean field variational method.

Different from the hierarchical search methods, this pa-
per proposes a new formulation for multiscale visual track-
ing based on a dynamic Markov network. This formulation
results in a collaborative way of searching through multi-
scales instead of using the hierarchical strategy. A sequen-
tial belief propagation algorithm and its Monte Carlo im-
plementation, namely sequential belief propagation Monte
Carlo, are proposed to efficiently perform the Bayesian in-
ference in the proposed Markov network. This is a new non-
parametric and sequential version of the belief propagation
algorithm.

3. Representation

The target state at each scale is denoted byxi wherei ∈
{1, . . . , L} indicates the scale with1 indicating the largest
scale andL the smallest. Putting multiscale states together
results in a redundant representation for the target, denoted
by X = {x1, . . . ,xL}. The benefit is that the multiscale
target models make possible the integration of multiscale
image observations which may conquer the abrupt motion.
The image observation associated with the target statexi in
the same scale is denoted byzi andZ = {z1, . . . , zL}.

The error accumulation in the hierarchical search method
is mainly due to the unidirectional information propagation
from large scales to small scales. Our approach allows bi-
directional information propagation to alleviate this prob-
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lem based on a Markov network, as shown in Figure 1 as an
example of three scales.

X1

X2

X3Z1

Z2

Z3

Figure 1:Markov network for the target state in multiple resolu-
tions.

The undirected links describe the mutual influence of
multiple scales, and the directed links represent the image
observation processes. Each undirected link is associated
with a potential functionψi,j(fi(xi), fj(xj)), wherefi(xi)
andfj(xj) mapxi andxj into the same state space since
they may represent the target states in different state space.
Each directed link is associated with an image likelihood
function pi(zi|xi). According to the Bayesian rule, it is
easy to show

P (X|Z) =
1

ZQ

∏
(i,j)∈E

ψi,j(fi(xi), fj(xj))
∏
i∈V

pi(zi|xi),

(1)
whereZQ is a normalization constant,E is the set of all the
undirected links andV is the set of all the directed links.

The above Markov network is a generative model at one
time instant. When putting it into the temporal context,
we construct a dynamic Markov network as shown in Fig-
ure 2. The target state at scalei and timet are denoted by
Xt = {xt,i, i = 1, . . . , L}. Also, we denote the image
observations at timet under all scales byZt = {zt,i, i =
1, . . . , L} and denoteZt = {Zk, k = 1, . . . , t}, then the
tracking problem is to perform the Bayesian inference of
the dynamic Markov network to obtain the marginal poste-
rior probabilityP(xt,L|Zt) wherext,L is the target state at
the smallest scale.

According to the Bayesian rule and the Markovian prop-
erty, we have

P (Xt|Zt) ∝ P (Zt|Xt)

∫
Xt−1

P (Xt|Xt−1)P (Xt−1|Zt−1),

(2)
and P(xt,L|Zt) can be obtained by marginalizing
P (Xt|Zt). But there are two reasons that we must seek
for other solutions: firstly, the closed form solution to the
joint posterior probabilityP (Xt|Zt) is very difficult to ob-
tain especially when the probability distributions are non-
Gaussian; secondly, even if we can obtain a closed form

Xt-1,1

Xt-1,2

Xt-1,3

Xt,1

Xt,2

Xt,3

Xt+1,1

Xt+1,2

Xt+1,3

Zt-1,1

Zt-1,2

Zt-1,3

Zt,1

Zt,2

Zt,3

Zt+1,1

Zt+1,2

Zt+1,3

Figure 2:Dynamic Markov network for the motion of the target.

solution toP (Xt|Zt), marginalization is not an efficient
method because of the computation of multiple integral.
Therefore, we seek a more efficient way to calculate the
marginal posteriorP(xt,i|Zt). In this paper, we develop a
sequential BP algorithm with Monte Carlo implementation
in the following sections.

4. Sequential Belief Propagation
To perform the Bayesian inference ofP(xt,L|Zt) in the
dynamic Markov network in Figure 2, let’s first solve the
Bayesian inference problem ofP(xL|Z) in the Markov net-
work in Figure 1. Actually, the belief propagation algorithm
calculate the exact inference ofP(xi|Z), i = 1, . . . , L
through a local message passing process [6, 7]. The local
message passing from nodei to nodej is

mji(xj) ←

∫
xi

[pi(zi|xi)ψi,j(fi(xi), fj(xj))

×
∏

k∈N (xi)\j

mik(xi)]dxi, (3)

whereN (xi) denotes the neighborhood ofxi that consists
of the set of nodes connected toxi through a undirected link
andN (xi)\j means the neighbor ofxi exceptxj . Equa-
tion 3 is actually a set of fixed point equation. Iterating
message passing until convergence, then, the marginal pos-
terior probability ofxi can be obtained by

P (xi|Z) ∝ pi(zi|xi)
∏

j∈N (xi)

mij(xi). (4)

To inferP(xt,i|Zt), We extend the BP algorithm to the dy-
namic Markov model shown in Figure 2. We assume inde-
pendent dynamic models in each resolution, i.e.,

P (Xt|Xt−1) =
∏

i

p(xi,t|xi,t−1). (5)
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Then, given the inference resultsP (xt−1,i|Zt−1), i =
1, . . . , L at previous timet − 1, we show that the message
updating at timet is

mji(xt,j) ←

∫
xt,i

[pi(zt,i|xt,i)ψi,j(fi(xt,i), fj(xt,j))

×

∫
xt−1,i

p(xt,i|xt−1,i)P (xt−1,i|Zt−1)dxt−1,i

×
∏

k∈N (xt,i)\j

mik(xt,i)]dxt,i, (6)

and the marginal posterior probability at timet is given by

P (xt,i|Zt) ∝ pi(zt,i|xt,i)
∏

j∈N (xt,i)

mij(xt,i)

×

∫
xt−1,i

p(xt,i|xt−1,i)P (xt−1,i|Zt−1)dxt−1,i. (7)

From Equation 5 to Equation 7, we have developed a se-
quential belief propagation algorithm (SBP). To the best of
our knowledge, this is a novel extension of the BP for visual
tracking.

Actually, one special example which is able to show the
necessity of the proposed method is that the target is very
thin or even can not be seen in the image of the largest
scale. In this case, for the proposed SBP algorithm, it
only means that the ‘belief’ propagated from the largest
scale to the smaller scales is uniformly distributed and thus
non-informative. It will not affect the posterior motion
P (xt,i|Zt), i = 1, . . . , L at all. Thus the proposed SBP
algorithm may still get good tracking result as long as the
smaller scales can still provide confident ‘beliefs’ to help
the searching and matching in the largest scale. While
for the coarse-to-fine searching strategy, since the search-
ing and matching will definitely fail in the largest scale and
there are no mechanisms for the searching and matching in
the smaller scales to recover from the failure , the whole
hierarchical searching process will also fail.

Due to the non-Gaussian nature of the image observation
density induced for example by cluttered backgrounds, the
parametric form solution to this algorithm is intractable.In
the next section, we will develop a Monte Carlo algorithm
to implement the SBP algorithm.

5. SBP Monte Carlo
In this section, we firstly develop a BP Monte Carlo
(BPMC) algorithm , then extend it to a SBP Monte Carlo
(SBPMC) algorithm.

Each message in BP is represented by a set of weighted
samples, i.e.,

mji(xj) ∼ {s
(n)
j , ω

(i,n)
j }N

n=1, i ∈ N (j). (8)

where s
(n)
j and ω

(i,n)
j denote the sample and its weight

of the message passing fromxi to xj, respectively. The
marginal posterior probability in each node is also repre-
sented by a set of Weighted samples, i.e.,

P (xj |Z) ∼ {s
(n)
j , π

(n)
j }N

n=1. (9)

wheres(n)
j is the same in equation 8, andπ

(i,n)
j is the belief

corresponding to it. Then the message updating process is
based on these sets of weighted samples. The algorithm is
described in Figure 3.

Generate {s(n)
j,k+1, ω

(i,n)
j,k+1}

N
n=1 and {s(n)

j,k+1, π
(n)
j,k+1}

N
n=1

from {s(n)
j,k , ω

(i,n)
j,k }N

n=1, {s(n)
j,k , π

(n)
j,k }

N
n=1, j = 1, . . . , L and

i ∈ N (j)

1. IMPORTANCE SAMPLING : Sample{s(n)
j,k+1}

N
n=1 from a

suitable importance functionIj(xj).

2. RE-WEIGHT: For each samples(n)
j,k+1 and eachi ∈ N (j),

set the weightω(i,n)
j,k+1 = G

(i)
j (s

(n)
j,k+1)/Ij(s

(n)
j,k+1) where

G
(i)
j (s

(n)
j,k+1) =

N∑
m=1

[π
(m)
i,k × pi(z

(m)
i,k |s(m)

i,k )

×ψi,j(fi(s
(m)
i,k ), fj(s

(n)
j,k+1))

∏
l∈N (i)\j

ω
(l,m)
i,k ]

3. NORMALIZATION : Normalizeω
(i,n)
j,k+1, i ∈ N (j) and set

and normalize

π
(n)
j = pj(z

(n)
j,k+1|s

(n)
j,k+1)

∏
l∈N (j)

ω
(l,n)
j,k+1

We get{s(n)
j,k+1, ω

(i,n)
j,k+1}

N
n=1, {s

(n)
j,k+1, π

(n)
j,k+1}

N
n=1.

4. ITERATION: k ← k + 1, iterate1 → 4 until convergence.

5. INFERENCE: p(xj |Z) ∼ {s(n)
j , π

(n)
j }N

n=1 wheres
(n)
j =

s
(n)
j,k andω

(i,n)
j = ω

(i,n)
j,k+1.

Figure 3:Belief Propagation Monte Carlo

Our BPMC algorithm is different from both the NBP
algorithm [8] and the PAMPAS algorithm [9]. They all
model the messages in BP as Gaussian mixtures and com-
plex MCMC samplers are used to sample the new Gaus-
sian mixture kernels of the updated messages. In this sense
their algorithms are semi-parametric. While our algorithm
represents all the densities in pure nonparametric form and
importance sampling technique is used to generate the new
samples in each iteration of message passing. Therefore,
our algorithm avoids complex MCMC samplers. In fact,
The BPMC algorithm is similar to the MFMC algorithm in
the sense of using importance sampling. Since the proposed

4



Markov network has no loop and BP can get the exact infer-
ence result, this may be better than MFMC since mean field
variational method can only get an approximate result.

Following almost the same strategy, we can represent the
messages and marginal posterior probabilities at each time
instant as weighted samples, i.e.,

mt,ji(xt,j) ∼ {s
(n)
t,j , ω

(i,n)
t,j }N

n=1, i ∈ N (j). (10)

and
P (xt,j |Zt) ∼ {s

(n)
t,j , π

(n)
t,j }

N
n=1. (11)

Then following Equation 5 to Equation 7, the Monte Carlo
implementation of the sequential belief propagation algo-
rithm, namely SBPMC, is shown in Figure 4. Compared
with NBP [8] and PAMPAS [9], the uniqueness of the
SBPMC algorithm is obvious, none of the former two is
sequential.

6. Experiments
The proposed algorithm has been applied to tracking tar-
gets with abrupt motion in various scenarios. The target of
interest is modelled as a rectangular region, and the target
statexi at each resolution is a four dimensional vector with
two for displacements and two for scalings. The motion
modelpi(xt,i|xt−1,i) in each scale is standard second order
constant acceleration model with Gaussian noise. Since the
purpose of our algorithm is to deal with motion uncertainty,
we do not learn the parameters of the motion models but
preset them to cover enough uncertainties. The tracker uses
different observation likelihood modelspi(zi|xi) at differ-
ent scales, where different PCA-based appearance models
are trained and adopted.

6.1. Sudden Dynamic Changes
The first scenario is a tennis bounced back from a desk.
The dynamics of the tennis is suddenly changed when it hits
the desk. This situation is hard for tracking algorithms that
rely on a single motion model. Our experiment show that
the proposed multiscale tracking algorithm can successfully
cope with this problem. In the experiment, 50 samples are
used for each scale and the number of iterations for the se-
quential belief propagation algorithm is set to 5. Sample
frame of our algorithm at the bouncing stage are shown
in Figure 5, where the results in each scale have been dis-
played as well. The details of the results can be seen in the
video “BouncingTennis.avi” as part of the submission.

We also implementedCONDENSATION for comparison.
However, it can hardly handle the large motion presented
in this sequence even with 1000 particles. Figure 6 shows
its results (with 1000 particles) on the same period as in
Figure 5. Details of the failure can be seen in the video
Condensation.avi. It is clear thatCONDENSATION loses

Generate{s(n)
t,j , π

(n)
t,j }

N
n=1 from {s(n)

t−1,j , π
(n)
t−1,j}

N
n=1.

1. INITIALIZATION : Sequential Monte Carlo,k ← 1

1.1. Re-sampling: For each j = 1, . . . , L, re-
sampling{s(n)

t−1,j}
N
n=1 according to the weightsπ(n)

t−1,j to get

{s(n)
t−1,j ,

1
N
}N

n=1

1.2. Prediction: For eachj = 1, . . . , L, for each sam-
ple in {s(n)

t,j , 1
N
}N

n=1, sampling fromp(xt,j|xt−1,j) to get

{s(n)
t,j,k}

N
n=1

1.3.Belief and Message Initialization:For eachj = 1..L,
assign weightω(i,n)

t,j,k = 1
N

, π
(n)
t,j,k = pj(z

(n)
t,j,k|s

(n)
t,j,k) and nor-

malize them wherei ∈ N (j).

2. ITERATION: Belief Propagation Monte Carlo,k ← k + 1

2.1. Importance Sampling:Sample{s(n)
t,j,k+1}

N
n=1 from

p(xt,j|xt−1,j).

2.2. Re-weight:For each samples(n)
t,j,k+1 and eachi ∈ N (j),

set the weight

ω
(i,n)
t,j,k+1 = G(i)

xt,j
(s

(n)
t,j,k+1)/(

1

N

N∑
r=1

p(s
(n)
t,j,k+1|s

(r)
t−1,j))

where

G(i)
xt,j

(s
(n)
t,j,k+1) =

N∑
m=1

{π(m)
t,i,kpi(z

(m)
t,i,k|s

(m)
t,i,k)

∏
l∈N (i)\j

ω
(l,m)
t,i,k

×[
1

N

N∑
r=1

p(s
(m)
t,i,k|s

(r)
t−1,i)] · ψi,j(fi(s

(m)
t,i,k), fj(s

(n)
t,j,k+1))}

2.3. Normalization:Normalizeω
(i,n)
t,j,k+1, i ∈ N (j) and set

π
(n)
t,j,k+1 = pj(z

(n)
t,j,k+1|s

(n)
t,j,k+1)

∏
l∈N (j)

ω
(l,n)
t,j

×
∑

r

p(s
(n)
t,j,k+1|s

(r)
t−1,j)

and normalize it. Then,{s(n)
t,j,k+1, ω

(i,n)
t,j,k+1}

N
n=1 and

{s(n)
t,j,k+1, π

(n)
t,j,k+1}

N
n=1 are obtained .

2.4. Iteration: k ← k + 1, iterate2.1 → 2.4 until conver-
gence.

3. INFERENCERESULT:
p(xt,j |Zt) ∼ {s(n)

t,j , π
(n)
t,j }

N
n=1 wheres

(n)
t,j = s

(n)
t,j,k and

π
(n)
t,j = π

(n)
t,j,k+1.

Figure 4:Sequential Belief Propagation Monte Carlo
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(a) # 23 (b) # 24 (c) # 25 (d) # 26

(e) # 27 (f) # 28 (g) # 29 (h) # 30

Figure 5:Tracking Bouncing Tennis by SBPMC. Frame numbers are indicated in thebottom of the result image.

(a) # 23 (b) # 24 (c) # 25 (d) # 26 (e) # 27 (f) # 28 (g) # 29 (h) # 30

Figure 6:Tracking Bouncing Tennis by CONDENSATION. Frame numbers are indicated in the bottom of the result image

track when the motion uncertainty of the ball is large. Al-
thoughCONDENSATIONworks with 2000 samples, it is about
two times slower than our algorithm.

A similar experiment of tracking a bouncing ball has
been reported by using a mix-stateCONDENSATION that
switches between two specific motion models was [2]. This
approach needs to know the set of specific motion models
in advance, which makes this approach less scalable. In
contrast to this approach, our method is more general and
scalable.

6.2. Dropping Frames
Frame dropping in video sequence also causes abrupt mo-
tions of the target. The second experiment is to track a hu-
man face in a video with more than 1200 original frames.
We deliberately simulate the frame dropping scenario by
keeping one frame in every 10 frames. With the same
setting as in Section 6.1, our algorithm can successfully
handle such a jumpy sequence. Sample frames are dis-
played in Figure 7 and details can be seen in the video
“DroppingFrame.avi”.

To demonstrate the effectiveness of the sequential belief
propagation process, we collect the intermediate iteration
results of SBPMC in every time frame. The initialization
are rather far from the true locations. We have observed
many cases where the initial estimates at the largest scale
are not satisfactory enough for hierarchical search. Our ex-
periments show that these cases do not pose any difficulty
to our algorithm. Figure 8 shows the belief propagation it-
eration in frame 20 which correspond to frame 200 in the
original sequence. Under a bad initialization, the estimate
at the largest scale is not good. But our algorithm converges
in 5 iterations and the bad estimate at the largest scale is cor-

rected due to the belief propagated from other scales. The
reason is the collaboration of multiple scales in our algo-
rithm with the use of different observation models for dif-
ferent scales.

6.3. Shaking Cameras and Changing Scales
Shaking cameras also induce abrupt motion of the tar-
get in the video sequence. We have tracked a human
head in a video sequence of 477 frames with very large
camera motion. Sample frames are presented in Fig-
ure 9. The proposed SBPMC tracker achieves good and
robust results even under very large camera shaking and
the lighting changes. Details can be seen in the video
“ShakingCamera.avi”. One may argue that image stabi-
lization may handle camera motion, but it may not be able
to handle the abrupt motion induced by other sources such
as the target movement itself, and it is a hard problem itself
to recover camera ego-motion in general settings.

The last scenario in our experiments is to track a human
with large scale changes. The people walks back and forth
to the camera with frequent changes of moving direction
and speed. This example contains large scale changes and
our algorithm achieves very good results. Sample frames
are shown in Figure 10 and details can be see in the video
“WalkingPeople.avi”.

7. Discussion and Conclusion
Existing tracking algorithms with small motion assumption
are vulnerable to abrupt motion. In this paper, we propose
a novel statistical method to overcome the abrupt motion
for robust visual tracking. It is based on a dynamic Markov
network representation that models the multiscale tracking
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(a)# 34 (b)# 35 (c)# 36

(d) # 37 (e) # 38 (f) # 39

Figure 7:Tracking Head by SBPMC. Frame numbers are indicated in the bottom of theresult images

(a) Initialization (b)1st iteration (c)2nd iteration

(d) 3rd iteration (e)4th iteration (f)5th iteration

Figure 8:SBPMC Iteration in frame 200. The iteration number is indicated at the bottom of each result image.

process. In this framework, a collaborative tracking strat-
egy among different scales is proposed. The SBPMC al-
gorithm for the dynamic Markov network is developed by
implementing the collaboration of a set of particle filters.
This is a new nonparametric and sequential belief propaga-
tion algorithm. Extensive experiments have shown that he
real benefit of our new approach is the ability to handle a
large spectrum of abrupt motions including sudden dynam-
ics changes, large camera motion, large scaling and drop-
ping frames, etc.

The dynamic Markov network is actually a generative
model approach, and has demonstrated its effectiveness in
other applications such as tracking articulated human body
[15] where a mean field algorithm has been developed.
Our future work includes a theoretical comparison of the
proposed sequential belief propagation algorithm with this
mean field algorithm, and the learning algorithms that esti-
mate the parameters of the dynamic Markov networks.
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