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Abstract
This paper presents a new statistical model for detect-

ing and tracking deformable objects such as pedestrians,
where large shape variations induced by local shape defor-
mation can not be well captured by global methods such as
PCA. The proposed model employs a Boltzmann distribu-
tion to capture the prior of local deformation, and embeds
it into a Markov network which can be learned from data. A
mean field variational analysis of this model provides com-
putationally efficient algorithms for computing the likeli-
hood of image observations and facilitate fast model train-
ing. Based on that, effective detection and tracking algo-
rithms for deformable objects are proposed and applied to
pedestrian detection and tracking. The proposed method
has several advantages. Firstly, it captures local deforma-
tion well and thus is robust to occlusions and clutter. In ad-
dition, it is computationally tractable. Moreover, it divides
deformation into local deformation and global deformation,
then conquers them by combining bottom-up and top-down
methodologies. Extensive experiments demonstrate the ef-
fectiveness of the proposed model for deformable objects.

1 Introduction
The research of human detection and tracking has re-

ceived more and more attentions in recent years, due to
the contemporary emerging applications such as perceptual
interfaces, ubiquitous computing and smart video surveil-
lance. Different applications are concerned about different
image resolutions of the subjects, thus incur different tech-
niques. For example, in perceptual interfaces, accurate mo-
tions of body parts should be determined for commanding
and interaction, thus human articulation is of great interests.
In smart video surveillance, since the human is typically lo-
cated at small regions in the images, we generally treat a
human as an entity, i.e., as a deformable object. Due to
the tremendous variance in the visual appearance of human
induced by factors like clothing, deformation and lighting,
detecting human seems to be more challenging than detect-
ing faces. In this paper, we investigate human detection and
tracking from the perspective of deformable shapes.

The human shape is more or less unique in the real world,
and thus provides a powerful clue to be distinguished from

other objects. For example, it is easy for us to visually
recognize human-like silhouettes or contours. However, a
real challenge for computers is to handle the large varia-
tions embedded in the shape deformations induced by vari-
ous factors, including rigid motion such as rotation, global
deformation such as scaling and shearing, and local defor-
mation caused by body postures, view changes and clothing
styles. Setting aside the deformation caused by rigid mo-
tion and global deformation, the local deformation of hu-
man shapes is quite complicated and is of very high degrees
of freedom. Thus, any successful approach to human de-
tection and tracking must have effective representations and
prior models to accommodate the large variations in the lo-
cal shape deformation. Some examples includes the active
shape model [2], exemplar hierarchy model [4], the metric
mixture model [13], and generative models [7].

Considering the complexity and the degrees of freedom
of the local deformation in human shapes, we propose a
new statistical model based on a mean field Markov net-
work to capture complicated priors of the local shape de-
formation. This model is different from the existing meth-
ods as described in Section 2. The proposed model is a
graphical model. The hidden layer representing the hidden
scene (i.e., the deformable contour) is a Markov network,
in which each scene node is associated with an observa-
tion model describing the conditional likelihood of image
observations of this scene node. The structure of the pro-
posed model is similar to that in [3], but the difference be-
tween them is that our method employs the Boltzmann prior
for the hidden layer and enables rigorous and elegant ana-
lytical results by performing variational analysis, through
which the image likelihood can be estimated for detection
and model parameters can be learnt from training data. In
addition, another theoretical benefit is that the image likeli-
hood estimates are lower bounded. Although the complex-
ity of the model structure prevents tractable exact analysis,
we obtain a computationally efficient mean field approxi-
mation for the model through the probabilistic variational
methods advocated by Jordan et.al [8, 6]. Since local shape
deformations are embedded in such a statistical model, it
enables effective and efficient detection and tracking algo-
rithms for deformable objects such as pedestrians.



The proposed method enjoys a number of advantages.
Firstly, since the model employs a network rather than a
vector to describe a shape, it can sufficiently capture the
local constraints in the deformation by the local network
structure and enable accurate modeling of the local defor-
mation priors. Secondly, since the model captures shape
deformation and performs image measurements in a dis-
tributed fashion, it is more robust against occlusion than the
global approaches (such as PCA) in which image measure-
ments have to be performed in a centralized fashion, i.e.,
conditioned on all the deformable parameters. Thirdly, hav-
ing an observation layer effectively addresses the modeling
of observation noise and thus it will be more robust against
cluttered backgrounds. Fourthly, the mean field approxima-
tion provides a computationally efficient way to compute
the likelihood of image observations, to infer the hidden
states of the model, and to facilitate fast learning. Last
but not least, it facilitates the integration of the top-down
and bottom-up approaches in tracking deformable objects,
where the top-down approaches involve evaluating a large
number of hypotheses, and the bottom-up approaches needs
large efforts in grouping and detection. Given the large
number of DoFs in a deformable object such as a pedestrian,
either approach would not be satisfactory, because the num-
ber of hypotheses would be tremendous and grouping a de-
formable object is difficult. The proposed tracking method
is able to balance these two methodologies and combines
the advantages of both: the global deformation is handled
in a top-down fashion by particle filtering, while the local
deformation is coped by an bottom-up approach by directly
evaluating the likelihood of image observations.

2 Related Work
The research of deformable shapes has a long history,

and different approaches have been investigated. For all
these methods, three important issues should be addressed,
i.e., the shape representationX, the shape priorp(X) and
the conditional likelihood of image observationp(Z|X).

Different shape representations can be categorized into
either parametric or non-parametric models. Examples of
parametric representations includes Fourier descriptors, B-
splines [1, 9], the deformable template [15], etc, where
shape deformation is controlled by the shape parameters
and smoothness constraints. A typical non-parametric rep-
resentation is the point distribution model [2] where a shape
is described by an ordered and labelled set of landmark
points, and the shape deforms when the points change. Al-
though it provides great flexibility, registration of landmark
points is not a trivial task. An even radical approach is to
use a 2D mask [7, 4, 13], where the shape deforms when
multiplying by a sparse permutation matrix [7], or select-
ing different exemplars [4, 13]. In all these representations,
a deformable shape is mapped to a point in a vector space

(i.e., the shape space), although the dimensionality varies
for different approaches. The proposed approach adopts a
2D representation to ease the task of shape alignment.

Obviously, in reality, a shape can not be allowed for ar-
bitrary deformation, thus we should characterize the allow-
able shape space by the deformation prior modelp(X). An
idea is to reduce the dimensionality ofX and model the
variance of deformation by a multivariate Gaussian distri-
bution in a lower-dimensional subspace. This is the spirit of
principal component analysis (PCA), and has been widely
adopted for learning deformation priors [2, 1]. Since PCA
identifies a linear subspace and catches linear correlations,
it is powerful to capture and decorrelate global deforma-
tion, but insufficient for local deformation. Thus, it moti-
vated methods of using mixture distributions [7] or exem-
plar databases [4, 13]. Although mixture distributions can
represent arbitrarily complicated densities in theory, itbe-
comes unrealistic when the number of mixtures increase
tremendously. An inhomogeneous Gibbs model was pro-
posed to alleviate this problem for face deformation [10].
Our proposed approach stands out from the above by char-
acterizingp(X) as a Boltzmann distribution and embedding
the prior into a Markov network, where the mean field vari-
ational analysis is employed for analysis. (details in Sec-
tion 3 and 4).

Different approaches have been investigated tofit a
shape model to image observations. This can be done
through minimizing an energy function [9], or based on
the Bayesian framework where it is important to character-
ize the conditional likelihood of image observationp(Z|X).
Analytical forms can be obtained by assuming the inde-
pendence among a set of discrete points on shape con-
tours [1, 11]. To bypass the independence assumption, the
conditional likelihood can be modelled as a metric expo-
nential density obtained from the Chamfer distance based
on exemplars [13]. When separating global motion from
deformation, the likelihood conditioned on only global mo-
tion can be obtained by the mixture (integral) of all exem-
plar components in the metric mixture model [13]. The pro-
posed approach also provides tractable ways to calculate the
likelihood only conditioned on global motion, but the differ-
ences from [13] are: (a) in our modelp(Z|X) factorizes by
independent components, and (b)p(Z) is an integral over
almost infinite number ofX instead of a finite set of ex-
emplars, and our method obtains a lower bound ofp(Z)
through mean field approximation.

3 The Representation
In general, global deformation has less degrees of free-

dom than local deformation. Thus, global approaches such
as PCA are suitable for capturing global deformation by
finding a set of deformation basis. Since these approaches
are not suitable for local deformation, local methods which



have large DoFs should be employed for representing local
deformation. Here, we use a two-layer graphical model as
the representation as in Figure 1. The model consists of a

z k

x k

Figure 1:Markov network for deformable objects.

mixture of undirected and directed links. The hidden layer
is an undirected graphGx = {V,E}, where each vertex
(or node) represents the hidden scenexk to be inferred.xk

takes binary values, i.e.,xk ∈ {0, 1}, wherexk = 1 means
that sitek is on the object contour. Each hidden node is
connected to its neighborhood nodesN (k).

The prior of the scene (i.e., the deformation) is de-
scribed by the joint probability of all hidden nodes, i.e.,
X = {x1, . . . , xn}. We assumep(X) to be a Gibbs dis-
tribution, and thus can be factorized as:

p(X) =
1

Zc

∏

(i,j)∈E

ψij(xi, xj)
∏

i∈V

ψi(xi) (1)

whereψi andψij are the potential functions associated with
sitei ∈ V and the link(i, j) ∈ E, andZc is a normalization
term or the partition function.

To model the prior of local shape deformation, we work
with a special case wherexi ∈ {0, 1}, thusp(X) becomes
a Boltzmann distribution, i.e.,

p(X) =
1

Zc

∏

(i,j)∈E

eαijxixj

∏

i∈V

eβixi (2)

where{αij , βi : ∀(i, j) ∈ E, i ∈ V }, are parameters which
can be learnt from training data (see Section 5).

In addition, each hidden nodexk is associated with an
observation nodezk representing the image observation
produced byxk, which is characterized by the conditional
probability p(zk|xk). The observation of the scene is the
collection of the image observations on each scene site, i.e.,
Z = {z1, . . . , zn}. We have:

p(Z|X) =

n∏

k=1

pk(zk|xk). (3)

Thus, the model in Figure 1 is fully characterized by
{αij , βi, pi}, wherepi = pi(zi|xi), and we denote the
model byλ = {αij , βi, pi}.

This model is suitable for local deformation, because (a)
it models the constraints among neighbor sites rather than

treating them independently; (b) the Boltzmann distribution
can capture complex distributions which can not be repre-
sented by Gaussian or mixture of Gaussian; and (c) the ob-
servation model provides clues for Bayesian inference from
image data.

A core issue in detection and tracking is the calculation
of the image likelihoodp(Z|λ). However, this is not a trivial
problem though, since it involves the integral of all possible
configurations ofX, i.e.,

p(Z|λ) =

∫

X∈X

n∏

i=1

pi(zi|xi)p(X)dX. (4)

The key to solve this problem is to design an effective infer-
ence algorithm to estimate the posteriorp(X|Z, λ) and its
marginalsp(xi|Z, λ). Without causing any confusion, we
usually denotep(·|λ) by p(·) for short.

4 Mean Field Approximation
Given the high dimensionality in the graphical model

in Section 3, solvingp(Z|λ) and p(X|Z, λ) involves
computationally intensive multi-dimensional integral over
p(X,Z|λ). Although the Markovian property of the struc-
ture of p(X|λ) simplifies the problem, the exact analysis
for such a model is still prohibitive due to the loops in the
graphical model.

Thus, approximated but computationally efficient anal-
ysis methods are of special interests.Variational approxi-
mationis one of these methods. The core idea is to employ
an analytical and simple variational distributionQ(X) to
approximate the posterior probabilityp(X|Z), such that the
Kullback-Leibler (KL) divergence of these two distributions
is minimized.

To see this clearly, we follow Jaakkola & Jordan [6]
to formulate an optimization problem to solvep(Z) and
p(X|Z) simultaneously. The objective function is:

J(Q) = log p(Z)−KL(Q(X)||p(X|Z))

= H(Q) + EQ[log p(X,Z)] (5)

whereH(Q) is the entropy ofQ(X) andEQ[·] is the expec-
tation w.r.t.Q(X). It is easy to seeJ(Q) is a lower bound
of log p(Z). By maximizing the lower boundJ(Q) w.r.t.Q,
we can obtain an optimal approximation ofp(X|Z) byQ∗,
and a closestlog p(Z) by J(Q∗).

Choosing the variational distributionsQ(X) could be ar-
bitrary, but an appropriateQ(X) would make difference on
analyzing. Although substantial creativity can be required
to find the appropriate forms forQ(X) [8], we adopt a fully
factorized form for simplicity:

Q(X) =

n∏

i

Qi(xi) (6)



whereQi(xi) is an independent distribution of the hidden
nodexi. Then,H(Q) =

∑
iH(Qi).

Based on the factorization ofQ(X), it can be shown that
the best variational density is made of a set of interrelated
Gibbs distributions:

Qi(xi) =
1

Zi

eEQ[log p(X,Z)|xi], i = {1, . . . ,M} (7)

whereZi is a constant andEQ[log p(X,Z)|xi] is the con-
ditional expectation givenxi.

Eq. 7 gives a general solution. Moreover, it is easy to
show the factorization ofp(X) in Eq. 2 enables further sim-
plification, i.e.,

Qi(xi)←−
1

Z ′
i

pi(zi|xi)ψi(xi)Mi(xi), where

Mi(xi) = exp{
∑

k∈N (i)

∫

xk

Qk(xk) logψik(xi, xk)}, (8)

whereZ ′
i is a constant, andN (i) is the neighborhood of

the sitei. The iterative updating ofQi(xi) will monoton-
ically increaseJ(Q) and eventually reach an equilibrium.
These updating equations are calledmean field equations.
From Eq. 8, the variational belief of a hidden nodexi is de-
termined by three factors: the local conditional likelihood
pi(zi|xi), the local priorψi(xi), and the neighborhood prior
from the constraints of the neighborhood nodesxN (i).

Thus, we can treat the termpi(zi|xi)ψi(xi) as the local
belief of xi, and treat the termMi(xi) as the “message”
propagated through the nearby nodes ofxi. This method
is actually different from belief propagation [3], due to its
use of variational analysis and to the different contents in
the “messages”. In our method, the computation ofMi(xi)
is easier than belief propagation, due to the factorization
in the variational distribution. In addition, we can clearly
see from this equation that the computation is significantly
reduced by avoiding multi-dimensional integral, since Eq.8
involves only one dimensional integral.

For deformable shapes, consideringxi ∈ {0, 1}, we use:

Q(X) =
n∏

i

µxi

i (1− µi)
(1−xi), (9)

where{µi} are variational parameters to be optimized. Un-
der this variational distribution, the mean field equations
Eq. 8 can be simplified as:

µi =
pi(zi|xi = 1)mi

pi(zi|xi = 0) + pi(zi|xi = 1)mi

,

where mi = exp{
∑

j∈N (i)

αijµj + βi} (10)

Similar results have also been obtained by Jordan et al. [8],
Peterson and Anderson [12]. Then we have:

J(Q) =
∑

i

H(Qi) +
∑

(i,j)∈E

αijµiµj +
∑

k∈V

µkβk

+
∑

k∈V

(1− µk) log pk(zk|xk = 0)

+
∑

k∈V

µk log pk(zk|xk = 1)− logZc (11)

We admit thatJ(Q) can not be fully computed, due to
the complexity of calculatinglogZc. But the computation
of J̃(Q) = J(Q) + logZc is computationally tractable in
practice. Fortunately, it is not necessary to calculatelogZc,
because once we find an optimal mean field distribution of
Q∗, we readily have:

p(Z) ∝ e
�

J(Q∗),

which is enough for other related computing (such as detec-
tion and tracking in Section 6).

5 Learning
This section discusses the problem of learning model

parametersλ = {αij , βi, pi} from data. The training of
{αij , βi} and{pi} can be separated. The initial model is
constructed by the following way:

1. collecting a set of labelled (annotated) training exam-
ples,L = {Xk,Zk, k = 1, . . . ,K1}. For the applica-
tion of deformable shapes,xi ∈ {0, 1}, andzi is the
average edge direction over a small image patch asso-
ciated withxi in our applications. We quantizezi, and
use histogram to model its distribution. If the target is
very small,zi simply takes binary value to indicate if
it is a detected edge point or not.

2. learningpi(zi|xi) for eachxi. Due to the factorization
of p(Z|X), i.e., Eq. 3, each individualpi(zi|xi) can be
learned independently. Eachpi(zi|xi) is represented
by a histogram in our experiments.

3. learning{αij , βi} by the following steps:

3.a calculating sufficient statisticsSij = Ep[xixj ]
andSi = Ep[xi] from the supervised training
data{Xk};

3.b initialize a modelλ0
b = {α0

ij , β
0
i };

3.c collecting synthesized samples of{Xk
g} by

Gibbs sampling ofp(X|λb);

3.d calculating sufficient statisticsGij = Eλb
[xixj ]

andGi = Eλb
[xi] from the synthesized data;



3.e adjusting the parameters by:

∆αij ∝ (Gij − Sij) (12)

∆βi ∝ (Gi − Si) (13)

3.f go to step 3.c;

In our experiments, we select:

α0
ij = log

Sij

1− Sij

, and β0
i = log

Si

1− Si

as the initialization. We observed the convergence in less
than 50 iterations.

Once an initial model is trained, then we finely tune the
model by using a large set of unlabelled training examples
U = {Zk, k = 1, . . . ,K2} which are cheaply available.
The process is an EM iteration:

• E-step: ∀Zk ∈ U , infer the posteriorp(xk
i |Z

k, λt)
based on variational mean field approximation in
Eq. 8, i.e., we obtain the set of variational parameters
{{µi}

k}, wherek = 1, . . . ,K2.

• M-step: estimate the model parametersλt+1 =
{αt+1

ij , βt+1
i , pt+1

i }, given a fixed {{µi}
k} by a

stochastic gradient descent:

∆αij ∝
∂J(Q)

∂αij

≈ µiµj − EQ[xixj ] (14)

∆βi ∝
∂J(Q)

∂βi

≈ µi − EQ[xi] (15)

whereEQ[xixj ] and EQ[xi] are sufficient statistics
calculated w.r.t. the variational distributions. And the
method of estimatingpi is the same as the step 2 in the
above supervised training.

6 Pedestrian Detection and Tracking

6.1 Detection
Pedestrian detection involves two mean field models:λ0

represents the negative hypothesis, i.e., no pedestrian pres-
ence, andλ1 for the positive hypothesis, i.e., pedestrian
presence. The detection algorithm scans the shape space
Y which accommodates different locationsu, orientations
θ, and scaless, i.e.,y = {u, θ, s} ∈ Y. In our experiment,
we scan all locations and 5 scales.

For eachy, we collect the edge map of the associated
image patch and treat it as the observationZ = I(y). We
can perform likelihood ratio detection for each giveny:

log p(Z|y, λ1)− log p(Z|y, λ0) > τo ≥ 0. (16)

Since it is unrealistic to calculatep(Z|y, λ) (in Eq. 4), the
variational analysis in Section 4 nicely provides a mean
field solution as an approximation, i.e.,

log p(Z|y, λ) ≈ J(Q∗(X|y, λ)),

whereQ∗(X|y, λ) is the optimal mean field approximation
of the posteriorp(X|Z,y, λ). Thus, the detection rule for
each giveny becomes:

J̃(Q∗(X|y, λ1))− J̃(Q∗(X|y, λ0)) > τ, (17)

where J̃(Q∗(X|y, λk)), k = {0, 1} can be obtained ac-
cording to Eq. 5 once the mean field iteration stops at
Q∗(X|y, λk) according to Eq. 8. There are two factors af-
fecting the thresholdτ : (a)J(Q∗|λk) only provides an opti-
mal lower bound oflog p(Z|λk), and (b) we generally only
calculateJ(Q∗|λk) up to a constant differencelogZk

c (see
Eq. 11). Thus, we do not simply setτ = 0, but train this
threshold from supervised examples to reduce the rate of
false alarm and miss detection.

6.2 Tracking
Different from detection, only the pedestrian modelλ1

is involved in tracking, where the task is to estimate the
posterior density ofp(yt|It, λ1), whereyt = {ut, θt, st} is
the same as in the detection problem, andIt = {I1, . . . , It}.
According to Bayesian rule, we have:

p(yt|It, λ1) ∝ p(It|yt, λ1)

∫

yt−1

p(yt|yt−1)p(yt−1|It−1, λ1).

(18)
The dynamic process can be represented as a dynamic
Bayesian network in Figure 2. Clearly, the hidden factor

Z t-1
Zt+1Z t

Xt+1Xt
Xt-1

t-1
y t+1tyy

Figure 2:The graphical model representing the dynamic process.

Xt of local deformation has been integrated out in the ob-
servation process, which is powerful for tracking since it
leaves less motion parameters to be estimated. It is clear that
the visual dynamics is governed by the observation model
p(It|yt, λ1) and the motion model(yt|yt−1) such as a const
acceleration model. Since we have:

p(It|yt, λ1) = p(Z(yt)|λ1) ∝ e
�

J(Q∗(Xt|y,λ1)),

the local deformation has been absorbed in the calculation
of data likelihood which is based on the mean field infer-
ence. The tracking algorithm is easily implemented us-
ing particle filtering [1, 5], where each particle represents a
sample ofyt. Detailed results will be reported in Section 7.



7 Experiments

7.1 Training and Model Validation
We trained two models, one for the humanλ1 and the

other for the backgroundλ0. To trainλ1, the training data
of various people were collected and their contours were ex-
tracted. The we resized and aligned all the contours by com-
pensating the global motions. Using the extracted contours
and the corresponding image observations, we obtained a
set annotated of3, 000 training data. All training images are
aligned to the center of mass. Some examples are shown
in Figure 3(a). Trainingλ0 is easier thanλ1, since the
alignment step is not needed, and a set of10, 000 training
data were collected randomly from the training sequences
to trainλ0. Some of them are shown in Figure 3(b).

Figure 3:The upper row are examples of training data for human
λ1, and the bottom row for nonhumanλ0.

It is important to know if the trained Boltzmann model
really captures the distribution ofp(X). Although there
is no quantitative means to validate that, a plausible way
for a rough validation is to sample the prior Boltzmann
distribution p(X) and then perform a subjective evalua-
tion. To synthesis an image, we first draw a sample of
X = {x1, . . . , xn} by Gibbs sampling fromp(X) in Eq. 2,
then for eachxi, a sample ofzi is drawn frompi(zi|xi).
Putting togetherzi produces a synthesis image. Through
our subjective evaluations, the trained models were able to
synthesize reasonably good data. Some synthesized data
based onλ1 andλ0 are shown in Figure 4.

Figure 4: Examples of synthesized data. Left ones are sample
from λ1 and right ones fromλ0.

7.2 Pedestrian Detection
We performed extensive experiments and quantitative

evaluation of the proposed approach to pedestrian detection,
and we are especially interested in the investigation of the
capacity of the mean field model of capturing the tremen-
dous shape variations and its performance and robustness to
partial occlusion.

7.2.1 Performance Evaluation

To provide quantitative evaluation of the proposed ap-
proach, we constructed a testing database which contains
1000 images collected from various occasions. We man-
ually annotated the ground truth detection for each image.
The ROC curve is shown in figure 5, which shows that at
80% detection rate, the detector has a false positive rate of
about 1/200,000 which corresponds to about one false alarm
per frame for 320×240 images. This is comparable to the
most recent method reported in [14].
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Figure 5:ROC curve of the proposed detector.

The mean field model is capable of capturing the local
deformation caused by the view changes of the human. In
our test data, there are a large volume of images where the
pedestrians present various profiles. Some of the detection
examples are shown in Figure 6.

In addition, the model is also able to detect the target
from noisy environments. Some of the results are shown
in Figure 7. The robustness comes from the observation
models ofλ1 andλ0. We did observe the case where in a
region the edge map is pervasive and it is impossible to tell
where the person is from the edge map.

7.2.2 Evaluation on Partial Occlusion

More interestingly, the proposed algorithm works even
when the target is partially occluded. Samples of our re-
sults on detection under occlusion are shown in Figure 8.
This feature is unique, since the robustness to partial occlu-
sion is an intrinsic benefit of the proposed distributed shape



Figure 6:Pedestrian detection under various views.

Figure 7:Pedestrian detection in various backgrounds and noisy environments.

model. This is true because we did deliberately not include
the occlusion cases in training. On the other hand, cen-
tralized shape models such as PCA can not cope with this
problem since it is infeasible to include all possible occlu-
sion situations in training.

To have a quantitative study on the robustness of our
method, we created another testing database which consists
of 3 subsets, each of which contains 100 images under a cer-
tain rough percentage of occlusion (less than 20%, between
20% and 40%, and over 40%, respectively). The ROC
curves for these occlusion cases were obtained as shown
in figure 9. These ROC curves show that the performance
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Figure 9:ROC curves for the three occlusion subsets.

of the proposed method does not degrade much when the
percentage of occlusion is under 40%, since 80% detection
rate can be achieved with comparable false positive rate as
the case without occlusion. But when the occlusion is over

40%, the detection rate drops a lot. Although such quanti-
tative measures are rough, they do verify the robustness of
the proposed approach to partial occlusion.

7.3 Pedestrian Tracking
Tracking deformable objects is a challenging problem,

especially when the camera is not fixed and the target
presents large shape deformation, as in the demonstration
of this section. Since the mean field approximation also
gives the data likelihood (given a global motion) by inte-
grating our all possible local deformation, this is powerful
and ideal for tracking deformable targets, as described in
Section 6.2. We did extensive experiments and verified this
idea. In our experiments, a particle filter was applied to
track the targets, i.e., the global motiony = {u, θ, s} is
estimated. 400 particles were used. Some sample frames
are shown below in Figure 10. In this sequence, camera is
not fixed, and the pedestrian walks and rotates, and scale
changes are also included.

8 Discussion and Conclusions
Characterizing priors for shape deformation is critical for

analyzing deformable objects. Global approaches such as
PCA prove to be effective to capture global deformation and
reveal global correlations. However, global approaches are
not suitable for representing local deformation, which is im-
portant for many real world applications, such as pedestrian
detection and tracking. In this paper, we described a local
approach to model local deformation based on a Markov
network, where a Boltzmann distribution was employed to
capture the complicated prior for local deformation, and



Figure 8:Detection under occlusion.

Figure 10:Pedestrian tracking based on the mean field Boltzmann model.

a variational mean field approximation was presented for
computationally efficient inference, likelihood calculation
and model training. Based on this model, the detection and
tracking problems were also investigated. The success of
applying the proposed method to pedestrian detection and
tracking showed its effectiveness and applicability.

Aligning training data in the proposed approach is eas-
ier than the approach labelling landmark data in [2], but it
leaves a problem: how sensitive is the trained model to the
alignment errors? In our future work, we will investigate
the capacity of the Markov network with Boltzmann prior,
i.e., to what extent the model can capture deformations. In
addition, better image observation models will be studied to
reduce the rate of false alarm.
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