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Abstract

The solutions to many vision problems involve integrat-
ing measurements from multiple sources. Most existing
methods rely on a hidden assumption, i.e., these measure-
ments are consistent. In reality, unfortunately, this may not
hold. The fact that naively fusing inconsistent measure-
ments amounts to failing these methods indicates that this is
not a trivial problem. This paper presents a novel approach
to handling it. A new theorem is proven that gives two alge-
braic criteria to examine the consistency and inconsistency.
In addition, a more general criterion is presented. Based
on the theoretical analysis, a new information integration
method is proposed and leads to encouraging results when
applied to the task of visual tracking.

1 Introduction

In many vision problems, estimations are made based
on integrating measurements from multiple sources to re-
duce the uncertainty. A measurement can generally be char-
acterized as a mean vector and an uncertainty covariance
(multi-modal measurement can be treated as multiple mea-
surements). To list a few examples, the different sources can
be different visual cues such as color and contour [14, 11],
different components of one object [13, 10, 3, 4], neigh-
borhood pixels in motion estimation [1], and dynamics and
image observations in visual tracking [5].

Most existing integration methods assume the consis-
tency among various sources [6, 7]. If the different sources
are independent and consistent, the optimal integration
can be obtained from the best linear unbiased estimator
(BLUE) [7]. If they are correlated but consistent, the co-
variance intersection (CI) [6] obtains a consistent and con-
servative estimate. However, the consistency assumption
may not hold in practice. In principle, if two measurements
can be regarded as being generated from the same model
(e.g., a Gaussian), then they are consistent. Otherwise they
are inconsistent. The measurements from different sources

can be very confident (i.e., small covariance) but are quite
different. They do not agree with one another and it makes
less sense to fuse them together forcefully. Measurement
inconsistency fails both the BLUE and CI.

Indeed, this problem is not uncommon in computer vi-
sion applications. For example, a wrong dynamic predic-
tion in Bayesian visual tracking is very likely to be in-
consistent with the detected image observations. This is
especially true when the target presents sudden dynamic
changes. Such kind of inconsistency shall fail Kalman filter-
ing that is based on BLUE. In part-based tracking, the mea-
surements of different parts may be conflicting when some
parts are distracted by camouflages. The aperture problem
in motion estimation is another example [1].

Unfortunately, the handling of inconsistency is not well
addressed in the literature. Therefore, it is desirable to carry
out some basic study of inconsistency in order to identify
the solution to robust measurement integration. We are par-
ticularly interested in answering two questions: (a) how can
we detect inconsistency from the measurements? And (b)
how can we handle it in integration? We need to develop
principled criteria to characterize inconsistency and develop
efficient method to detect and resolve it.

This paper describes a noveldistributedintegration ap-
proach based on the theory of Markov networks. Although
Markov networks were widely applied to solve visual infer-
ence problems [2, 10, 13], the study of information fusion of
the inference over Markov networks is largely remained un-
explored. We proved a new theorem that provides two alge-
braic criteria to examine theconsistencyandinconsistency
for pair-wise measurements. In addition a general criterion
is proposed to detect inconsistency in a general setting.

Since the presence of inconsistency implies the presence
of false or outlier measurements, our method can automat-
ically identify the inconsistent measurements and eliminate
the false ones for further integration. Based on the pro-
posed integration approach, we have developed a robust
part-based tracking algorithm in which measurements of
various parts are robustly integrated for tracking, even when
there exists some inconsistent ones.



There are some previous works that were aware of thein-
consistencyproblem such as the covariance union (CU) [12]
and the variable bandwidth density fusion (VBDF) [1].
They either increase the covariance of the integrated es-
timate to achieve covariance consistency with each of the
integrated measurements [12], or seek for the most salient
mode across all scales of the measurements kernel den-
sity [1]. None of them provides a principled criterion to
evaluate measurement inconsistency, i.e., they are not able
to determine when two measurements can be regarded as
being obtained from one model.

2 Formulation of multi-source integration

Markov network provides a principled methodology for
the distributed integration of multiple sources. The joint
posterior defined on a Markov network is

p(X|Z) =
1

C

∏

{i,j}∈E

ψ(xi,xj)
∏

i∈V

φ(xi, zi), (1)

whereC is a normalization constant,X = {xi : i =
1 . . .N}, Z = {zi : i = 1 . . .N} andN is the number
of sources modeled in the Markov network.

Eachxi denotes the integrated estimate at nodei, andzi

is the local measurement of sourcei. SetV indicates the set
of {xi, zi} pairs and each pair has a compatibility function
φ(xi, zi). Let xi, zi be inRn, since the measurement is a
{zi,Σi} pair,φ(xi, zi) is in nature a Gaussian, i.e.,

φ(xi, zi) =
1

√

(2π)n|Σi|
e(− 1

2
(zi−xi)

T
Σ

−1

i
(zi−xi)). (2)

SetE defines the neighborhood relationships in the Markov
network. Ifxj is the neighbor ofxi, thenxj can provide a
predictive estimatefij(xj) for xi. ψ(xi,xj) is the compati-
bility function of the neighboringxi andxj , i.e., a Gaussian

ψ(xi,xj) =
exp

{

− (xi−fij(xj))
T (xi−fij(xj))

2σ2

ij

}

√

(2π)nσn
ij

(3)

.
=

exp
{

− (xi−Aijxj−µij)
T (xi−Aijxj−µij)

2σ2

ij

}

√

(2π)nσn
ij

, (4)

which indicates ifxi andfij(xj) can be regarded as being
drawn from one common model andσ2

ij is the scalar vari-
ance. Whenfij is nonlinear, we linearize it by Taylor ex-

pansion, i.e.,µij = fij(0) andAij =
∂fij(xj)

∂xj
|xj=0 is the

n × n Jacobian. So we only consider the setting of Eq. 4.
Theσ2

ij indeed models the uncertainties between the local
estimatexi and the neighborhood estimateAijxj + µij .

The integration of all the measurements is to perform
the Bayesian inference on Eq. 1. Nevertheless, when some

measurements are inconsistent with the others, it indicates
there are false ones. Blindly integrating them will jeopar-
dize the whole integration process. LetO = {Oi, i =
1 . . .N} be the binary set to indicate ifzi is false, i.e.,
Oi = 1 means it is and vice versa.O dividesZ into two
sets, i.e., the false setZO and the normal setZŌ = Z \ZO .
Reliable integration requires eliminating the false ones,i.e.,
we should perform the Bayesian inference on

p(X|ZŌ) =
1

C′

∏

{i,j}∈E

ψ(xi,xj)
∏

zi∈ZŌ

φ(xi, zi), (5)

whereC′ is again for normalization. Before we can achieve
that, we need a rigorously criteria to judgeinconsistency.
For integration, this concept is always qualitative [12], we
proceed to provide principled quantitative criteria.

3 Measurements inconsistency

Intuitively, assumeAij and µij be known, given all
the {zi,Σi}, the estimate ofσ2

ij is a natural indicator of
whetherxi and Aijxj + µij is consensus, i.e., ifσ2

ij is
very small, then they are consensus sinceψ(xi,xj) is ap-
proaching to a delta function, and vice versa. Denote
Θ = {σ2

ij : {i, j} ∈ E}, Eq. 1 is indeedp(X|Θ,Z). The
MAP estimate ofxi and the ML estimate ofΘ can be ob-
tained by the following Bayesian EM algorithm [8], i.e.,

xi = (Σ−1
i +

∑

j∈N (i)

1

σ2
ij

I)−1

× (Σ−1
i zi +

∑

j∈N (i)

1

σ2
ij

(Aijxj + µij)) (6)

σ2
ij =

1

n
(xi − Aijxj − µij)

T (xi − Aijxj − µij) (7)

Fixing Θ, the E-Step in Eq. 6 obtains the MAP estimate
of xi by fixed-point iteration. It is actually performing
the BLUE [7] fusion of the local estimate and neighbor-
hood estimate. FixingX, the M-Step in Eq. 7 maximizes
p(X|Θ,Z) w.r.t. Θ. Combining the two steps together
also constitutes a fixed-point iteration forσ2

ij . In practice,
we add a small regularization constantǫ (e.g.,0.01) on the
right-side of Eq. 7 to avoid the numerical problem of zero.

Another intuition is that the consensus between the es-
timate ofxi andAijxj + µij is equivalent to the consis-
tency of the measurements{zi,Σi} and{zj ,Σj}. There-
fore, whenzi andzj are consistent, the estimate ofxi and
Aijxj + µij will be consensus, i.e., they will be almost
the same. From Eq. 7, the estimate ofσ2

ij will always ap-
proach to zero, i.e., zero is the only fixed-point. On the
contrary, if they are inconsistent, then the estimate ofxi

andAijxj +µij may deviate from each other, i.e., the con-
vergent results ofσ2

ij may be non-zero. This indicates that



there exists non-zero fixed-point forσ2
ij . These motivate us

for the following definition for inconsistency.

Definition 3.1 If zero is the only fixed-point forσ2
ij in the

Bayesian EM,{zi,Σi} and{zj ,Σj} areconsistent; if there
exists non-zero fixed-points forσ2

ij , they areinconsistent.

This definition motivates us to detect the inconsistency by
checking the convergent value ofσ2

ij . We thus have the
following criterion to test consistency.

Criterion 3.2 With a proper initialization, if the convergent
results ofσ2

ij in the Bayesian EM approaches to zero, then
{zi,Σi} and {zj ,Σj} are consistent. If it converges to a
non-zero value, then they are inconsistent.

In practice, aproper initialization should guaranteeσ2
ij to

converge to a non-zero fixed-point if there exists one, such a
condition is necessary because zero is always a trivial fixed-
point (see App. A). For better mathematical understanding
of Definition 3.1, we proved the following Theorem 3.3 by
studying the convergence of the Bayesian EM for pair-wise
measurements. In Corollary 3.4, we also present a guidance
to choose theproper initialization for Criterion 3.2 .

Theorem 3.3 For a Markov network which models the in-
tegration of two sources, denotêz2 = A12z2 + µ12, Σ̂2 =
A12Σ2A

T
12, P = Σ1 + Σ̂2 which isreal positive definite,

Cp the2-norm conditional number andσ2
Pmax the largest

eigenvalue ofP, andσ̂2
12 as the convergent results ofσ2

12 in
the Bayesian EM. We have

(a) There exists a zero and at least one non-zeroσ̂2
12 if

1

n
(z1 − ẑ2)

T P−1(z1 − ẑ2) ≥ 2 +
√

Cp +
1

√

Cp

. (8)

(b) σ̂2
12 can only be zero if

1

n
(z1 − ẑ2)

TP−1(z1 − ẑ2) < 4. (9)

(c) When there exists non-zerôσ2
12, at least one of them is

such that0 < σ̂2
12 ≤ σ2

Pmax

The proof is presented in App. A. Highlighted by Theo-
rem 3.3(c), we have the following corollary.

Corollary 3.4 Under the same condition of Theorem 3.3,
initializing σ2

12 to be the largest eigen-valueσ2
Pmax or the

traceT (P) of P in the Bayesian EM can guarantee a non-
zero convergence forσ2

12 if there exists one.

The proof is presented in App. B. Theorem 3.3 and Corol-
lary 3.4 provide a sound mathematical justification of Def-
inition 3.1 about inconsistency and consistency. We denote
the left side of Eq. 8 and Eq. 9 asd(z1, z2), which is in fact
a Mahalanobis distance. In principle, whend(z1, z2) is too

large, statistically{z1,Σ1} and{z2,Σ2} are significantly
deviated from each other and thus they are inconsistent. In
this case there exists at least one non-zero convergence of
σ2

12. On the other hand, ifd(z1, z2) is small, statistically
{z1,Σ1} and {z2,Σ2} are not deviated from each other
and thus they are consistent. Then there will be only zero
convergence forσ2

12.
Theorem 3.3(a) and (b) present two algebraic criteria

(sufficient conditions) to judge if{z1,Σ1} and{z2,Σ2} are
inconsistent or consistent, i.e., if Eq. 8 holds, then they are
inconsistent, and they are consistent if Eq. 9 holds. The fol-
lowing remarks would make the understanding more clear:

• SinceBc = 2 +
√

Cp + 1√
Cp

≥ 4, if 4 ≤ d(z1, z2) <

Bc, we can not directly tell if there exists a non-zero
σ̂2

12. In other words, we can not immediately decide
the consistency unless we run the Bayesian EM.

• In one dimensional case, i.e.,n = 1, we haveBc = 4.
Then the inconsistency/consistency ofz1 andz2 can
be determined by testing ifd(z1, z2) R 4.

• Forn ≥ 2, if Cp is good to be near1, thenBc would
be very close to4. The interval[4, Bc) would be very
tight. Then eitherBc or 4 can be approximately used
for detecting inconsistency similar to the casen = 1.

• For n ≥ 2, if Cp is not good to be very large, then
Bc ≫ 4. We must run the Bayesian EM with a proper
initialization to judge the consistency whend(z1, z2)
falls in [4, Bc).

• In a general setting, from Corollary 3.4, the largest
eigenvalue or the trace ofΣi + Σj +

∑

k∈N (i,j) Σk

is a proper initialization, whereN (i, j) is the neigh-
borhood ofi andj. The trace is preferable since it can
be more efficiently obtained.

4 Detection of inconsistency and falseness

Based on Criterion 3.2, letLij be the binary variable
to indicate whether{zi,Σi} and{zj ,Σj} are inconsistent,
i.e.,Lij = 1 represents that they are and vice versa. Then
the criterion to identify the inconsistency is

Lij =

{

0 if σ2
ij ≤ ǫ

1 if σ2
ij > ǫ

, (10)

whereǫ is the same regularization constant added in Eq. 7.
After the detection of inconsistency, the majority rule is

adopted to determine if{zi,Σi} is false, i.e., if{zi,Σi}
is inconsistent with the majority of its neighbors, then it is
false, and vice versa. Without any other knowledge, the
majority rule may be the best one to discriminate false mea-
surements. The basic assumptions are that there are at least



three sources and the majority of the sources will obtain
correct and thus consistent measurements. SinceOi is the
binary variable to indicate ifzi is false, suppose parti has
Mi neighbors, then

Oi =

{

0 if
∑

j∈N (i) Lij ≤ ⌊Mi

2 ⌋
1 if

∑

j∈N (i) Lij > ⌊Mi

2 ⌋ (11)

where⌊Mi

2 ⌋ is the largest integer that is not larger thanMi

2 .
However, when the degrees (i.e., the number of neigh-

boring nodes) of the nodes in the Markov network are
highly unbalanced, the majority rule may fail even if there
are less than50% false measurements. One such example
would be that the connections ofN > 6 nodes form a circle
and meanwhile the nodesx1, x2 andx3 are connected with
all the other nodes. Then if the measurementsz1, z2 andz3

are false and thus inconsistent with the others, all the other
measurements will be regarded as “false” from Eq. 11.

Such a problem may not exist when the degrees of the
nodes are well balanced. This reveals to us that in order to
well exploit Eq. 11, we must construct a balanced Markov
network to integrate the multiple sources, i.e., the degrees
of the nodes must be close to one another.

5 Robust integration for visual tracking

Given all{zi,Σi}s, we propose a two-stage robust inte-
gration approach:

1. False discrimination: Perform the Bayesian
EM on the original Markov networkMo defined by
Eq. 1 and then identify the false measurements setZO

based on Eq. 11.

2. Robust Integration: Remove allzi ∈ ZO,
from Mo. This forms the reduced Markov network
Mr defined by Eq. 5. Perform the Bayesian EM on
Mr to obtain the estimates for allxi with ZO being
removed from Eq. 6 and Eq. 7.

It is a completelydistributedrobust integration approach,
where all the operations are performed individually at each
node of the Markov network. After the false measurement
at one source nodei has been eliminated, as we can observe
from Eq. 6 (eliminatingzi andΣi from it), the estimate of
xi will rely purely on the neighborhood estimates.

It can be immediately applied to part-based visual track-
ing, whereψ(xi,xj) captures the structured constraints be-
tween two neighboring parts. It is also general to incor-
porate different tracking algorithms to obtain the part mea-
surements{zi,Σi}, such as particle filtering [5] and flow
based Lucas-Kanade tracker (LK) [9], etc..

There are three situations: (1) The measurements of all
the parts are normal and consistent. (2) The measurements
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Figure 1. The change of σ2
ij in the Bayesian

EM. First row: measurement z3 is false. Sec-
ond row: measurement z3 is missing. Third
row: all the measurements are consistent.

of some parts aremissing, i.e., theφ(xi, zi) is a Gaussian
with large co-variance. This might happen when the visual
pattern of the target undergoes large variations but the visual
model does not capture it well. (3) The measurements of
some parts are inconsistent with those of the other. This im-
plies that some measurements are false and it may be caused
by either occlusion, clutter or camouflage in visual tracking.
Our robust integration approach handles all these three sit-
uations in a unified way.

6 Experiments

6.1 Illustrative numerical example

We adopt a2D numerical example to demonstrate how
σ2

ij changes during the Bayesian EM. The Markov net-
work models three sources, which are neighbors of one an-
other. Without loss of generality, we set allAij = I and
µij = 0. In all the simulations, we fixz1 = [2.1, 2.2]T ,
z2 = [2.2, 2.1]T andΣ1 = Σ2 = [2.0, 1.0; 1.0, 2.0]. We
then set{z3,Σ3} to be different values to simulate the three
situations. Highlighted by Corollary 3.4, we always initial-
ize allσ2

ij to be the trace ofΣ1 + Σ2 + Σ3.
We firstly simulate the case of false measurement, e.g.,

z3 = [8.0, 9.0]T andΣ3 = [2.0, 1.0; 1.0, 2.0]. It is obvi-
ous that{z3,Σ3} is false. The changes ofσ2

12, σ2
13 and

σ2
23 are presented in the first row of Fig. 1. As we can ob-

serve,σ2
12 converges to0.01, and bothσ2

13 andσ2
23 con-

verges to18.25. Using Eq. 11, we easily identifyz3 as



(a). #16 (b). #66 (c). #88 (d). #90 (e). #102 (f). #184

Figure 2. Rresults with flow measurement: the red, green, and yellow color denote false, normal and
missing measurements, respectively.

a false measurement and it will be eliminated in the ro-
bust inference step. The MAP estimates before false elim-
ination arex1 = [2.83, 2.87]T , x2 = [2.83, 2.87]T and
x3 = [6.65, 7.55]T , which are erroneous and can be rec-
tified after we eliminatedz3.

We then simulate the case of missing measurement, e.g.,
z3 = [8.0, 9.0]T with Σ3 = [10.0, 1.0; 1.0, 10.0]. Although
z3 is deviated fromz1 andz2, its covarianceΣ3 is pretty
large so it is still consistent with the others. The changes
of σ2

ij are presented in the second row of Fig. 1. We can
observe that all of them converge to0.01. In fact, the MAP
estimates are[2.89, 2.94]T for all xi. We can seez3 has
been counted far less than the other two measurements and
the bias has largely been rectified in the estimates.

Last we simulate the easiest case where all the measure-
ments are reliable and consistent, e.g.,z3 = [1.9, 1.8]T with
Σ3 = [2.0, 1.0; 1.0, 2.0]. The change ofσ2

ij is presented in
the third row of Fig. 1. Again, they all converge to0.01 as
expected. The final MAP estimates are[2.07, 2.03]T for all
xi. We have extensively run the simulations with different
settings. The results are coherent with what are presented.

6.2 Robust part based tracking

6.2.1 Part based tracking with LK tracker

(a). LK #90 (b). Holistic PF#108

Figure 3. Typical tracking failure (a). LK track-
ing frame #90. (b). Particle filtering with
holistic appearance model frame #108

We first present the results using LK tracker [9] to ob-
tain the part measurements. The test video clip is from the
comedy cartoon “Tom and Jerry”. The target is the poor cat
Tom’s face. Those “good features” [9] in Tom’s face region

are detected to be the node of the Markov network. The face
region is manually cropped as a rectangle in the first frame.

Each node is associated with a7 × 7 image patch (the
appearance model) centering at the feature point, and it is
connected with the three nearest nodes. Thexi is the2D
position of theith good feature. At the current frame, we
setAij = I2 and setµij to be the relative position of part
i andj in the previous frame. Eachzi is obtained by the
flow based LK tracker. TheΣi is obtained by evaluating
the response distribution using SSD similar to that in [15].

We show some sample results in Fig. 2 (detailed results
in “330.wmv”). Our algorithm successfully identifies the
false, missing and normal measurements, as shown in red,
yellow and green, respectively. The video has187 frames
and our algorithm obtains robust results. With50 parts, it
runs at10 frames/second without code optimization.

The pure LK tracker and the particle filtering (PF) with a
holistic appearance model are easy to fail in this video clip.
We show the typical failure cases in Fig. 3. The failures
are due to the dramatic expression change (Fig. 3(a)), the
sudden view changes and abrupt motion of Tom (Fig. 3(b)).
The number of particles for holistic PF is 200 and all algo-
rithms are initialized with the same rectangle.

6.2.2 Part based tracking with particle filtering

In this section, we present the tracking results using par-
ticle filtering [5] to obtain the part measurement. Thexi

is four dimensional (two for translations and two for scal-
ings). The target parts are selected manually and a fully
connected Markov network is adopted. TheAij andµij are
estimated from some manually annotated images by least
square fitting. There is a residue errorσ2

ij0 from the least
square fitting. It was used as theσ2

ij in the robust integra-
tion step, i.e., after removing the false measurements, we fix
σ2

ij = σ2
ij0 and perform the Bayesian inference using Eq. 6.

Note each component has a template image patch to build
the appearance based likelihood modelφ(xi, zi). The mean
estimates and the covariances of the posterior particle sets
are adopted as the part measurements{zi,Σi}s.

We present sample results on different video sequences
in Fig. 4 and Fig. 5. These test videos are typical, where



(a). #8 (b). #86 (c). #128 (d). #303 (e). #710 (f). #808

(a). #116 (b). #128 (c). #138 (d). #144 (e). #148 (f). #154

Figure 4. Comparison of robust integration by the proposed a pproach and blind integration without
inconsistency detection and false elimination – First row : Proposed integrating approach (green-
normal, red-false, yellow-missing). Second row: Blind integrating.

(a). #8 (b). #54 (c). #88 (d). #249 (e). #256 (f). #290

(a). #280 (b). #306 (c). #310 (d). #316 (e). #318 (f). #399

Figure 5. Results with PF measurement: Results in the first ro w are enlarged for better visual quality
(green-normal, red-false, yellow-missing).

the targets present large appearance variations due to the
significant view, scale, lighting changes and the presence
of occlusions. Fig. 4 shows the results of tracking the face
of a kid. The first row of Fig. 4 shows the results of the
proposed approach, where inconsistent measurements are
detected and those false ones are eliminated. For compar-
ison, the second row of Fig. 4 shows the results of blind
integration without inconsistency detection and false elimi-
nation. Note how the tracking results have been distracted
due to the integration of those false measurements during
occlusion. The video has820 frames.

In Fig. 5, we present the results on two car video se-
quences, which have348 and399 frames, respectively. De-
tailed video results are presented in “330.wmv”. We also
tested the accuracy of the results shown in the first row of
Fig. 5 on the two translation parameters.300 frames are
labeled and the centroid points of the labeled rectangle is
adopted as the ground truth. For the tracking results, the
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Figure 6. Root square error of the results on
the car sequences in the first row of Fig. 5.

centroid point of all the part rectangles is used as the overall
translation parameters. We then calculate the root square er-
ror at each frame, as shown in Fig. 6. The root mean square
error is2.36 pixels with stand deviation0.78 on320 × 240
images. This shows the accuracy of the proposed approach.



(a). #208 (b). #317 (c). #430 (d). #466 (e). #588 (f). #673

(a). #280 (b). #306 (c). #310 (d). #316 (e). #318 (f). #322

Figure 7. Tracking a group of persons: First row : Our integrating approach (green-normal, red-false,
yellow-missing). Second row: Blind integration. The results are enlarged for better vis ual quality.

6.2.3 Tracking a group of objects

A direct generalization of part based tracking is to track sev-
eral objects moving in a group. We tested the robust inte-
gration on part of a video sequence1 where three persons
walking in a corridor of a shopping mall. Again, a fully
connected Markov network is adopted and the measurement
of each person is obtained by particle filter. Some sample
results are presented in the first row of Fig. 7. In Fig. 7(b)
(first row), frame#317, the left person has been occluded
by another person and the measurement is false. Our algo-
rithm clearly identified and corrected it. For comparison,
we also present the results by blind integration in the sec-
ond row of Fig. 7. Note how it fails due to occlusion. The
video sequence of the three persons has 697 frames. More
video results can be found in “330.wmv”.

7 Conclusions and future work

We proposed a novel distributed framework for detecting
and integrating of inconsistent measurements. The model-
ing is based on Markov networks. The Bayesian EM infer-
ence reveals the iterative integration of the measurements,
from which principled criteria were developed to detect in-
consistency. We regard measurements which are inconsis-
tent with the majority of their neighbors as false. They
will be eliminated and the integration is performed again,
i.e., the estimates in those nodes with false measurements
will only rely on the measurements from its neighbors. We
applied the proposed robust integration framework for part
based visual tracking and promising results were obtained.

Future work may include the automatic part selection,
and better means to handle the integration in unbalanced

1From the EC Funded CAVIAR project/IST 2001 37540, found at
URL: http://homepages.inf.ed.ac.uk/rbf/CAVIAR/

Markov networks. We are also interested in exploiting the
integration framework to other vision applications.
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A Proof of Theorem 3.3

Proof Fixing σ2
12, Eq. 6 guarantees to iteratively obtain the

exact MAP estimate on the joint posterior Gaussian. We de-
notex̂2 = A12x2 +µ12 andS = P+σ2

12I. The convergent
results in the E-Step in Eq. 6 is the same as,

[

x1

x̂2

]

=

[

(σ2
12I + Σ̂2)S

−1z1 + Σ1S
−1ẑ2

Σ̂2S
−1z1 + (σ2

12I + Σ1)S
−1ẑ2

]

. (12)

Embedding it to the M-Step in Eq. 7, we have

σ2
12 =

1

n
σ2

12σ
2
12(z1 − ẑ2)

TS−1S−1(z1 − ẑ2). (13)

Since zero is a solution ofσ2
12 for Eq. 13, we only need to

analyze the existence of non-zero solutions ofσ2
12 for

1

n
σ2

12(z1 − ẑ2)
T S−1S−1(z1 − ẑ2) − 1 = 0. (14)

SinceP is real positive definite, there exists an orthonor-
mal matrix Q such thatP = QDpQ

T where Dp =

diag[σ2
1 , . . . , σ

2
n] andσ2

1 ≥ . . . ≥ σ2
n > 0. LetCp =

σ2

1

σ2
n

.

We then haveS = QDsQ
T and S−1 = QTD−1

s Q,
whereDs = diag[σ2

1 + σ2
12, . . . , σ

2
n + σ2

12] andD−1
s =

diag[ 1
σ2

1
+σ2

12

, . . . , 1
σ2

n+σ2

12

]. Denotez̃ = Q(z1 − ẑ2) =

[z̃1, . . . , z̃n]T , we have

1

n
σ2

12(z1− ẑ2)
T S−2(z1− ẑ2) =

1

n

n
∑

i=1

σ2
12z̃

2
i

(σ2
i + σ2

12)
2

(15)



1

n
(z1 − ẑ2)

TP−1(z1 − ẑ2) =
1

n

n
∑

i=1

z̃2
i

σ2
i

. (16)

From Eq 15, we only need to analyze the solution ofσ2
12 for

F (σ2
12) =

1

n

n
∑

i=1

z̃2
i

σ2
i

· 1

2 +
σ2

i

σ2

12

+
σ2

12

σ2

i

− 1 = 0. (17)

We proceed to prove the three cases in Theorem 3.3.

(a). Eq. 8 meansd = 1
n

∑n
i=1

z̃2

i

σ2

i

> 2 +
√

σ2

1

σ2
n

+
√

σ2
n

σ2

1

≥
4. When σ2

12 = k1 = (d − 2)σ2
1 , for any i, we

have 1

2+
σ2

i

σ2
12

+
σ2
12

σ2

i

< 1
2+0+d−2 = 1

d
. ThusF (k1) <

1
n

∑n
i=1

z̃2

i

σ2

i

· 1
d
−1 = 0. Whenσ2

12 = k2 =
√

σ2
1σ

2
n, for

any i, 1

2+
σ2

i

σ2
12

+
σ2
12

σ2
i

≥ 1

2+
σ2

n
k2

+
k2

σ2
1

= 1

2+

r
σ2
1

σ2
n

+

r
σ2

n

σ2
1

≥

1
d
, thusF (k2) ≥ 1

n

∑n
i=1

z̃2

i

σ2

i

· 1
d
− 1 = 0. Since

0 < k2 < k1 andF (·) is continuous, there exists a
k3 wherek2 ≤ k3 < k1 andF (k3) = 0. This proves
Theorem 3.3(a).

(b). Eq. 9 meansd = 1
n

∑n
i=1

z̃2

i

σ2

i

< 4, thenF (σ2
12) ≤

1
n

∑n
i=1

z̃2

i

σ2

i

· 1
4 − 1 = d

4 − 1 < 0 for all σ2
12 > 0.

Thus Eq. 17 has no non-zero solution. Theorem 3.3(b)
is proven.

(c). Let F (σ2
M ) = maxF (σ2

12), we show that it must
be such thatσ2

n ≤ σ2
M ≤ σ2

1 . DefineFi(σ
2
12) =

1
n

z̃2

i

σ2

i

1

2+
σ2

i

σ2
12

+
σ2
12

σ2

i

thusF (σ2
12) =

∑

i Fi(σ
2
12)−1. Each

Fi(σ
2
12) is monotonically increasing for0 < σ2

12 ≤ σ2
i

and monotonically decreasing forσ2
12 ≥ σ2

i . There-
foreF (σ2

12) must be monotonically increasing for0 <
σ2

12 ≤ σ2
n and monotonically decreasing forσ2

12 ≥ σ2
1 .

This tells us that the global maximum ofF (σ2
12) can

only be taken inσ2
n ≤ σ2

12 ≤ σ2
1 , thusσ2

n ≤ σ2
M ≤ σ2

1 .

The existence of a non-zero convergent value ofσ2
12

implies a non-zero solution for Eq. 17. We have
F (σ2

M ) ≥ 0 otherwiseF (σ2
12) < 0 for all σ2

12 and
there is no solution for Eq. 17. SinceF (0) → −1 and
F (σ2

12) is continuous, there must exist ak4 such that
0 < k4 ≤ σ2

M ≤ σ2
1 andF (k4) = 0. This immediately

proves Theorem 3.3(c).

B Proof of Corollary 3.4

Proof The Bayesian EM constitutes a fixed-point iteration
of σ2

12 in Eq. 13. From Theorem 3.3(c), when non-zero
fixed-points exist, at least one of them,σ̂2

12, is such that0 <
σ̂2

12 ≤ σ2
Pmax < T (P). Then, if the fixed-point iteration

is initialized atσ2
pmax or T (P), it can never surpasŝσ2

12 to
converge to zero since they are scalars. This indicates that
σ2

pmax andT (p) are proper initialization forσ2
12.
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