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Abstract can be very confident (i.e., small covariance) but are quite
different. They do not agree with one another and it makes
The solutions to many vision problems involve integrat- less sense to fuse them together forcefully. Measurement
ing measurements from multiple sources. Most existinginconsistency fails both the BLUE and CI.
methods rely on a hidden assumption, i.e., these measure- Indeed, this problem is not uncommon in computer vi-
ments are consistent. In reality, unfortunately, this may n  sion applications. For example, a wrong dynamic predic-
hold. The fact that naively fusing inconsistent measure- tion in Bayesian visual tracking is very likely to be in-
ments amounts to failing these methods indicates thatshis i consistent with the detected image observations. This is
not a trivial problem. This paper presents a novel approach especially true when the target presents sudden dynamic
to handling it. A new theorem is proven that gives two alge- changes. Such kind of inconsistency shall fail Kalman filter
braic criteria to examine the consistency and inconsisfenc ing that is based on BLUE. In part-based tracking, the mea-
In addition, a more general criterion is presented. Based surements of different parts may be conflicting when some
on the theoretical analysis, a new information integration parts are distracted by camouflages. The aperture problem
method is proposed and leads to encouraging results whenin motion estimation is another example [1].
applied to the task of visual tracking. Unfortunately, the handling of inconsistency is not well
addressed in the literature. Therefore, it is desirablato/c
out some basic study of inconsistency in order to identify
1 Introduction the solution to robust measurement integration. We are par-
ticularly interested in answering two questions: (a) how ca
In many vision problems, estimations are made basedWe detect inconsistency from the measurements? And (b)

on integrating measurements from multiple sources to re-how can we handle it in integration? We need to develop
duce the uncertainty. A measurement can generally be charPrincipled criteria to characterize inconsistency ancettgy
acterized as a mean vector and an uncertainty covarianc&fficient method to detect and resolve it.
(multi-modal measurement can be treated as multiple mea- This paper describes a nowdiktributedintegration ap-
surements). To list a few examples, the different sources ca proach based on the theory of Markov networks. Although
be different visual cues such as color and contour [14, 11], Markov networks were widely applied to solve visual infer-
different components of one object [13, 10, 3, 4], neigh- ence problems [2, 10, 13], the study of information fusion of
borhood pixels in motion estimation [1], and dynamics and the inference over Markov networks is largely remained un-
image observations in visual tracking [5]. explored. We proved a new theorem that provides two alge-
Most existing integration methods assume the consis-braic criteria to examine theonsistencyndinconsistency
tency among various sources [6, 7]. If the different sourcesfor pair-wise measurements. In addition a general criterio
are independent and consistent, the optimal integrationis proposed to detect inconsistency in a general setting.
can be obtained from the best linear unbiased estimator Since the presence of inconsistency implies the presence
(BLUE) [7]. If they are correlated but consistent, the co- of false or outlier measurements, our method can automat-
variance intersection (CI) [6] obtains a consistent and con ically identify the inconsistent measurements and elingina
servative estimate. However, the consistency assumptiorthe false ones for further integration. Based on the pro-
may not hold in practice. In principle, if two measurements posed integration approach, we have developed a robust
can be regarded as being generated from the same modegdart-based tracking algorithm in which measurements of
(e.g., a Gaussian), then they are consistent. Otherwige thevarious parts are robustly integrated for tracking, eveamh
are inconsistent. The measurements from different sourceghere exists some inconsistent ones.



There are some previous works that were aware afthe  measurements are inconsistent with the others, it indicate
consistencproblem such as the covariance union (CU) [12] there are false ones. Blindly integrating them will jeopar-
and the variable bandwidth density fusion (VBDF) [1]. dize the whole integration process. L6t = {O;,i =
They either increase the covariance of the integrated es-1... N} be the binary set to indicate ¥; is false, i.e.,
timate to achieve covariance consistency with each of theOQ; = 1 means it is and vice versa dividesZ into two
integrated measurements [12], or seek for the most saliensets, i.e., the false s& and the normalsés = Z \ Zo.
mode across all scales of the measurements kernel denReliable integration requires eliminating the false ones,
sity [1]. None of them provides a principled criterion to we should perform the Bayesian inference on
evaluate measurement inconsistency, i.e., they are net abl
to determine when two measurements can be regarded as p(X|Zs) = H »(xi,%;) H é(xi,2;), (5)
being obtained from one model. {1 jYee 7:€Z0

whereC’ is again for normalization. Before we can achieve
that, we need a rigorously criteria to judgeonsistency

For integration, this concept is always qualitative [12& w

Markov network provides a principled methodology for hroceed to provide principled quantitative criteria.
the distributedintegration of multiple sources. The joint

posterior defined on a Markov network is

2 Formulation of multi-source integration

3 Measurements inconsistency
p(X|Z) = H Ui %)) [[ oxinzi), (1)

Intuitively, assumeA;; and u,;; be known, given all

{”}eg ey the {z;, 33;}, the estimate o, is a natural indicator of
where C is a normalization constanX = {x; : i = whetherx; and A;;x; + pij s consensus, i.e., i, is
1...N},Z = {z; : i = 1...N} and N is the number  very small, then they are consensus sifi¢g;,x;) is ap—
of sources modeled in the Markov network. proaching to a delta function, and vice versa. Denote

Eachx; denotes the integrated estimate at ngdadz; © = {07, : {i,j} € £}, Eq. Lis indeedh(X|®,Z). The
is the local measurement of sourcéet) indicates the set  MAP estimate ofk; and the ML estimate o® can be ob-
of {x;,z;} pairs and each pair has a compatibility function tained by the following Bayesian EM algorithm [8], i.e.,
o(x;,2;). Letx;, z; be inR™, since the measurement is a

{z;, X;} pair,¢(x;, z;) is in nature a Gaussian, i.e., x, = (&7 Ly Z
1 ( ) JEN (i) ”
T — (2 —x) T (2 —x;)
X, 2;) = ————e\ 2 i . (2
o) = @ $ (S Y - (Aux ) (©)
JEN (D) 1-7

Set& defines the neighborhood relationships in the Markov )

netvv_or!<. Iij_|s the neighbor ok;, thenxj_ can provide a Uin = = (xi — Agx; — i) (% — Ayyxj — pig) (7)

predictive estimat¢;; (x;) for x;. ¢ (x;, x;) is the compati-

bility function of the neighboring; andx;, i.e., a Gaussian  Fixing ©, the E-Step in Eg. 6 obtains the MAP estimate
of x; by fixed-point iteration. It is actually performing

exp {_(xﬁfﬁ (Xj)g;(xffﬁ (xj”} the BLUE [7] fusion of the local estimate and neighbor-
Y(xi,x5) = (3) hood estimate. Fixin&, the M-Step in Eq. 7 maximizes
V(2m)ra; p(X|©®,Z) w.rt. ©. Combining the two steps together
exp {_ (i —AijX; —puij) 2( i Azjxj-wij)} also constitutes a fixed-point iteration f@fj. In practice,
- 293 . (@) we add a small regularization constar(e.g.,0.01) on the
(2m)nol, right-side of Eg. 7 to avoid the numerical problem of zero.

o ) _ Another intuition is that the consensus between the es-
which indicates ifx; and fi; (x;) can be regarded as being  (imate ofx; and A;;x; + pij is equivalent to the consis-
drawn from one common model gn@j is the scalar vari- tency of the measurements,, 3;} and{z,, %,}. There-
ance. Whery;; is nonlinear, we linearize it by Taylor ex-  fgre "wheng, andz; are consistent, the estimatesofand
pansion, i.e.u; = f;;(0) andA,; = 24 xJ)Ixj—o isthe  A;;x; + u;; will be consensus, i.e., they will be almost
n X n Jacobian. So we only consider the setting of Eq. 4. the same. From Eq. 7, the esﬂmatea@j will always ap-
The 02 indeed models the uncertainties between the local proach to zero, i.e., zero is the only fixed-point. On the
estlmatexZ and the neighborhood estimaAg;x; + ;. contrary, if they are inconsistent, then the estimatexof

The integration of all the measurements is to perform andA;;x; + u;; may deviate from each other, i.e., the con-
the Bayesian inference on Eq. 1. Nevertheless, when someergent results oefrfj may be non-zero. This indicates that



there exists non-zero fixed—pointfofj. These motivate us  large, statistically{z;, 3, } and{zs, X2} are significantly

for the following definition for inconsistency. deviated from each other and thus they are inconsistent. In
- . . , 5 this case there exists at least one non-zero convergence of
Definition 3.1 If zero is the only fixed-point for;; in the 02,. On the other hand, ifi(z1, z2) is small, statistically

Bayesian EM{z;, X, } and{z;, X, } areconsistentif there

) ] : ! : {z1,%1} and {z,, 3.} are not deviated from each other
exists non-zero fixed-points fof;, they areinconsistent

and thus they are consistent. Then there will be only zero

2
This definition motivates us to detect the inconsistency by COnvergence fos,. o
checking the convergent value of;. We thus have the Theorem 3.3(a) and (b) present two algebraic criteria

following criterion to test consistency. (sufficient conditions) to judge {1, 35, } and{z, X } are
inconsistent or consistent, i.e., if Eq. 8 holds, then threy a
Criterion 3.2 With a proper initialization, if the convergent inconsistent, and they are consistent if Eq. 9 holds. The fol
results ofsZ in the Bayesian EM approaches to zero, then lowing remarks would make the understanding more clear:
z;,3;} and {z;, 3,} are consistent. If it converges to a . .
ion—ze}ro vall;[e;jthejn}they are inconsistent. e SinceB. =2+./C, + \/;c_p > 4,if4 < d(z1,22) <
B, we can not directly tell if there exists a non-zero
5%,. In other words, we can not immediately decide

the consistency unless we run the Bayesian EM.

In practice, aproper initialization should guaranteei?j to
converge to a non-zero fixed-point if there exists one, such a
condition is necessary because zero is always a trivialfixed
point (see App. A). For better mathematical understanding e In one dimensional case, i.e.,= 1, we haveB, = 4.

of Definition 3.1, we proved the following Theorem 3.3 by Then the inconsistency/consistencyzfandz., can
studying the convergence of the Bayesian EM for pair-wise be determined by testing if(z; , z>) ; 4.

measurements. In Corollary 3.4, we also present a guidance

to choose th@roperinitialization for Criterion 3.2 . e Forn > 2,if C, is good to be neat, then. would

be very close ta. The interval4, B.) would be very
Theorem 3.3 For a Markov network which models the in- tight. Then either5.. or 4 can be approximately used
tegration of two sources, denatg = A15zs + ji12, 2 = for detecting inconsistency similar to the case- 1.
A AL, P =3 + 33, which isreal positive definitg
C, the 2-norm conditional number and?,  the largest

eigenvalue oP, andé?, as the convergent results of, in
the Bayesian EM. We have

e Forn > 2, if C, is not good to be very large, then
B. > 4. We must run the Bayesian EM with a proper
initialization to judge the consistency whelz, z)
fallsin[4, B.).

(a) There exists a zero and at least one non-zpif ¢ In a general setting, from Corollary 3.4, the largest

1 A \Tp—1 . 1 eigenvalue or the trace &; + X; + > X

“(z1—29) P Hzy —22) >2++/C,+——. (8 i J keN (i) <k

n( 1~ 22) (21— 22) PG, ®) is a proper initialization, whereN (i, 7) is the neigh-
borhood ofi andj. The trace is preferable since it can

A2 H
(b) 67, can only be zero if be more efficiently obtained.

1
—(z1 — 22) P (21 — 22) < 4. )
" 4 Detection of inconsistency and falseness
(c) When there exists non-ze#g,, at least one of them is
suchthal) < 63, < 0%, Based on Criterion 3.2, lek;; be the binary variable

to indicate whethefz;, ¥,} and{z;, 3;} are inconsistent,
The proof is presented in App. A. Highlighted by Theo- i-e., L;; = 1 represents that they are and vice versa. Then

rem 3.3(c), we have the following corollary. the criterion to identify the inconsistency is

Corollary 3.4 Under the same condition of Theorem 3.3, [0 ifo}<e

ooy 2T . Lij = . , (10)
initializing o, to be the largest eigen-value, . or the 1 ifoj;>e

traceT'(P) of P in the Bayesian EM can guarantee a non- ] o )
zero convergence far?, if there exists one. wheree is the same regularization constant added in Eq. 7.

After the detection of inconsistency, the majority rule is
The proof is presented in App. B. Theorem 3.3 and Corol- adopted to determine z;,3;} is false, i.e., if{z;,X;}
lary 3.4 provide a sound mathematical justification of Def- is inconsistent with the majority of its neighbors, thersit i
inition 3.1 about inconsistency and consistency. We denotefalse, and vice versa. Without any other knowledge, the
the left side of Eq. 8 and Eq. 9 d$z;, z2), which is in fact majority rule may be the best one to discriminate false mea-
a Mahalanobis distance. In principle, whé(z,, z>) is too surements. The basic assumptions are that there are at least



three sources and the majority of the sources will obtain
correct and thus consistent measurements. Shcis the
binary variable to indicate it; is false, suppose pairthas

M; neighbors, then

0 if Yjene L < 15
0, = ' JEN (i) ~uI 2v 11

where| £ | is the largest integer that is not larger thin.

However, when the degrees (i.e., the number of neigh-
boring nodes) of the nodes in the Markov network are
highly unbalanced, the majority rule may fail even if there |
are less than0% false measurements. One such example
would be that the connections &f > 6 nodes form a circle
and meanwhile the node&s, x; andxs are connected with
all the other nodes. Then if the measuremeniz, andzs
are false and thus inconsistent with the others, all therothe
measurements will be regarded as “false” from Eq. 11. Figure 1. The change of Ui2j in the Bayesian

Such a problem may not exist when the degrees of the EM. First row: measurement  z; is false. Sec-
nodes are well balanced. This reveals to us that in orderto  ond row: measurement zs is missing. Third
well exploit Eq. 11, we must construct a balanced Markov  row: all the measurements are consistent.
network to integrate the multiple sources, i.e., the degree
of the nodes must be close to one another.

(a). afz (b). 0%3 (c). 033

. . . . of some parts arenissing i.e., theg(x;, z;) is a Gaussian
5 Robustintegration for visual tracking with large co-variance. This might happen when the visual
pattern of the target undergoes large variations but thevis

Given all{z;, ;}s, we propose a two-stage robust inte- model does not capture it well. (3) The measurements of
gration approach: some parts are inconsistent with those of the other. This im-
plies that some measurements are false and it may be caused
by either occlusion, clutter or camouflage in visual tragkin
Our robust integration approach handles all these three sit
uations in a unified way.

1. Fal se di scrimnation: Performthe Bayesian
EM on the original Markov network\, defined by
Eq. 1 and then identify the false measurement&get
based on Eq. 11.

2. Robust Integration: Remove allz; € Zp, 6 Experiments
from M,. This forms the reduced Markov network
M. defined by Eq. 5. Perform the Bayesian EM on
M, to obtain the estimates for all; with Z» being
removed from Eg. 6 and Eq. 7.

6.1 Illustrative numerical example

We adopt @D numerical example to demonstrate how

It is a completelydistributedrobust integration approach, ofj changes during the Bayesian EM. The Markov net-

where all the operations are performed individually at each work models three sources, which are neighbors of one an-

node of the Markov network. After the false measurement other. Without loss of generality, we set all; = I and

at one source nodehas been eliminated, as we can observe p;; = 0. In all the simulations, we fix; = [2.1,2.2]7,

from Eq. 6 (eliminatingz; andX; from it), the estimate of  zp = [2.2,2.1]T andX; = ¥, = [2.0,1.0;1.0,2.0]. We

x; will rely purely on the neighborhood estimates. then sef{z3, 33} to be different values to simulate the three
It can be immediately applied to part-based visual track- situations. Highlighted by Corollary 3.4, we always inlitia

ing, wherey(x;,x;) captures the structured constraints be- ize all o7, to be the trace oE; + 3 + 3.

tween two neighboring parts. It is also general to incor-  We firstly simulate the case of false measurement, e.g.,

porate different tracking algorithms to obtain the part mea z3; = [8.0,9.0]7 andX3 = [2.0,1.0;1.0,2.0]. It is obvi-

surementgz;, ¥;}, such as particle filtering [5] and flow ous that{zs, X3} is false. The changes of},, o7, and

based Lucas-Kanade tracker (LK) [9], etc.. o3, are presented in the first row of Fig. 1. As we can ob-
There are three situations: (1) The measurements of allserve,a?, converges td.01, and boths?; and o3, con-

the parts are normal and consistent. (2) The measurementserges t018.25. Using Eq. 11, we easily identifgs as



(a). #16 (b). #66 (©). #88

Figure 2. Rresults with flow measurement: the red, green, and

missing measurements, respectively.

a false measurement and it will be eliminated in the ro-

bust inference step. The MAP estimates before false elim-

ination arex; = [2.83,2.87]7, xo, = [2.83,2.87]T and
x3 = [6.65,7.55]7, which are erroneous and can be rec-
tified after we eliminateds.

We then simulate the case of missing measurement, e.g.

z3 = [8.0,9.0] with =3 = [10.0, 1.0; 1.0, 10.0]. Although
z3 is deviated fromz; andz., its covariancexs is pretty
large so it is still consistent with the others. The changes
of afj are presented in the second row of Fig. 1. We can
observe that all of them converge@d1. In fact, the MAP
estimates aré2.89,2.94]7 for all x,. We can see; has

(f). #184

(e). #102

(d). #90

yellow color denote false, normal and

are detected to be the node of the Markov network. The face
region is manually cropped as a rectangle in the first frame.
Each node is associated with7ax 7 image patch (the
appearance model) centering at the feature point, and it is
connected with the three nearest nodes. Xhe the2D
position of theith good feature. At the current frame, we
setA;; = I, and sety,; to be the relative position of part
i andj in the previous frame. Each is obtained by the
flow based LK tracker. Th&; is obtained by evaluating
the response distribution using SSD similar to that in [15].
We show some sample results in Fig. 2 (detailed results
in “330.wmv”). Our algorithm successfully identifies the

been counted far less than the other two measurements anfhlse, missing and normal measurements, as shown in red,

the bias has largely been rectified in the estimates.

yellow and green, respectively. The video H&§ frames

Last we simulate the easiest case where all the measureand our algorithm obtains robust results. With parts, it

ments are reliable and consistent, ezg.= [1.9, 1.8]7 with

33 = [2.0,1.0;1.0,2.0]. The change of7}; is presented in
the third row of Fig. 1. Again, they all converge @1 as
expected. The final MAP estimates d2e0)7, 2.03]” for all

x;. We have extensively run the simulations with different
settings. The results are coherent with what are presented.

6.2 Robust part based tracking

6.2.1 Part based tracking with LK tracker

(8). LK #90

(b). Holistic PF#108

Figure 3. Typical tracking failure (a). LK track-
ing frame #90. (b). Particle filtering with
holistic appearance model frame  #108

We first present the results using LK tracker [9] to ob-

runs atl0 frames/second without code optimization.

The pure LK tracker and the patrticle filtering (PF) with a
holistic appearance model are easy to fail in this videa clip
We show the typical failure cases in Fig. 3. The failures
are due to the dramatic expression change (Fig. 3(a)), the
sudden view changes and abrupt motion of Tom (Fig. 3(b)).
The number of particles for holistic PF is 200 and all algo-
rithms are initialized with the same rectangle.

6.2.2 Part based tracking with particle filtering

In this section, we present the tracking results using par-
ticle filtering [5] to obtain the part measurement. The

is four dimensional (two for translations and two for scal-
ings). The target parts are selected manually and a fully
connected Markov network is adopted. TAg andy;; are
estimated from some manually annotated images by least
square fitting. There is a residue erb:fgo from the least
square fitting. It was used as the. in the robust integra-
tion step, i.e., after removing the false measurementsywe fi
o3, = 03, and perform the Bayesian inference using Eq. 6.
Note each component has a template image patch to build
the appearance based likelihood moglet;, z;). The mean
estimates and the covariances of the posterior particte set

tain the part measurements. The test video clip is from theare adopted as the part measureméntsy:; } s.

comedy cartoon “Tom and Jerry”. The target is the poor cat
Tom'’s face. Those “good features” [9] in Tom’s face region

We present sample results on different video sequences
in Fig. 4 and Fig. 5. These test videos are typical, where



(a). #116 (b). #128 (). #138 (d). #144 (e). #148 (). #154

Figure 4. Comparison of robust integration by the proposed a pproach and blind integration without
inconsistency detection and false elimination — First row: Proposed integrating approach (green-
normal, red-false, yellow-missing).  Second row Blind integrating.

(a). #280 (b). #306 (©). #310 (d). #316 (e). #318 (). #399

Figure 5. Results with PF measurement: Results in the first ro w are enlarged for better visual quality
(green-normal, red-false, yellow-missing).

the targets present large appearance variations due to the = 5
significant view, scale, lighting changes and the presence ) . |
of occlusions. Fig. 4 shows the results of tracking the face
of a kid. The first row of Fig. 4 shows the results of the
proposed approach, where inconsistent measurements are
detected and those false ones are eliminated. For compar- .
ison, the second row of Fig. 4 shows the results of blind — -
integration without inconsistency detection and falsmeli

nation. Note how the tracking results have been distracted  Figyre 6. Root square error of the results on
due to the integration of those false measurements during the car sequences in the first row of Fig. 5.
occlusion. The video h&&0 frames.

oot S Eror (RUSE)

In Fig. 5, we present the results on two car video se-
guences, which hav&18 and399 frames, respectively. De-
tailed video results are presented in “330.wmv”. We also centroid point of all the part rectangles is used as the divera
tested the accuracy of the results shown in the first row of translation parameters. We then calculate the root square e
Fig. 5 on the two translation parameter300 frames are  ror at each frame, as shown in Fig. 6. The root mean square
labeled and the centroid points of the labeled rectangle iserror is2.36 pixels with stand deviatiofl.78 on 320 x 240
adopted as the ground truth. For the tracking results, theimages. This shows the accuracy of the proposed approach.



(a). #208

(a). #280 (b). #306 (). #310 (d). #316 (e). #318 (). #322

Figure 7. Tracking a group of persons:  First row: Our integrating approach (green-normal, red-false,
yellow-missing). Second row Blind integration. The results are enlarged for better vis ual quality.

6.2.3 Tracking a group of objects Markov networks. We are also interested in exploiting the

) o o integration framework to other vision applications.
A direct generalization of part based tracking is to track se

eral objects moving in a group. We tested the robust inte-
gration on part of a video sequefoghere three persons
walking in a corridor of a shopping mall. Again, a fully
connected Markov network is adopted and the measuremenf
of each person is obtained by particle filter. Some sample
results are presented in the first row of Fig. 7. In Fig. 7(b)
(first row), frame#317, the left person has been occluded A Proof of Theorem 3.3

by another person and the measurement is false. Our algo- o ) ] )

rithm clearly identified and corrected it. For comparison, Proof Fixingof,, Eq. 6 guarantees to iteratively obtain the
we also present the results by blind integration in the sec-&xact MAP estimate on the joint posterior Gaussian. We de-
ond row of Fig. 7. Note how it fails due to occlusion. The NOteXa = A1pX+ 12 andS = P+ 01,1 The convergent
video sequence of the three persons has 697 frames. Mor&esults in the E-Step in Eq. 6 is the same as,
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video results can be found in “330.wmv”. X (02,1 + 22)5—1Z1 + 2,8 13, 19
[ Xo :| - |: 225_1Z1 + (0’%214— 21)8_122 ’ ( )
7 Conclusions and future work Embedding it to the M-Step in Eq. 7, we have

1
2 2 2 A \I'g—-1g—1 ~

We proposed a novel distributed framework for detecting O12 = 5‘712‘712@1 —22) 8T8 (21 —22).  (13)
gnd_lntegratmg of inconsistent measurements. The model-smce zero is a solution af2, for Eq. 13, we only need to
ing is based on Markov networks. The Bayesian EM infer- . .

. L . analyze the existence of non-zero solutions Hf for
ence reveals the iterative integration of the measurements
. . . . . . _ 1 R _ _ R

from_wh|ch principled criteria were developgd to de_tect in- 202, (71 — 22)TSTIS H(zy — 35) — 1 = 0. (14)
consistency. We regard measurements which are inconsis- n
tent with the majority of their neighbors as false. They SinceP is real positive definitethere exists an orthonor-

will be eliminated and the integration is performed again, mal matrix Q such thatP = QD,Q’ whereD, =
. . ; : ;
5 stimates i ose nodes wih 4 MRS, ..o andof 2.2 7 > 0. Lty = 1.
. _ T -1 _ TNH—1

applied the proposed robust integration framework for part yvvﬁe:gg] h_""Vf [_Z%DQQ and25+ 2_] a(nQ d ]Sil Q_
based visual tracking and promising results were obtained. *. [ s T aglon ]Ulzlsé.r;c’){‘en” _Ulé( - f) B

Future work may include the automatic part selection, fag 0?+~0?2T’ T oRtot 2= Wamn) =
and better means to handle the integration in unbalanced?1, - - -, Zn]" , We have

n 2 32

iFrom the EC Funded CAVIAR projectIST 2001 37540, found at L2, (71 — )7 2(zy — ) = ~ S — 2% (15)

URL: http://homepages.inf.ed.ac.uk/rbf/CAVIAR/ n n-= (Uiz + 0%2)2

=1



(o1~ 52)" P () (16)

@
Il
=

F(o}y) = ! f 1 ! 1=0. (17)
12) — 2 52 .2 - ¥
niZ% 24 0%12 + a]fz

We proceed to prove the three cases in Theorem 3.3.

(a).

(b).

(c).

B

Proof The Bayesian EM constitutes a fixed-point iteration
of o2, in Eq. 13. From Theorem 3.3(c), when non-zero

=2 2
1 h o
Eq.8meansl:;2?:1j—$>2+ or + >
4. Wheno?, = k; = (d — 2)o?, for anyi, we
have—1 < L = L1 ThusF(k;) <
o2 o 2 d—2 d’
2t %+ 0+
12 (3
)
1 n zZ; 1 _ 2
) 0—3-3—1 = 0. Wheno?, = kg = \/Ulan, for
. 1 1
anyz, 2 2 > 2 hy 02 > =
245+ 7 2ty tos 2+,/—;+«/"—g
712 7 1 Tn 71
2

L thusF(ky) > 1570 1% 11 =0. Since
0 < ka < kyandF(-) is contmuous there exists a
ks whereks < k3 < k1 andF(k3) = 0. This proves
Theorem 3.3(a).

< 4, thenF(0%,)) <

2
_ 1 n Z;
Eg. 9 meansl = -3 ", o

52

Ly lz—f-%—l: 41 < oforall o}, > 0.
Thus Eqg. 17 has no non-zero solution. Theorem 3.3(b)
is proven.

Let F(03;) = max F(0%,), we show that it must

be such that? < o3,
+02 thUSF(U%Q) =
2+ 5+ 72

12 i
F;(0%,) is monotonically increasing fdr < 0%, < o7
and monotonically decreasing fof, > o?. There-
fore F'(0%,) must be monotonically increasing for<
0%, < 02 and monotonically decreasing fef, > o?.
This tells us that the global maximum &f(¢%,) can
only be taken in? < o}, < 07, thuso?2 < o3, < 0%.

< o3%. Define F;(0%,) =
>, Fi(o%,) — 1. Each

The existence of a non-zero convergent valueHf
implies a non-zero solution for Eq. 17. We have
F(o3,) > 0 otherwiseF(o%,) < 0 for all o7, and
there is no solution for Eq. 17. Sind&0) — —1 and
F(0%,) is continuous, there must existia such that

0 < ky < 0%, < o?andF(ks) = 0. Thisimmediately
proves Theorem 3.3(c). |

Proof of Corollary 3.4

fixed-points exist, at least one of the#,, is such thab <

~2
012

< 0% ae < T(P). Then, if the fixed-point iteration

is initialized ato?

or T(P), it can never surpass’, to

pmazx

converge to zero since they are scalars. This indicates that

pmam

andT'(p) are proper initialization fos?,. |
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