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Abstract. We present a discriminative model that casts appearance modeling and
visual matching into a single objective for visual tracking. Most previtissrim-
inative models for visual tracking are formulated as supervised leaaifibinary
classifiers. The continuous output of the classification function is then atitize
the cost function for visual tracking. This may be less desirable sindaricéon

is optimized for making binary decision. Such a learning objective mayentak
not to be able to well capture the manifold structure of the discriminative ap-
pearances. In contrast, our unified formulation is based on a prinaipétdc
learning framework, which seeks for a discriminative embeddinggpearance
modeling. In our formulation, both appearance modeling and visualhimatc
are performed online by efficient gradient based optimization. Oundation is

also able to deal with multiple targets, where the exclusive principle is naturally
reinforced to handle occlusions. Its efficacy is validated in a wide varfethal-
lenging videos. It is shown that our algorithm achieves more persistsntts,
when compared with previous appearance model based trackingtaigsar

1 Introduction

Appearance based visual tracking has been an active rageaic for decades [1-8].
There are two essential tasks: timedeling task builds an appearance model for the
visual target; then theatching task matches the model with the source visual data to
recover the motion of the target objects. Appearance mamisoughly be put into
two categoriesgenerative models [2—4, 6] andliscriminative models [7, 9, 8, 5].
Generative models seek a compact model to account for as wsichl variations
of the appearances as possible. Most often a set of trairang@es is leveraged either
to obtain a subspace model [6, 2, 3] using embedding methmthsas principle compo-
nent analysis (PCA) [6, 3] or Gram-Schmidt decompositign¢2to learn a Gaussian
mixture model [1] using the Expectation-Maximization (EMyorithm [10].
Discriminative models aim at differentiating the appearmnof the visual targets
from the background. Most previous works proposed to ledimary classifier to dif-
ferentiate the visual target from the background by usiogekample, support vector
machine (SVM) [7], Boosting [8], linear discriminant ansily [9], and multiple in-
stance Boosting [5]. Compared to generative models, digcative models may be
more desirable for tracking due to the discrimination o&fmound and background.
After the classifier is learnt, most previous works utilize tontinuous output of the
classification function as the objective for visual matghand tracking. This may be
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less desirable since the classification functions areddhtio be good mainly for making
binary decision. In other words, they may not be able to wafitare the manifold
structure of the discriminative appearances, a vital fafctorobust visual tracking.

Given the visual appearance model, different tracking rilgms [11-16] come
with different optimization paradigm for matching. Theyndargely be classified into
two. The first class [11, 12] takes a hypothesis generatidno@servation verification
approach by probabilistic information fusion. Seminal ksinclude Kalman filter,
probabilistic data association filter (PDAF) [11], and pAetfilter [12].

However, both Kalman filter and PDAF [11] make the assumptiai the visual
observations of the target can be obtained in certain wayighanmay not be satisfied in
many cases. Although particle filter [12] eliminates thiswamsption by taking a direct
verification approach, it needs sufficient number of paticlpotheses, and hence a lot
of computation resources for good performance. It is evers&vavhen dealing with
high dimensional motions [17, 18]. This is why partitionedrgling [17] and impor-
tance sampling [18] are needed to effeciently utilize thetéd particle budget.

The second class takes a direct optimization approach,eniterative gradient
based search [13,15] is performed, or a linear program @ldislsolved to obtain
the tracking results. Compared to the first class of trackiggrithms, direct optimiza-
tion [14, 13] usually does not make any additional assumpt&bout image observa-
tions, and the gradient based optimization can be perforeffedently with modern
nonlinear program [19]. This renders them to be more appliécahen certain assump-
tions do not hold or the computational resource is consdrhin

We propose a unified discriminative visual tracking framekfor both appearance
modeling and visual matching. It is cast under a discrinieatnetric learning algo-
rithm proposed by Globerson and Roweis [20]. In our formatgtappearance mod-
eling is to identify a discriminative embedding, and visoatching performs an ex-
emplar based regression on such a manifold w.r.t. the m@@éomameters. Both steps
optimize the same objective function and are performedradterely by efficient gradi-
ent search. Therefore, we achieve two tasks in an unifieduiation.

Without requiring any additional efforts, our formulatioan naturally deal with the
discriminative modeling and visual matching of multiplegts. Due to the mutual dis-
crimination of the multiple appearances, and the jointroation of multiple motions
in our model, our tracking algorithm naturally reinforcée exclusive principle [21].
Exclusive principle states that no two visual targets shediount for the same image
observations, which is vital to handle cross occlusionspagifested in [21].

Our unified formulation presents three benefits to previooiks! firstly, it presents
a unified discriminative formulation where appearanceseating and matching are op-
timizing the same objective function. Secondly, the unifigztriminative formulation
gracefully handles visual modeling and tracking of muétiphrgets where an exclu-
sive principle is naturally reinforced. This makes it to bbust to occlusions occurring
among the different visual targets. Thirdly, a principlederion is derived from it to
select the optimal set of visual examples for online leag@ind matching.
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2 Discriminative appearance and motion model

2.1 A unified formulation

We take a unified formulation for joint discriminative appaaces modeling and visual
matching. More formally, suppose we have a set of labeléditig examplesY, =
{x; € RN y;} |, wherey; = 1 meansx; is among the:; foreground samples, and
y; = 0 implies thatx; is one of then + 1 background samples, such that+ng+1 =
n. In our experiments, each is usually aw x h image patch an&v' = w x h.

We further denot&(m) to be the visual target we would like to track whenec R”
is the motion parameters we want to recover. Obviously,ghelly of I(m) is 1, since it
represents the visual target. For ease of notation, we depot I(m). Therefore, our
final labeled data set = X, U{(x0, yo = 1)}. Following Globerson and Roweis [20],
we propose to learn a Mahalanobis form metric, i.e.,

dA(Xi,Xj) = (Xi — Xj)TA(XZ' — Xj). (1)
whereA is a positive semi-definite (PSD) matrix to be learnt. Foheace X, define

e—da(xi,x;)

(@)

_ 1 —da(xi,X;) _
pA(lexz) = Z,‘e - Zk;ﬁv e—da(xi,xy) "

The ideal distribution of the optima\ shall collapse samples from the same class to
be a single point. Specifically, the ideal distribution $kelte the following form,

1

i =y =1

Po(x;]x;) = {81 z zj . 3
i 7 Yj

wherel € {0, 1}. Recall thatxy = I(m), we define

£ m) = S0 KL (ol ) lpalbe)) = €+ - (da i) + og Z)

=0 yi=y;=l
4)
whereC = 37 _ _ .-log ;. is a constant. To havea (x,|x;) to be as close to
po(x;]x;) as possible, we only need to proceed to minimfizd, m), i.e.,
min f(A,m) (5)
s.t. Yae RY aTAa > 0. (6)

where the constraint in Eq. 6 confindsto be PSD. Solving the above optimization
problem would allow us to jointly obtain the optimal disciimative appearance model
defined byA, and track the motion of the target visual object, which ireiel bym.
We solve both by efficient gradient based search, as prebirttee following sections.

We shall emphasize here that we present our formulation ptichization in this
section with a single visual target for ease of presentatdawill extend the discussion
to present more details on how to deal with multiple obje@sking in Sec. 4.



4 Xiaoyu Wang, Gang Hua, and Tony X. Han

2.2 Appearance model estimation

In our unified formulation, discriminative appearance mivggerefers to identifying the
optimal A, which defines the discriminative metric, and thus a discrative embed-
ding. Assume that the motion parametaris fixed, following [20], it is easy to figure
out that f(A,m) is a convex function ofA. Taking the derivative off (A, m) with
respect taA, we have

w = i;O(Po(Xj\Xi) — pa(x]x:)) (x5 — x)(x; — x;) T 7)

Similar to [20], we take a gradient projection algorithm J[2@ obtain the optimalA.
Specifically the following two steps are performed:

1. GRADIENT DESCENTA = A — ¢2/(Am)

A
gradient descent.
2. PSD RoJECTION Compute the eigen-value decompositiomofi.e.,{\, uy }_,

such thatA = chvzl Agupul, setA = Zgil max (A, 0)uguy .

, Wheree determines the step length for

The first step above performs gradient descent, and the dastep reinforces the con-
straint to makeA to be a positive semi-definite matrix. These two steps aratéd
until convergence. Sincg(A, m) is a convex function oA givenm. The iteration of
these two steps is guaranteed to find the optimal solutiok.to

2.3 Motion parameter optimization

In this subsection, we fix the discriminative appearanceehAd and develop the gra-
dient descent search for the motion paramaterslot losing any generality, we assume
thatm is a linear motion model, i.e.,

T abl |2 e
= (] 1 ®
where[2’, |7 is the canonical coordinates for the labeled examples[and’ is the
coordinates in the target video frame. This linear motiomeicovers a wide variety of
motions such as translation, scaling, similarity, as weflLél affine motion. We proceed
to derive the gradient based search for the full affine matiodel.

Recall thatx, = I(m) is the only term that involves the motion parametey
according to chain rule, we have

Of(A,m)  9f(A,m) Ix,

= . 9
om 8X0 om ( )
With some mathematical manipulation, it can be shown that
1 n
f(Am) = — > 2da(x0,x;) + > log Z; + C(A) (10)

1 / -
y;=1,j7#0 j=0
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whereC(A) is a term which is independent &f and thus independent ofi. There-
fore, with some more mathematical manipulations, we have

Jf (A, m 4 -
% = > Alxo—x;) =2 (pa(xjlx0) +pa(xolx;))Alxo —x;)-
0 L y=1,5#0 =1
(11)
For any parametef € m, again, applying chain rule, we have
Oxg  OI(m) OI(m)dx = OI(m) Qy
70 = - 4 =, 12
¢ 103 NS y 0¢ (42

Where%,m) and% represents the image gradient in the target frame in ha@ton
and vertical directions, respectively. For ease of notatice denote them ds, andl,
respectively. Following Eq. 12, we have

% _ IEZL'/, aXO

9%o %o _
Oa ob N

Jdc

I, % =1,y % -1, %—’jﬁ —1, (13)

= Imylv
Therefore, we may easily calculate the gradienf @A, m) with respect tan by ap-
plying Eqg. 9 to Eq. 13. Then we can take a gradient descentatggover the optimal
motion parametem, i.e.,
Jf (A, m

m=m— nf(aT) (14)
where the step length could be estimated, for example, by a quasi-Newton method
such as L-BFGS [19].

3 Online matching and model estimation

One of the main challenges in appearance model based viaghirtg is to robustly
adapt the model to the visual environment. This adaptatiag be indispensable for
robust tracking since the target objects may go throughtidrasual changes from
environmental conditions such as extreme lighting, odohss casting shadows, and
pose and view changes. The unified formulation we proposéttjirb enables us to
naturally fulfill this task. We proceed to present it in a mtenal way.

Extended from the notation of Sec. 2, &) be the set of: labeled examples
we maintain at time instance We also letA, be the current discriminative appear-
ance model, anan, be the motion parameters we need to recover. Hence we have
x((f) = 1) (m,). At each time instant, given X ®) andA ;, we run the gradient descent
optimization algorithm outlined in Sec. 2.3 to obtain theéiilm@l motion parameten; .
This fulfills our visual matching and tracking task. Then wetprbm; to generate a

set ofa negative sampleﬁ{”” to replace the oldest negative sample subsat” in
X®_ This results in the new labeled examphe&+1) | i.e.,

2D = (i By u ath, (15)



6 Xiaoyu Wang, Gang Hua, and Tony X. Han

Sincem; has been recovered, for ease of presentation, we abusettt®ndo tem-
porally definexét“) = I*(m,). With X(**+1) We can then run the gradient projection
optimization algorithms outlined in Sec. 2.2 to obtain thmimal A, ;. To proceed
with the next matching step to identify the optinfaf*(m, ), with a fixed memory
budget, we need to retire one positive examples in the cuttéri’), we propose a least
consistent criterion based on the contribution of eachtpestéxamples to the unified
cost functionf (A1, m;). Indeed, fixingA;;, andmy, f(A:y1, m;) is a function of
XD e, f(Ayy1, my) = g(XTHD). We can similarly define a(-) function for any
subset oft (*+1) based on Eq. 4. Therefore, for eacke X'(**1) a consistent criterion
can be defined as

e(x) = g (X)) = g (2D \ {x}). (16)

It is easy to understand that the largek) is, the more contributiosx has made to
f(A411, my). Ifthe labely(z) = 1, alarger(x) indicates thak is not very compatible
to the rest of the positive samples, and hence should bedédtom the sample set. More
formally, we select

X" = arg MaXye y(+1) 4 (x)=1¢(X) a7)

to retire from X**+1)_ In real operation, we only need to change the numbering of
x{™) = 1t (m,) to the numbering ok*, then we reset|' ™" = I*1(m,) which is
unknown now to kick off the matching process for the optimation parametem, ;.

The above steps will be repeated from time instart time instantt + 1. There-
fore we track the visual target and estimate the discrimieatisual appearance model
simultaneously in an online fashion, which are all basedfficient gradient based opti-
mization. Most previous approaches resort to heuristitisooldness of visual samples
to select the optimal set of online training examples. Whilefroposed selection cri-
terion for positive examples in Eq. 17 is derived directiynfr our unified cost function
in a principled fashion, an obvious benefit of our unified fatation.

To initialize the tracking algorithm, we can run an objedtsd¢or if it applies, such
as a face detector [23] or a human detector [24], if we areitngca face or a person.
Or we can request the users to manually specify a trackingngte in the first frame.
Then the initialized tracking rectangle, either from a d&ieor manually specified, is
perturbed to form the initial set of labeled examples). More specifically, perturbed
rectangles with sufficient overlap with the initial rectésgre regarded as positive ex-
amples, while those perturbed rectangles which are devtatemuch from the initial
rectangles are deemed as negative examples. This bost&eaping for the optimal
discriminative appearance mod&b, which is then adopted to obtain the optimal mo-
tion parameterns. This processes will be repeated as described above.

Last but not least, when maintaining the labeled exampletsgt we fix a small
set of 5 negative angb positive examples extracted from the initialization fraim¢éhe
set, i.e., we never replace them with new examples. Thithea is very important to
keep some invariance to our discriminative appearance haodeavoid it to be drifted
too drastically in the visual tracking process, a trick whitas been adopted also in
previous work, such as [8].
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4 Modeling and tracking multiple objects

Our unified formulation is natural to handle the tracking afltiple targets. To see this,
we assumey; = 0 indicates background, and = 1,..., K indicates each of th&
visual targets we are mtendlng to track. L&t = {(xoj,yoj =0)}" Lo and also let
Si = {(xij,yi; = i)}, foranyi = 1,..., K, whereVi > 0, x;o = I(m;) indicates
each of the visual targets we want to track in the currentdéamierem; is represented
by {a;, b;, ¢i, d;, e;, f;}, as defined in Eq. 8. Following similar steps as we have dérive
Eq. 4, denoteVl = {m;, my, ..., mg}, andX = {x;0}X ; we have

f(A, C+Z Z (da(xij, Xix) + log Zy;) . (18)

=0 j#£k=1 i

where Z;; andda (-, -) are all defined similar to the corresponding terms defined in
Sec. 2.1. HereA captures the discriminative appearances information latha K
visual targets, anan; represents the motion for th&" visual target which, in our
experiments, are again the affine motion parameters defingd.i8.

Following similar derivations as in Sec. 2.2 and Sec. 2.3carecompute

N

ZZZZ% (kD) (3 — x35) (s — xi5) " (19)

i=0 j=0 k=0 =0

where

wi; (k) = po(Xwi|xi;) — pa (Xw|Xi5)- (20)
With this formula to compute the gradient, we can utilize imGradient projection
steps outlined in Sec. 2.2 to obtain the optimalNotice that hereA captures both the

discriminative appearances among all the visual targstsyedl as the discriminative
information between the visual targets and backgroundil&ily) we obtain that

K ng

8f(A M) 4
axZO Z A XzO Xz] —2 Z Z 520 kl XzO - Xkl)~ (21)
k=11=0
where
Bio(kl) = pa (Xk1|Xi0) + Pa (XiolXk1) (22)
Following Eqg. 13, we also have
Oxio =, Oxio o, OxXio o, OXio o o, OXio o OXip _
8@1' - lei? ab, - Izy“ 801' - Iyxza 8dz - Iyyzv 8€i - IZ7 8f2 - Iy (23)
Following chain rules and with Eq. 23, we can easily calailat

m; aXiO m;

With Eq. 24, again, we use L-BFGS [19] to solve the nonlingaimeization problem
to obtain each set of motion parametaisfor thei*” visual target. Based on the above
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two gradient based optimization schemes foland eachm;, respectively, following
similar ideas as outlined in Sec. 3, we can further develdp@appearances modeling
and updating algorithms and visual matching algorithmsédust visual tracking of
multiple objects. We shall not verbose on it since it follayuste similar steps as those
outlined in Sec 3.

4.1 Discriminant exclusive principle

We argue that the proposed joint formulation for multiplgeabtracking naturally in-
corporates an exclusive principle [17] in the matching pssc Therefore it is robust to
handle occlusions among the different visual objects. Katusive principle states that
no two visual tracker shall occupy the same image observafiar proposed algorithm
naturally achieves it because of the joint discriminatippearance modei, which re-
inforces the mutual discrimination of the appearances éetviwo visual targeffm; )
andI(m;). To see this more clearly, given an optin#g) if I(m;) andI(m;) occupy
similar image regions (a.k.an; = m;), and thus have similar appearance, the mu-
tual discriminative information encoded & would incur a large value fof (A, M).
Thereforem; = m, is not an optimal solution ta 1. In other words, the optimal mo-
tion parameteM is more likely to occur whell < i < j < K, m; # m,;. Therefore,
the exclusive principle among the different visual targetsaturally reinforced.

5 Experiments

We dub the nam&UDAMM to the Tracker with Unified Discriminative Appearance
Modeling and Matching (TUDAMM). Comparing with the resutt§ other state-of-
the-art trackers [2,13], we evaluate our TUDAMM using sav@hallenging video
sequences including video clips from CAVIAR dataset [28]] ather real-world video
sequences downloaded from Internet.

5.1 Evaluation criteria

Enlightened by the simplicity and the elegance of the Averfagecision (AP) criterion
used in the PASCAL grand challenge [26] for object detectwaluation, we define

a simple measure for tracker evaluation, namely AveragekKimg Precision (ATP).
More formally, for each tracking task, a ground truth masktfee object of interest is
labeled in each framg The mask is represented as a pointGetThe tracking result

is represented as a point Sgtat framej. (x;,y;) € G; or T; indicates that the pixel at
(x;,y,) is inside them. For an ideal trackef, G; = 7.

For each framg, the tracking precision; is defined ast; = |G; N T;|/|G; U T;.

Noticing thatr; € [0, 1], the ATP for a tracker of an object in a video clip is defined as:

19, N
ATP_NZ NZIQJUT\ (29)

whereN is the running length of the video clips in frame number. Foideal tracker,
ATP = 1. We use it as the exclusive quantitative measure to comparnegrformance
of the TUDAMM with other state-of-the-art trackers.



Discriminative Tracking by Metric Learning 9

Fig. 1. The sample key frames of the tracking results for CAVIAR dataset. Kasné NO.
443,455, 467,488,501, 772 are shown from left to right. First row: TUDAMM. Second Row:
Meanshift [13]. Third row: Incremental Learning Tracker (ILB)[

5.2 Visual tracking of single/multiple target(s)

We firstly present the tracking results of TUDAMM for singkerget on a video se-
quence from the CAVIAR datasgtwhere three persons are walking in the corridor of
a shopping mall in Portugal. We call this video sequence é€Rerson”. We run the
proposed tracking algorithm to track one of the three pergudividually. The tracking
task is challenging in several aspects: 1) the scales ofituaMtargets change dras-
tically; 2) the three persons walked across each other amlittduced occlusion; 3)
some other crossing person occluded the target person.

As shown in the first row of Fig. 1, the TUDAMM tracker succeslf tracked
the target person from beginning of the sequence to the ertdeo§equence with-
out any problem, which is more robust than both the mearn-shitker [13] (second
row) and the incremental PCA tracker [3] (third row). Bothtlbése algorithms failed
to track the target after the person with red cloth occludedltarget person, as dis-
played in the second and third row of Fig. 1. The robustnessaipTUDAMM tracker
attributes to our unified discriminative formulation, whienakes it more robust to
background clutter. For detailed video results, please&lcloeit our video demo file
“http://vision.ece.missouri.edu/demo/ECCV2010Tragkavi”.

Quantitative comparisons to other work Since the ThreePerson video in the CAVIAR
dataset has ground-truth labels of the bounding boxes oiviilking persons in the
video sequence, we use the ATP criterion presented in Skto fuantitatively evalu-
ate the performances of the proposed TUDAMM tracker, themsddft tracker (Mean-
shift) [13], and the incremental PCA tracker (ILT) [3]. Wesgent two such evaluation
results for tracking two different persons in the video ig.F(a) and Fig. 2(b), respec-
tively. It is clear TUDAMM consistently presents more acatigrtracking results than

3 Data set from EC Funded CAVIAR project/IST 2001 37540, download¢dURL:
http://homepages.inf.ed.ac.uk/rbf/CAVIAR/.
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Fig. 2. (a) The performance comparison for the person tracked in figui®) The performance
comparison for tracking the black person at right to the red persom stainting frame.

Fig. 3. The top 12 eigenvectors (with the descent order from left to right) fodiberiminative
matrix A.

the other algorithms, which achieves an average tracking & 75%. This demon-
strates the good performance of the gradient based matalgogthm to recover the
motion parameters.

Visualizing the appearance modeA As a matter of fact, the appearance modale-
fines a discriminative embedding to differentiate the Vislgect from the background.
Each eigenvector oA is corresponding to one basis vector of the embedding. Te hav
a better understanding of how the appearance madeinctions, in Fig. 3, we visual-
ize the topl2 eigenvectors of an optima\ estimated at framé36 when tracking the
person in red in the ThreePerson sequence. As we can cldemdy\e, these eigenvec-
tors focusing on extracting the contour and thus encodehbpesinformation of the
target person. They also tend to focus more on featureseitisedhuman contour while
suppress features outside the human contour. This indithéd our metric learning
framework really picks up the discriminative informatiar tracking.

Visualizing the gradient optimization processesTo gain a good understanding of
the gradient optimization process of both the discrimiratippearance estimation as
well as the gradient based optimization process for visugthing, we visualize the
evolution of both optimization processes in frame 532 of TheeePerson sequence,
as shown in Fig. 4 and Fig. 5, respectively. The trackingeigthe rightmost person
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Fig. 4. The evolution of the tenth Eigen vector Af during gradient optimization in the first 11
steps of gradient descent from left to right.

139

185

MEF

1175

=

Cost function Yalue

65

1181

1185
0

fteration number

Fig. 5. The gradient optimization of objective function w.r.t. the motion pararséteframe 532
in the CAVIAR sequence. The tracking is initialized as the tracking resulaimé 512 for better
visualization. Red rectangle in the left image is the final converged matcbsudts. The figure
on the right displays how the objective function is minimized by gradientetds

in this frame. Fig. 4 visualizes how the tenth eigen-vecfahe discriminative model
A evolves in the firsti1 iterations. We start the optimization by initializiry as an
identity matrix, so the initialization of the tenth eigemetor is a unit vector with the
tenth element to be one and all the other elements are zesbpas in the first image
in Fig. 4. As we can clearly observe, only aftesteps of gradient descent the eigen-
vector has already been stabilized. From Fig. 5, we canlglebserve the effectiveness
of the gradient optimization process in the visual matctstep. In only4 steps of
gradient descent, the matching result is already conveeese figures demonstrate
the efficiency of the proposed gradient optimization preces

Tracking under various visual variations We have also extensively tested the TU-
DAMM with other challenging videos used in previous worksdmwnloaded from
YouTube with various challenging aspects. We highly recemdnto check our demo
video for more details of all the tracking results.

More specifically, in Fig. 6, we present the tracking resafta human face from
the TUDAMM, the ILT [3], and the Meanshift trackers [13], pesctively. The ILT
tracker [3] firstly reported results in this video, which iggect to drastic illumination
changes and casting shadows. As we can clearly observe.i6,Rize TUDAMM ro-
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Fig. 6. The sample key frames of the tracking results on the challenging facenghander
shadow with big illumination change video . Key frame N1, 210, 220, 230, 240, 260 are
shown from left to right. First row: TUDAMM. Second Row: Meanshiftifid row: ILT.

Fig. 7. The sample key frames of the CrazyCarChasing tracking results oAMMwith large
scale zooming and camera motion.

bustly tracked the human face despite the dramatic shaduavilamination changes.
While both the ILT tracker and the Meanshift tracker failedhithe drastic visual vari-
ations. The results video contaifis frames.

In Fig. 7, we report the tracking results of TUDAMM on a car simg video down-
loaded from YouTube. The video is subject to large scale ghamd drastic camera
motion since it was taken from a helicopter. Our trackingéthm successfully tracked
the motion of the target car without any problem. The resiitiso contain$78 frames.
In Fig. 8, we present the tracking results of a rabbit whictlament a lot of non-rigid
motions. TUDAMM successfully tracked the rabbit across thieo, which contains
156 frames.

Tracking multiple targets with cross occlusion To demonstrate the ability of TU-
DAMM in dealing with occlusions in multiple object trackinge report results in two
video sequences, one is the ThreePerson video from the GRABaset, and the other
is a horse racing video downloaded from YouTube. Trackirsglte in sample video
frames are displayed in Fig 9 and Fig 10, respectively. Themple are tracked in the
CAVIAR video, while five horse racers are tracked in the hoesing video. As we can
clearly observe, despite severe cross occlusion amongffheedt visual targets, our
TUDAMM tracked all of them without any problem. This is alttited to the discrimi-
native appearance model induced from our unified discritivieéormulation.
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Fig. 8. The sample key frames of the tracking results by TUDAMM on the RabbitRieo with
nonrigid motion.

Fig.9. The sample key frames of the tracking results by multiple target TUDAMMttan
CAVIAR dataset.

Tracking speed Last but not least, with a PC @f3-GHz CPU in Windows XP, without
any code optimization in our C++ implementation, our trackens at2 frames per
second for tracking a single target. It runsOai frames per second for tracking the
three people and.2 frames per second for tracking the 5 horses. We expect tolltave
times speed up with reasonable efforts on code optimization

6 Conclusion and future work

In this paper, we present a unified discriminative framewgaked on metric learn-
ing for robust tracking of either single or multiple targetgere both the appearance
modeling and visual matching are optimizing a single oljeatith efficient gradient
based search. Our experimental results validate the effafdbe proposed tracking al-
gorithm. When tracking multiple targets, our unified forntida encodes an exclusive
principle which naturally deals with cross occlusions amtre multiple targets. This
has also been manifested in our experiments. Future résisatades exploring means
of integrating our multiple target tracker with state-b&tart surveillance systems to
handle the appearance of new targets and disappearancktafggts.
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