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Abstract. We present a discriminative model that casts appearance modeling and
visual matching into a single objective for visual tracking. Most previousdiscrim-
inative models for visual tracking are formulated as supervised learning of binary
classifiers. The continuous output of the classification function is then utilized as
the cost function for visual tracking. This may be less desirable since thefunction
is optimized for making binary decision. Such a learning objective may make it
not to be able to well capture the manifold structure of the discriminative ap-
pearances. In contrast, our unified formulation is based on a principledmetric
learning framework, which seeks for a discriminative embedding for appearance
modeling. In our formulation, both appearance modeling and visual matching
are performed online by efficient gradient based optimization. Our formulation is
also able to deal with multiple targets, where the exclusive principle is naturally
reinforced to handle occlusions. Its efficacy is validated in a wide variety of chal-
lenging videos. It is shown that our algorithm achieves more persistent results,
when compared with previous appearance model based tracking algorithms.

1 Introduction

Appearance based visual tracking has been an active research topic for decades [1–8].
There are two essential tasks: themodeling task builds an appearance model for the
visual target; then thematching task matches the model with the source visual data to
recover the motion of the target objects. Appearance modelscan roughly be put into
two categories:generative models [2–4, 6] anddiscriminative models [7, 9, 8, 5].

Generative models seek a compact model to account for as muchvisual variations
of the appearances as possible. Most often a set of training examples is leveraged either
to obtain a subspace model [6, 2, 3] using embedding methods such as principle compo-
nent analysis (PCA) [6, 3] or Gram-Schmidt decomposition [2], or to learn a Gaussian
mixture model [1] using the Expectation-Maximization (EM)algorithm [10].

Discriminative models aim at differentiating the appearances of the visual targets
from the background. Most previous works proposed to learn abinary classifier to dif-
ferentiate the visual target from the background by using, for example, support vector
machine (SVM) [7], Boosting [8], linear discriminant analysis [9], and multiple in-
stance Boosting [5]. Compared to generative models, discriminative models may be
more desirable for tracking due to the discrimination of foreground and background.

After the classifier is learnt, most previous works utilize the continuous output of the
classification function as the objective for visual matching and tracking. This may be
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less desirable since the classification functions are trained to be good mainly for making
binary decision. In other words, they may not be able to well capture the manifold
structure of the discriminative appearances, a vital factor for robust visual tracking.

Given the visual appearance model, different tracking algorithms [11–16] come
with different optimization paradigm for matching. They can largely be classified into
two. The first class [11, 12] takes a hypothesis generation and observation verification
approach by probabilistic information fusion. Seminal works include Kalman filter,
probabilistic data association filter (PDAF) [11], and particle filter [12].

However, both Kalman filter and PDAF [11] make the assumptionthat the visual
observations of the target can be obtained in certain ways, which may not be satisfied in
many cases. Although particle filter [12] eliminates this assumption by taking a direct
verification approach, it needs sufficient number of particle hypotheses, and hence a lot
of computation resources for good performance. It is even worse when dealing with
high dimensional motions [17, 18]. This is why partitioned sampling [17] and impor-
tance sampling [18] are needed to effeciently utilize the limited particle budget.

The second class takes a direct optimization approach, where iterative gradient
based search [13, 15] is performed, or a linear program [14, 16] is solved to obtain
the tracking results. Compared to the first class of trackingalgorithms, direct optimiza-
tion [14, 13] usually does not make any additional assumptions about image observa-
tions, and the gradient based optimization can be performedefficiently with modern
nonlinear program [19]. This renders them to be more applicable when certain assump-
tions do not hold or the computational resource is constrained.

We propose a unified discriminative visual tracking framework for both appearance
modeling and visual matching. It is cast under a discriminative metric learning algo-
rithm proposed by Globerson and Roweis [20]. In our formulation, appearance mod-
eling is to identify a discriminative embedding, and visualmatching performs an ex-
emplar based regression on such a manifold w.r.t. the motionparameters. Both steps
optimize the same objective function and are performed alternatively by efficient gradi-
ent search. Therefore, we achieve two tasks in an unified formulation.

Without requiring any additional efforts, our formulationcan naturally deal with the
discriminative modeling and visual matching of multiple targets. Due to the mutual dis-
crimination of the multiple appearances, and the joint optimization of multiple motions
in our model, our tracking algorithm naturally reinforces the exclusive principle [21].
Exclusive principle states that no two visual targets shallaccount for the same image
observations, which is vital to handle cross occlusions, asmanifested in [21].

Our unified formulation presents three benefits to previous works: firstly, it presents
a unified discriminative formulation where appearances modeling and matching are op-
timizing the same objective function. Secondly, the unifieddiscriminative formulation
gracefully handles visual modeling and tracking of multiple targets where an exclu-
sive principle is naturally reinforced. This makes it to be robust to occlusions occurring
among the different visual targets. Thirdly, a principled criterion is derived from it to
select the optimal set of visual examples for online learning and matching.
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2 Discriminative appearance and motion model

2.1 A unified formulation

We take a unified formulation for joint discriminative appearances modeling and visual
matching. More formally, suppose we have a set of labeled training examplesX0 =
{xi ∈ R

N , yi}
n
i=1, whereyi = 1 meansxi is among then1 foreground samples, and

yi = 0 implies thatxi is one of then0+1 background samples, such thatn1+n0+1 =
n. In our experiments, eachxi is usually aw × h image patch andN = w × h.

We further denoteI(m) to be the visual target we would like to track wherem ∈ R
L

is the motion parameters we want to recover. Obviously, the labely of I(m) is 1, since it
represents the visual target. For ease of notation, we denotex0 = I(m). Therefore, our
final labeled data setX = X0 ∪{(x0, y0 = 1)}. Following Globerson and Roweis [20],
we propose to learn a Mahalanobis form metric, i.e.,

dA(xi,xj) = (xi − xj)
T
A(xi − xj). (1)

whereA is a positive semi-definite (PSD) matrix to be learnt. For each xi ∈ X , define

pA(xj |xi) =
1

Zi

e−dA(xi,xj) =
e−dA(xi,xj)

∑

k 6=i e
−dA(xi,xk)

. (2)

The ideal distribution of the optimalA shall collapse samples from the same class to
be a single point. Specifically, the ideal distribution shall take the following form,

p0(xj |xi) =

{

1
nl

yi = yj = l

0 yi 6= yj
. (3)

wherel ∈ {0, 1}. Recall thatx0 = I(m), we define

f(A,m) =
n
∑

i=0

KL (p0(xj |xi)||pA(xj |xi)) = C +
∑

yi=yj=l

1

nl

(dA(xi,xj) + logZi)

(4)
whereC =

∑

yi=yj=l
1
nl

log 1
nl

is a constant. To havepA(xj |xi) to be as close to
p0(xj |xi) as possible, we only need to proceed to minimizef(A,m), i.e.,

min f(A,m) (5)

s.t. ∀a ∈ R
N ,aTAa ≥ 0. (6)

where the constraint in Eq. 6 confinesA to be PSD. Solving the above optimization
problem would allow us to jointly obtain the optimal discriminative appearance model
defined byA, and track the motion of the target visual object, which is defined bym.
We solve both by efficient gradient based search, as presented in the following sections.

We shall emphasize here that we present our formulation and optimization in this
section with a single visual target for ease of presentation. We will extend the discussion
to present more details on how to deal with multiple objects tracking in Sec. 4.
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2.2 Appearance model estimation

In our unified formulation, discriminative appearance modeling refers to identifying the
optimalA, which defines the discriminative metric, and thus a discriminative embed-
ding. Assume that the motion parameterm is fixed, following [20], it is easy to figure
out thatf(A,m) is a convex function ofA. Taking the derivative off(A,m) with
respect toA, we have

∂f(A,m)

∂A
=

n
∑

i,j=0

(p0(xj |xi)− pA(xj |xi))(xj − xi)(xj − xi)
T . (7)

Similar to [20], we take a gradient projection algorithm [22] to obtain the optimalA.
Specifically the following two steps are performed:

1. GRADIENT DESCENT:A = A− ǫ∂f(A,m)
∂A

, whereǫ determines the step length for
gradient descent.

2. PSD PROJECTION: Compute the eigen-value decomposition ofA, i.e.,{λk,uk}
N
k=1

such thatA =
∑N

k=1 λkuku
T
k , setA =

∑N
k=1 max(λk, 0)uku

T
k .

The first step above performs gradient descent, and the second step reinforces the con-
straint to makeA to be a positive semi-definite matrix. These two steps are iterated
until convergence. Sincef(A,m) is a convex function ofA givenm. The iteration of
these two steps is guaranteed to find the optimal solution toA.

2.3 Motion parameter optimization

In this subsection, we fix the discriminative appearance model A, and develop the gra-
dient descent search for the motion parametersm. Not losing any generality, we assume
thatm is a linear motion model, i.e.,

[

x
y

]

=

[

a b
c d

] [

x′

y′

]

+

[

e
f

]

(8)

where[x′, y′]T is the canonical coordinates for the labeled examples, and[x, y]T is the
coordinates in the target video frame. This linear motion model covers a wide variety of
motions such as translation, scaling, similarity, as well as full affine motion. We proceed
to derive the gradient based search for the full affine motionmodel.

Recall thatx0 = I(m) is the only term that involves the motion parameterm,
according to chain rule, we have

∂f(A,m)

∂m
=

∂f(A,m)

∂x0

∂x0

∂m
. (9)

With some mathematical manipulation, it can be shown that

f(A,m) =
1

n1

∑

yj=1,j 6=0

2dA(x0,xj) +

n
∑

j=0

logZj + C(A) (10)
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whereC(A) is a term which is independent ofx0 and thus independent ofm. There-
fore, with some more mathematical manipulations, we have

∂f(A,m)

∂x0
=

4

n1

∑

yj=1,j 6=0

A(x0 −xj)− 2

n
∑

j=1

(pA(xj |x0)+ pA(x0|xj))A(x0 −xj).

(11)
For any parameterξ ∈ m, again, applying chain rule, we have

∂x0

ξ
=

∂I(m)

∂ξ
=

∂I(m)

x

∂x

∂ξ
+

∂I(m)

y

∂y

∂ξ
, (12)

where∂I(m)
x

and ∂I(m)
y

represents the image gradient in the target frame in horizontal
and vertical directions, respectively. For ease of notation, we denote them asIx andIy
respectively. Following Eq. 12, we have

∂x0

∂a
= Ixx

′,
∂x0

∂b
= Ixy

′,
∂x0

∂c
= Iyx

′,
∂x0

∂d
= Iyy

′,
∂x0

∂e
= Ix,

∂x0

∂f
= Iy (13)

Therefore, we may easily calculate the gradient off(A,m) with respect tom by ap-
plying Eq. 9 to Eq. 13. Then we can take a gradient descent stepto recover the optimal
motion parameterm, i.e.,

m = m− η
∂f(A,m)

∂m
(14)

where the step lengthη could be estimated, for example, by a quasi-Newton method
such as L-BFGS [19].

3 Online matching and model estimation

One of the main challenges in appearance model based visual tracking is to robustly
adapt the model to the visual environment. This adaptation may be indispensable for
robust tracking since the target objects may go through drastic visual changes from
environmental conditions such as extreme lighting, occlusions, casting shadows, and
pose and view changes. The unified formulation we proposed inEq. 5 enables us to
naturally fulfill this task. We proceed to present it in a moreformal way.

Extended from the notation of Sec. 2, letX (t) be the set ofn labeled examples
we maintain at time instancet. We also letAt be the current discriminative appear-
ance model, andmt be the motion parameters we need to recover. Hence we have
x
(t)
0 = I

(t)(mt). At each time instantt, givenX (t) andAt, we run the gradient descent
optimization algorithm outlined in Sec. 2.3 to obtain the optimal motion parameterm⋆

t .
This fulfills our visual matching and tracking task. Then we perturbm⋆

t to generate a
set ofα negative samplesX (t+1)

− to replace the oldestα negative sample subsetX
(t)
− in

X (t). This results in the new labeled examplesX (t+1), i.e.,

X (t+1) = (X
(t)
0 \ X

(t)
− ) ∪ X

(t+1)
− . (15)
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Sincemt has been recovered, for ease of presentation, we abuse the notation to tem-
porally definex(t+1)

0 = I
t(mt). With X (t+1) We can then run the gradient projection

optimization algorithms outlined in Sec. 2.2 to obtain the optimal At+1. To proceed
with the next matching step to identify the optimalI

t+1(mt+1), with a fixed memory
budget, we need to retire one positive examples in the current X (t+1), we propose a least
consistent criterion based on the contribution of each positive examples to the unified
cost functionf(At+1,mt). Indeed, fixingAt+1 andmt, f(At+1,mt) is a function of
X (t+1), i.e.,f(At+1,mt) = g(X (t+1)). We can similarly define ag(·) function for any
subset ofX (t+1) based on Eq. 4. Therefore, for eachx ∈ X (t+1), a consistent criterion
can be defined as

c(x) = g
(

X (t+1)
)

− g
(

X (t+1) \ {x}
)

. (16)

It is easy to understand that the largerc(x) is, the more contributionx has made to
f(At+1,mt). If the labely(x) = 1, a largerc(x) indicates thatx is not very compatible
to the rest of the positive samples, and hence should be retired from the sample set. More
formally, we select

x
⋆ = argmaxx∈X (t+1),y(x)=1c(x) (17)

to retire fromX (t+1). In real operation, we only need to change the numbering of
x
(t+1)
0 = I

t(mt) to the numbering ofx⋆, then we resetx(t+1)
0 = I

t+1(mt+1) which is
unknown now to kick off the matching process for the optimal motion parametermt+1.

The above steps will be repeated from time instantt to time instantt + 1. There-
fore we track the visual target and estimate the discriminative visual appearance model
simultaneously in an online fashion, which are all based on efficient gradient based opti-
mization. Most previous approaches resort to heuristics orthe oldness of visual samples
to select the optimal set of online training examples. While our proposed selection cri-
terion for positive examples in Eq. 17 is derived directly from our unified cost function
in a principled fashion, an obvious benefit of our unified formulation.

To initialize the tracking algorithm, we can run an object detector if it applies, such
as a face detector [23] or a human detector [24], if we are tracking a face or a person.
Or we can request the users to manually specify a tracking rectangle in the first frame.
Then the initialized tracking rectangle, either from a detector or manually specified, is
perturbed to form the initial set of labeled examplesX (1). More specifically, perturbed
rectangles with sufficient overlap with the initial rectangle are regarded as positive ex-
amples, while those perturbed rectangles which are deviated too much from the initial
rectangles are deemed as negative examples. This bootstraps learning for the optimal
discriminative appearance modelA2, which is then adopted to obtain the optimal mo-
tion parameterm2. This processes will be repeated as described above.

Last but not least, when maintaining the labeled example setX (t), we fix a small
set ofβ negative andβ positive examples extracted from the initialization framein the
set, i.e., we never replace them with new examples. This treatment is very important to
keep some invariance to our discriminative appearance model and avoid it to be drifted
too drastically in the visual tracking process, a trick which has been adopted also in
previous work, such as [8].
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4 Modeling and tracking multiple objects

Our unified formulation is natural to handle the tracking of multiple targets. To see this,
we assumeyi = 0 indicates background, andyi = 1, . . . ,K indicates each of theK
visual targets we are intending to track. LetS0 = {(x0j , y0j = 0)}n0

j=0, and also let
Si = {(xij , yij = i)}ni

j=0 for anyi = 1, . . . ,K, where∀i > 0, xi0 = I(mi) indicates
each of the visual targets we want to track in the current frame, wheremi is represented
by {ai, bi, ci, di, ei, fi}, as defined in Eq. 8. Following similar steps as we have derived
Eq. 4, denoteM = {m1,m2, . . . ,mK}, andX = {xi0}

K
i=1 we have

f(A,M) = C +

K
∑

i=0

ni
∑

j 6=k=1

1

ni

(dA(xij ,xik) + logZij) . (18)

whereZij anddA(·, ·) are all defined similar to the corresponding terms defined in
Sec. 2.1. HereA captures the discriminative appearances information for all the K
visual targets, andmi represents the motion for theith visual target which, in our
experiments, are again the affine motion parameters defined in Eq. 8.

Following similar derivations as in Sec. 2.2 and Sec. 2.3, wecan compute

∂f(A,M)

∂A
=

K
∑

i=0

ni
∑

j=0

K
∑

k=0

nk
∑

l=0

ωij(kl)(xkl − xij)(xkl − xij)
T (19)

where
ωij(kl) = p0(xkl|xij)− pA(xkl|xij). (20)

With this formula to compute the gradient, we can utilize similar Gradient projection
steps outlined in Sec. 2.2 to obtain the optimalA. Notice that hereA captures both the
discriminative appearances among all the visual targets, as well as the discriminative
information between the visual targets and background. Similarly, we obtain that

∂f(A,M)

∂xi0
=

4

ni

ni
∑

j=1

A(xi0 − xij)− 2
K
∑

k=1

nk
∑

l=0

βi0(kl)A(xi0 − xkl). (21)

where
βi0(kl) = pA(xkl|xi0) + pA(xi0|xkl) (22)

Following Eq. 13, we also have

∂xi0

∂ai

= Ixx
′

i,
∂xi0

∂bi
= Ixy

′

i,
∂xi0

∂ci
= Iyx

′

i,
∂xi0

∂di
= Iyy

′

i,
∂xi0

∂ei
= Ix,

∂xi0

∂fi
= Iy. (23)

Following chain rules and with Eq. 23, we can easily calculate

∂f(A,mi)

mi

=
∂f(A,M)

∂xi0

∂xi0

mi

(24)

With Eq. 24, again, we use L-BFGS [19] to solve the nonlinear optimization problem
to obtain each set of motion parametersmi for theith visual target. Based on the above
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two gradient based optimization schemes forA and eachmi, respectively, following
similar ideas as outlined in Sec. 3, we can further develop online appearances modeling
and updating algorithms and visual matching algorithms forrobust visual tracking of
multiple objects. We shall not verbose on it since it followsquite similar steps as those
outlined in Sec 3.

4.1 Discriminant exclusive principle

We argue that the proposed joint formulation for multiple object tracking naturally in-
corporates an exclusive principle [17] in the matching process. Therefore it is robust to
handle occlusions among the different visual objects. The exclusive principle states that
no two visual tracker shall occupy the same image observation. Our proposed algorithm
naturally achieves it because of the joint discriminative appearance modelA, which re-
inforces the mutual discrimination of the appearances between two visual targetsI(mi)
andI(mj). To see this more clearly, given an optimalA, if I(mi) andI(mj) occupy
similar image regions (a.k.a,mj

.
= mi), and thus have similar appearance, the mu-

tual discriminative information encoded inA would incur a large value forf(A,M).
Therefore,mj

.
= mi is not an optimal solution toM. In other words, the optimal mo-

tion parameterM is more likely to occur when∀1 ≤ i < j ≤ K,mj 6= mi. Therefore,
the exclusive principle among the different visual targetsis naturally reinforced.

5 Experiments

We dub the nameTUDAMM to the Tracker with Unified Discriminative Appearance
Modeling and Matching (TUDAMM). Comparing with the resultsof other state-of-
the-art trackers [2, 13], we evaluate our TUDAMM using several challenging video
sequences including video clips from CAVIAR dataset [25], and other real-world video
sequences downloaded from Internet.

5.1 Evaluation criteria

Enlightened by the simplicity and the elegance of the Average Precision (AP) criterion
used in the PASCAL grand challenge [26] for object detectionevaluation, we define
a simple measure for tracker evaluation, namely Average Tracking Precision (ATP).
More formally, for each tracking task, a ground truth mask for the object of interest is
labeled in each framej. The mask is represented as a point setGj . The tracking result
is represented as a point setTj at framej. (xi, yi) ∈ Gj or Tj indicates that the pixel at
(xi, yi) is inside them. For an ideal tracker,∀i, Gj = Tj .

For each framej, the tracking precisionrj is defined as:rj = |Gj ∩ Tj |/|Gj ∪ Tj |.
Noticing thatrj ∈ [0, 1], the ATP for a tracker of an object in a video clip is defined as:

ATP =
1

N

N∑

j=1

rj =
1

N

N∑

j=1

|Gj ∩ Tj |

|Gj ∪ Tj |
, (25)

whereN is the running length of the video clips in frame number. For an ideal tracker,
ATP ≡ 1. We use it as the exclusive quantitative measure to compare the performance
of the TUDAMM with other state-of-the-art trackers.
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Fig. 1. The sample key frames of the tracking results for CAVIAR dataset. Key frame NO.
443, 455, 467, 488, 501, 772 are shown from left to right. First row: TUDAMM. Second Row:
Meanshift [13]. Third row: Incremental Learning Tracker (ILT) [3].

5.2 Visual tracking of single/multiple target(s)

We firstly present the tracking results of TUDAMM for single target on a video se-
quence from the CAVIAR dataset3, where three persons are walking in the corridor of
a shopping mall in Portugal. We call this video sequence “ThreePerson”. We run the
proposed tracking algorithm to track one of the three persons individually. The tracking
task is challenging in several aspects: 1) the scales of the visual targets change dras-
tically; 2) the three persons walked across each other and thus induced occlusion; 3)
some other crossing person occluded the target person.

As shown in the first row of Fig. 1, the TUDAMM tracker successfully tracked
the target person from beginning of the sequence to the end ofthe sequence with-
out any problem, which is more robust than both the mean-shift tracker [13] (second
row) and the incremental PCA tracker [3] (third row). Both ofthese algorithms failed
to track the target after the person with red cloth occluded the target person, as dis-
played in the second and third row of Fig. 1. The robustness ofour TUDAMM tracker
attributes to our unified discriminative formulation, which makes it more robust to
background clutter. For detailed video results, please check out our video demo file
“http://vision.ece.missouri.edu/demo/ECCV2010Tracking.avi”.

Quantitative comparisons to other work Since the ThreePerson video in the CAVIAR
dataset has ground-truth labels of the bounding boxes of thewalking persons in the
video sequence, we use the ATP criterion presented in Sec. 5.1 to quantitatively evalu-
ate the performances of the proposed TUDAMM tracker, the mean-shift tracker (Mean-
shift) [13], and the incremental PCA tracker (ILT) [3]. We present two such evaluation
results for tracking two different persons in the video in Fig. 2(a) and Fig. 2(b), respec-
tively. It is clear TUDAMM consistently presents more accurate tracking results than

3 Data set from EC Funded CAVIAR project/IST 2001 37540, downloadedat URL:
http://homepages.inf.ed.ac.uk/rbf/CAVIAR/.
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Fig. 2. (a) The performance comparison for the person tracked in figure 1.(b) The performance
comparison for tracking the black person at right to the red person at the starting frame.

Fig. 3. The top 12 eigenvectors (with the descent order from left to right) for thediscriminative
matrixA.

the other algorithms, which achieves an average tracking ATP of 75%. This demon-
strates the good performance of the gradient based matchingalgorithm to recover the
motion parameters.

Visualizing the appearance modelA As a matter of fact, the appearance modelA de-
fines a discriminative embedding to differentiate the visual object from the background.
Each eigenvector ofA is corresponding to one basis vector of the embedding. To have
a better understanding of how the appearance modelA functions, in Fig. 3, we visual-
ize the top12 eigenvectors of an optimalA estimated at frame436 when tracking the
person in red in the ThreePerson sequence. As we can clearly observe, these eigenvec-
tors focusing on extracting the contour and thus encode the shape information of the
target person. They also tend to focus more on features inside the human contour while
suppress features outside the human contour. This indicates that our metric learning
framework really picks up the discriminative information for tracking.

Visualizing the gradient optimization processesTo gain a good understanding of
the gradient optimization process of both the discriminative appearance estimation as
well as the gradient based optimization process for visual matching, we visualize the
evolution of both optimization processes in frame 532 of theThreePerson sequence,
as shown in Fig. 4 and Fig. 5, respectively. The tracking target is the rightmost person
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Fig. 4. The evolution of the tenth Eigen vector ofA during gradient optimization in the first 11
steps of gradient descent from left to right.

Fig. 5. The gradient optimization of objective function w.r.t. the motion parameters in frame 532
in the CAVIAR sequence. The tracking is initialized as the tracking result in frame 512 for better
visualization. Red rectangle in the left image is the final converged matchingresults. The figure
on the right displays how the objective function is minimized by gradient descent.

in this frame. Fig. 4 visualizes how the tenth eigen-vector of the discriminative model
A evolves in the first11 iterations. We start the optimization by initializingA as an
identity matrix, so the initialization of the tenth eigen-vector is a unit vector with the
tenth element to be one and all the other elements are zero, asshown in the first image
in Fig. 4. As we can clearly observe, only after8 steps of gradient descent the eigen-
vector has already been stabilized. From Fig. 5, we can clearly observe the effectiveness
of the gradient optimization process in the visual matchingstep. In only4 steps of
gradient descent, the matching result is already converged. These figures demonstrate
the efficiency of the proposed gradient optimization process.

Tracking under various visual variations We have also extensively tested the TU-
DAMM with other challenging videos used in previous works ordownloaded from
YouTube with various challenging aspects. We highly recommend to check our demo
video for more details of all the tracking results.

More specifically, in Fig. 6, we present the tracking resultsof a human face from
the TUDAMM, the ILT [3], and the Meanshift trackers [13], respectively. The ILT
tracker [3] firstly reported results in this video, which is subject to drastic illumination
changes and casting shadows. As we can clearly observe in Fig. 6, the TUDAMM ro-
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Fig. 6. The sample key frames of the tracking results on the challenging face moving under
shadow with big illumination change video . Key frame NO.201, 210, 220, 230, 240, 260 are
shown from left to right. First row: TUDAMM. Second Row: Meanshift. Third row: ILT.

Fig. 7. The sample key frames of the CrazyCarChasing tracking results of TUDAMM with large
scale zooming and camera motion.

bustly tracked the human face despite the dramatic shadows and illumination changes.
While both the ILT tracker and the Meanshift tracker failed with the drastic visual vari-
ations. The results video contains71 frames.

In Fig. 7, we report the tracking results of TUDAMM on a car chasing video down-
loaded from YouTube. The video is subject to large scale change and drastic camera
motion since it was taken from a helicopter. Our tracking algorithm successfully tracked
the motion of the target car without any problem. The resultsvideo contains578 frames.
In Fig. 8, we present the tracking results of a rabbit which underwent a lot of non-rigid
motions. TUDAMM successfully tracked the rabbit across thevideo, which contains
156 frames.

Tracking multiple targets with cross occlusion To demonstrate the ability of TU-
DAMM in dealing with occlusions in multiple object tracking, we report results in two
video sequences, one is the ThreePerson video from the CAVIAR dataset, and the other
is a horse racing video downloaded from YouTube. Tracking results in sample video
frames are displayed in Fig 9 and Fig 10, respectively. Threepeople are tracked in the
CAVIAR video, while five horse racers are tracked in the horseracing video. As we can
clearly observe, despite severe cross occlusion among the different visual targets, our
TUDAMM tracked all of them without any problem. This is attributed to the discrimi-
native appearance model induced from our unified discriminative formulation.
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Fig. 8.The sample key frames of the tracking results by TUDAMM on the RabbitRunvideo with
nonrigid motion.

Fig. 9. The sample key frames of the tracking results by multiple target TUDAMM onthe
CAVIAR dataset.

Tracking speed Last but not least, with a PC of2.3-GHz CPU in Windows XP, without
any code optimization in our C++ implementation, our tracker runs at2 frames per
second for tracking a single target. It runs at0.5 frames per second for tracking the
three people and0.2 frames per second for tracking the 5 horses. We expect to have10
times speed up with reasonable efforts on code optimization.

6 Conclusion and future work

In this paper, we present a unified discriminative frameworkbased on metric learn-
ing for robust tracking of either single or multiple targets, where both the appearance
modeling and visual matching are optimizing a single objective with efficient gradient
based search. Our experimental results validate the efficacy of the proposed tracking al-
gorithm. When tracking multiple targets, our unified formulation encodes an exclusive
principle which naturally deals with cross occlusions among the multiple targets. This
has also been manifested in our experiments. Future research includes exploring means
of integrating our multiple target tracker with state-of-the-art surveillance systems to
handle the appearance of new targets and disappearance of old targets.
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