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Abstract. We present a framework for vision-assisted tagging of per-
sonal photo collections using context. Whereas previous efforts mainly
focus on tagging people, we develop a unified approach to jointly tag
across multiple domains (specifically people, events, and locations). The
heart of our approach is a generic probabilistic model of context that cou-
ples the domains through a set of cross-domain relations. Each relation
models how likely the instances in two domains are to co-occur. Based
on this model, we derive an algorithm that simultaneously estimates the
cross-domain relations and infers the unknown tags in a semi-supervised
manner. We conducted experiments on two well-known datasets and ob-
tained significant performance improvements in both people and location
recognition. We also demonstrated the ability to infer event labels with
missing timestamps (i.e. with no event features).

1 Introduction

With the ever increasing popularity of digital photos, vision-assisted tagging
of personal photo albums has become an active research topic. Existing efforts
in this area have mostly been devoted to using face recognition to help tag
people. However, current face recognition algorithms are still not very robust to
the variation of face appearance in real photos. To address this issue, various
methods [1] have been proposed to exploit contextual cues to aid recognition.
While obtaining some improvement, these methods focus on the people domain,
and neglect other important domains such as events and locations.

The most important questions in regard to personal photo tagging are who,
what, when, and where. With an aim of answering these questions coherently, we
consider the domains of people, events, and locations, as a whole. Our work is
motivated by the insight that the domains are not independent and knowledge
in one domain can help the others. For example, if we know the event that a
photo was captured in, we can probably infer who was in the photo, or at least
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Fig. 1. Our framework comprises three types of entity: (1) The people, event, and
location domains, together with their instances. (2) The observed features of each
instance in each domain. (3) A set of contextual relations between the domains. Each
relation is a 2D table of coefficients that indicate how likely a pair of labels is to co-
occur. Although only the people-event relation is shown in this figure, we consider four
different relations in this paper. See body of text for more details.

reduce the set of possibilities. On the other hand, the identities of the people in
a photo may help us infer when and where the photo was taken.

Ideally, if a strong classifier is available to recognize the instances in a domain
accurately, one can utilize the labels in this domain to help the recognition in
others. However, a challenge arises in real system is that we often do not have a
strong classifier to start with in any domain. One of our primary contributions
is to develop a unified framework that couples the recognition in these domains.
We also derive a joint learning and inference algorithm that would allow us to
achieve accurate recognition in all domains by exploiting the statistical depen-
dency between them to reinforce individual classifiers.

Our framework, outlined in figure 1, consists of three domains: people, events,
and locations. Each domain contains a set of instances. In order to account for
the uncertainty due to missing data or ambiguous features, we consider the labels
in all three domains as random variables to be inferred. Pairs of domains are
connected to each other through a set of cross-domain relations that model the
statistical dependency between them.

In this paper, we specifically consider four relations: (a) the people-event re-
lation models who attended which events, (b) the people-people relation models
which pairs of people tend to appear in the same photo, (c) the event-location
relation models which event happened where, and (d) the people-location relation
models who appeared where. These relations embody a wide range of contextual
information, which is modeled uniformly under the same mathematical frame-
work. It is important to note that each pair of related domains are symmetric
with respect to the corresponding relation. This means, for example, that utiliz-
ing the people-event relation, event recognition can help people recognition, and
people recognition can also help event recognition.

Based on this framework, we formulate a joint probabilistic model to integrate
both feature similarity and contextual relations. However, we face a challenge
that specially arises in the application of personal photo tagging. Unlike other
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classification problem such as object recognition where one can learn the contex-
tual models from training data, the relational models (e.g. people-event relation)
estimated from one photo collection are generally not applicable to other col-
lections. In fact, the set of people or events may well be completely different in
two different photo collections. It is also infeasible to require a user to prepare
training data for each of their albums. Instead, we develop an algorithm that
simultaneously estimates the relations and infers the labels across all domains
by solving a unified optimization problem in a semi-supervised way.

We tested our approach on two well-known datasets. For people labeling, the
error rate is reduced from 27.8% to 3.2% on one data set, and from 26.3% to
14.6% on the other. We also obtained a huge improvement in location labeling
(16.7% to 1.3%). Finally, we demonstrate the ability to estimate event labels for
photos in the presence of missing timestamps (i.e. with missing event features.)

2 Related Work

Related prior work can be roughly split into two categories: context-aided face
recognition, and object/scene classification using context. We now review this
related work and clarify the key differences from our approach.

Over the last decade, there has been a great deal of interest in the use of
context to help improve face recognition accuracy in personal photos. A recent
survey of context-aided face recognition can be found in [1]. Zhang et al. [2] uti-
lized body and clothing in addition to face for people recognition. Davis et al. [3,
4] developed a context-aware face recognition system that exploits GPS-tags,
time-stamps, and other meta-data. Song and Leung [5] proposed an adaptive
scheme to combine face and clothing features based on the time-stamps. These
methods treat various forms of contextual cues as linearly additive features, and
thus oversimplifies the interaction between different domains.

Various methods based on co-occurrence have also been proposed. Naaman et
al. [6] leveraged time-stamps and GPS-tags to reduce the candidate list based on
people co-occurrence and temporal/spatial re-occurrence. Gallagher and Chen [7]
proposed an MRF to encode both face similarity and exclusivity. In later work
by the same authors [8], a group prior is added to capture the tendency that
certain groups of people are more likely to appear in the same photo. In addi-
tion, Anguelov et al. [9] developed an MRF model to integrate face similarity,
clothing similarity and exclusivity. Finally, Kapoor et al. [10] proposed a frame-
work that uses Gaussian Processes to capture contextual constraints. Whereas
these models provide a more flexible way to capture the interaction between
co-occuring instances, they are nearly all formulated within the people domain.
An exception is Naaman et al. [6], which uses time and locations, however the
model is heuristic and the time and location labels are treated as noiseless.

In contrast to prior contextual face recognition work, our framework treats all
three domains in a uniform manner. The labels in each domain (including events
and locations) are modeled as random variables, rather than noiseless quanti-
ties, and the relation connecting each pair of domains can be utilized for the
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inference in both domains. Moreover, instead of using heuristics to utilize time
and locations, we develop a principled approach that establishes a joint proba-
bilistic model over these domains. Labeling and estimation are thus performed
as a unified optimization process.

Our framework is also related to the use of context in object recognition
and scene classification. For example, Torralba et al. [11, 12] used scene context
as a prior for object detection and recognition. Rabinovich et al. [13] proposed
a CRF model that utilizes object co-occurrence to help object categorization.
Galleguillos et al. [14] extended this framework to use both object co-occurrence
and spatial configurations for image segmentation and annotation. Li-Jia and
Fei-Fei [15] proposed a generative model that can be used to label scenes and
objects by exploiting their statistical dependency. In later work [16], the same
authors extended this model to incorporate object segmentation. Cao et al. [17]
employed a CRF model to label events and scenes coherently.

While these approaches share some technical similarity with our work, three
key differences distinguish our work:

(1) As mentioned above, it is infeasible in personal photo tagging to provide
a separate training set to estimate the contextual model. To meet this challenge,
we designed an algorithm where the model is estimated directly from the photo
collection to be tagged, along with inference being performed. This should be
contrasted with the conventional approach to object/scene classification, where
the models are learned offline on a training set.

(2) The instances to be labeled in object/scene recognition are typically in-
stances (e.g. objects) within a single image. The context models the relations
(spatial, co-occurrence) within that image. On the other hand, our contextual
model is over the entire photo collection. It models inter-photo dependencies
rather than just intra-image relations. This makes it possible to reliably esti-
mate the relational models without the need of a priori training.

(3) The application domain is different. Rather than considering generic ob-
ject recognition and scene classification, we consider the problem of context-
assisted face, location, and event recognition in personal photo collections.

3 Probabilistic Model Formulation

In this section, we formalize our framework as a Bayesian model. Suppose there
are M domains: Y1, . . . ,YM . Each domain is modeled as a set of instances, where
the i-th instance in Yu is associated with a label of interest, modeled as a random
variable yiu. While the user can provide a small number of labels in advance, most
labels are unknown and to be inferred. Specifically, we consider three domains
for people, events, and locations. Each detected face corresponds to a person
instance in people domain, and each photo corresponds to both an event in-
stance and a location instance. Each domain is associated with a set of features
to describe its instances. In particular, person instances are characterized by
their facial appearance and clothing; while events and locations are respectively
characterized by time-stamps and the background color distribution.
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To exploit the statistical dependency between the labels in different domains,
we introduce a relational model Ruv between each pair of related domains Yu
and Yv. It is parameterized by a 2D table of coefficients that indicate how likely
a pair of labels is to co-occur. Taking advantage of these relations, we can use
the information in one domain to help infer the labels in others.

Formally, our goal is to jointly estimate the posterior probability of the labels
Y and relations R conditioned on the feature measurements X:

p(Y,R|X) ∝ p(Y |R,X)p(R). (1)

Here, we use Y and X to represent the labels and features of all domains. The
formulation has two parts: (1) p(Y |R,X): the joint likelihood of the labels given
the relational models and features (section 3.1). (2) p(R): the prior put on the
relations to regularize their estimation (section 3.2).

3.1 Joint Probability of Labels

We propose to directly model the joint label distribution conditioned on the
observed features, rather than assuming a parametric feature distribution for
each class as in generative models. This approach is generally more effective
when the number of labeled samples in each class is limited. In particular, we
propose the following model for p(Y |R,X):

p(Y |X;R) =
1

Z
exp

 M∑
u=1

αuΦu(Yu; Xu) +
∑

(u,v)∈R

αuvΦuv(Yu, Yv;Ruv)

 . (2)

The proposed likelihood contains: (1) an affinity potential Φu(Yu,Xu) for each
domain Yu to model feature similarity, and (2) a relation potential Φuv(Yu, Yv;Ruv)
for each pair of related domains (u, v) ∈ R. They are combined with weights αu

and αuv, which can be set by cross-validation in practice.
1. The affinity potential Φu captures the intuition that two instances in

Yu with similar features are likely to be in the same class:

Φu(Yu; Xu) =

Nu∑
i=1

Nu∑
j=1

wu(i, j)I(yiu = yju). (3)

Here, wu(i, j) is the similarity between the features of the instances correspond-
ing to yiu and yju. I(·) denotes the indicator that equals 1 when the condition
inside the parenthesis holds. The similarity function wu depends on the features
used for that domain (see section 5 for details). If the instances in a domain
can be described by different types of features, we define affinity potentials for
different features, and use their sum as the overall potential.

Intuitively, Φu considers all instances of Yu over the entire collection, and
attains large value when instances with similar features are assigned the same
labels. Maximizing Φu should therefore result in clusters of instances that are
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consistent with the the feature affinity. This is in contrast to standard CRF
models [18] that require learning class-specific feature coefficients for each class.

When clothing is used as one of the features in the people domain, a modifi-
cation is necessary. As people may change clothes, comparing clothing features
is only appropriate when the two person instances were in the same event. To
model this, we modify the affinity potential for clothing features to be:

Φ(YP ; XC) =

N∑
i=1

N∑
j=1

wC(i, j)I(yip = yjp)I(yph(i)e = yph(j)e ). (4)

Here, YP and XC denote the people labels and clothing features, wc(i, j) is
the similarity between the clothes of the i-th and j-th person instances, and

y
ph(i)
e and y

ph(j)
e are the event labels of the corresponding photos. The factor

I(yph(i)e = y
ph(j)
e ) only turns on rest of the term within the same event.

2. The relational potential Φuv(Yu, Yv;Ruv) models the cross-domain in-
teraction between the domains Yu and Yv. The relational model Ruv is param-
eterized as a 2D table of co-occurring coefficients between pairs of labels. For
example, for people domain Yu and event domain Yv Ruv(k, l) indicates how
likely it is that the person k attended the event l. Then, we define Φuv to be:

Φuv(Yu, Yv;Ruv) =
∑
i∼j

∑
k,l

Ruv(k, l)I(yiu = k)I(yjv = l). (5)

Here, i ∼ j means that yiu and yjv co-occur in the same photo. Intuitively, large
value of Ruv(k, l) indicate that the pair of labels k and l co-occur often, and
will encourage yiu to be assigned k and yjv be assigned l. Hence, maximizing Φu

should lead to the labels that are consistent with the relation.

3.2 Relational Model Prior

In real application, only a relatively small number of instances are tagged in
advance by user (often just one or two per class). The model is estimated from
these user-given labels. While the estimation can also use the labels inferred in
previous step in our iterative algorithm, the inferred labels could be noisy and
actually depend on the user-given labels. To avoid over-fitting, it is important to
regularize the relational models. To this end, we incorporate the following prior:

p(R) =
1

Zprior
exp

−β1 ∑
(u,v)∈R

||Ruv||1 − β2
∑

(u,v)∈R

||Ruv||22

 . (6)

Here, ||Ruv||1 and ||Ruv||2 are L1 and L2 norm of the relational matrix. Intu-
itively, the first term encourages sparsity of the relational coefficients, and there-
fore can effectively suppress the coefficients due to occasional co-occurrences,
retaining only those capturing truly stable relations. Furthermore, it is often the
case that a small number of people may appear hundreds of times, while others
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only several times. This could result in exceptionally large coefficients for those
dominant classes, and as a consequence, some instances in small classes may be
incorrectly assigned the labels of large classes. The second term regularizes the
coefficients, and thus can help to inhibit such errors that could otherwise occur
when class sizes are imbalanced.

4 Joint Inference and Learning

We derive a variational EM algorithm where the goal is to jointly infer the labels
of instances and estimate the relational model. With a few labels in different
domains provided in advance by user (denoted as YL), the algorithm iterates
between two steps: (1) Infer the distribution of the unknown labels (denoted as
YU ) based on both the extracted features and the current relational model R.
(2) Estimate and update the relational model R using the labels provided by
user and the hidden labels inferred in previous iteration.

We can derive such iterative procedure by considering the task of Maximum-
a-posteriori (MAP) estimation of R

R∗ = argmax
R

p(R|YL; X), where p(R|YL; X) ∝ p(R)
∑
YU

p(YU , YL|R,X). (7)

Note that computing p(R|YL; X) requires marginalizing over the unknown labels
YU and is intractable. The variational methods tackle this problem by maximiz-
ing a tractable lower a bound of the log posterior. Formally, if q denotes any
valid distribution of YU , then using Jensen’s equality it is easy to obtain a lower
bound of log[p(R)p(YL|R,X)], given by

J(R, q) = Eq{log p(YU , YL|R,X)}+ log p(R) + Hq(q(YU )) (8)

Further, it is well known (put some ref here) that equality holds when q(YU ) =
p(YU |YL;R,X). In other words, maximizing the lower bound J(R, q) with respect
to both R and q will not only provide us with an estimate of R but also the
posterior distribution over YU . The optimization of J(R, q) w.r.t. R and q can
be performed by iterating between the following steps.

q̂(t+1) = argmax
q

J(R̂(t), q), (E-step) (9)

R̂(t+1) = argmax
R

J(R, q̂(t+1)). (M-step) (10)

The E-step in Eq.(9) infers the posterior distribution of the unknown labels YU
using the current model R̂(t). The M-step in Eq.(10) estimates the relational
model R based on the updated distribution q̂(t+1)(YU ). However, solving Eq.(9)
and Eq.(10) under our formulation is intractable and we need to resort to vari-
ational approximations.
Inferring Unknown Labels (E-STEP): The optimization problem in Eq.(9)
can be made tractable using mean field approximation [19]. Formally, we restrict
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q to be a factorized distribution: q(YU ) =
∏M

u=1

∏
i∈Uu

qiu(yiu). Here, Uu corre-
spond to all unlabeled instances in domain Yu. The approximation results in the
following closed form expressions for updating the posteriors:

q̂iu(k) =
1

Zi
u

exp(ψi
u(k)). (11)

where, Zi
u =

∑
k′ exp(ψi

u(k′)) is the normalization constant, and ψi
u(k) is:

ψi
u(k) = αu

Nu∑
j=1

wu(i, j)qju(k) +
∑

v:(u,v)∈R

αuv

∑
j:i∼j

Kv∑
l=1

Ruv(k, l)qjv(l). (12)

Note that despite the factorized form, the parameters of qiu for different instances
are coupled to each other and effect each other. Further, as observed in Eq.(12),
both feature similarity (first term) and cross-domain relations (second term) are
utilized in the inference, leading to an estimate of the posterior that considers
both within-domain and cross-domain information.
Estimating Relational Model (M-STEP): Given the inferred distribution
q, we can estimate the relational model R by solving Eq.(10):

R∗ = argmax
R

Eq{log p(YL, YU |X;R)} − logZ(X;R) + log p(R). (13)

Note that the log-partition function logZ(X;R) is intractable here. We use tree-
reweighted approximation [20] to make it tractable. The basic idea is to divide the
original model into tractable sub-models, and replace logZ(X;R) with a convex
combination of the log-partition functions of the sub-models. The substitution
results in an upper bound of logZ(X;R) [20]. In particular, we divide the joint
model into affinity models and cross-domain relations, leading to the following
upper bound:

M∑
u=1

θuAu +
∑
u↔v

θuvBuv(Ruv/θuv) (14)

Here Au is the log-partition of the affinity model for Yu that is independent
of R, and Buv is the log-partition of the cross-domain relation. The coefficients
θu and θuv are the weights of the convex combination of the models. Such an
approximation simplifies the maximization step and now each relation can be
estimated respectively by solving:

R∗uv = argmax
Ruv

Eq{Φuv(Yu, Yv;Ruv)} − θuvBuv(R/θuv) + log p(Ruv). (15)

For simplicity, we set the weights to be θuv = 1/#relations. The objective is
concave with a unique optimum and we use L-BFGS algorithm [21] to solve it.

5 Experiments

There are two publicly available datasets that are commonly used to evaluate re-
search in personal photo tagging, which we call E-Album [22] and G-Album [23].
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Since ground-truth labels are not provided, we estimate ground-truth by man-
ually tagging each detected face. We also manually tag the event and location
of each photo. We excluded the photos without any detected faces, and those
whose ground-truth event and location labels could not be determined, leaving
a subset of each album. In particular, E-Album contains 108 photos taken at
21 locations in 19 events, and 19 different people with 145 detected faces. G-
Album contains 312 photos taken at 117 events, and 13 different people with
441 detected faces. The two albums give rise to different challenges. The sizes
of the people classes in the E-Album are more unbalanced, while the G-Album
has many more events, each containing only a small number of photos.

Feature extraction was performed as follows. For the people domain, we used
the facial features proposed in [24]. A color histogram was used for the clothing.
The location of the clothing relative to the face was determined using a simple
geometric rule. For events we used the time-stamps as features. For locations,
we used a color histogram of the background scene. For each feature, a distance
measure is required. For the face features, we followed the algorithm in [24].
For clothes and location features, we used the Earth-mover’s distance [25]. For
events, we defined the distance to be 0 if the time-stamps were on the same day,
and 1 otherwise. Finally, we need to compute the affinity weights wu(i, j). We
experimented with a number of alternatives, and found that the best approach
is to connect each unlabeled instance to just the closest K labeled instances, and
set wu(i, j) = exp(−d2(xi,xj)/σ

2). The value of wu(i, j) for the other instances
is set to zero. Here d(xi,xj) is the distance between the features xi and xj . We
determined the optimal values of K and σ by cross validation.

Our algorithm outputs an estimate of the posterior probability of each label
for each instance. To compute an error metric for our algorithm, we sort the
candidate labels in terms of their posterior probabilities. We then compute rank-
k error rates, the proportion of unlabeled instances whose top k candidate labels
are all incorrect. To evaluate our algorithm, we generate a pre-labeled subset
for each album by random sampling. For the people domain, we randomly chose
19 instances (13%) for the E-Album, and 49 instances (11%) for the G-Album.
Here, we require that at least one instance is pre-labeled for each class. However,
this requirement can be readily removed using active learning (see section 5.5),
by which one can introduce new labels interactively.

5.1 People Labeling

We compare the performance of four different variants of our algorithm: (1) us-
ing only people affinity (no contextual information), (2) with the people-people
relation, (3) with the people-event relation, and (4) with both relations.

The results of quantitative evaluation are shown in Figure 2. We note three
observations: First, on both albums the people-people relation alone provides
only a limited improvement (rank-1 errors reduced from 27.8% to 27.0% for
the E-Album). Second, the people-event relation gives a much bigger improve-
ment (rank-1 errors reduced from 27.8% to 11.9% for the E-Album). Third, the
combination of the people-event relation and the people-people relation yields
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error rates P_Only PP PE PP+PE
Rank 1 27.8% 27.0% 11.9% 3.2%
Rank 2 19.0% 16.7% 0.8% 0.8%
Rank 3 13.5% 9.7% 0.0% 0.0%

P_Only PP PE PP+PE
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Rank 2 19.0% 16.7% 0.8% 0.8%
Rank 3 13.5% 9.7% 0.0% 0.0%
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(a) Error rates on E-Album

error rates P_Only PP PE PP+PE
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Rank 3 4.9% 3.6% 0.0% 0.0%
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(b) Error rates on G-Album

Fig. 2. Comparison of people labeling performance with different configurations.

Above:  Errors when only face recognition is used 
Left:  Errors when both P-E and P-P relations are used 

Fig. 3. All rank-1 errors for the E-
Album. Above the delimiter: Errors
made by our algorithm with no con-
textual relations (27.8%). Below the de-
limiter: Errors made by our algorithm
with both the people-event and people-
people relations (3.2%).
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Fig. 4. The results of statistical signifi-
cance testing obtained on E-Album with
different percentages of pre-labeled in-
stances. Curves from top to bottom ob-
tained by: using only face, using people-
people, using people-event, and using
both relations.

another significant improvement (rank-1 errors down to 3.2% on the E-Album).
To illustrate our results visually, we include a collage of all of the errors for the
E-Album in Figure 3. In the supplemental material, we include a similar figure
for the G-Album, together with movies illustrating the results.

These results show: (1) that the people-event and people-people relations
provide complementary sources of information, and (2) the people-event relation
makes the people-people relation more effective than without it. The most likely
explanation is that the group-prior and exclusivity are more powerful when used
on the small candidate list provided by the people-event relation.

Overall, we found the G-Album to be more challenging. Partly, this is due
to the fact that the G-Album contains a very large number of events (117), each
with very few photos (3.8 on average.) The people-event relation would be more
powerful with more photos per event. Note, however, that our framework still
yields a substantial improvement, reducing the rank-1 error rate from 26.3%
to 14.6%. Note also, that the rank-3 error rate is reduced to zero on both al-
bums, a desirable property in vision-assisted tagging system where a short-list
of candidates is often provided for the user to choose from.
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Fig. 5. Comparison between baseline
approaches and ours on E-Album.

error rates Location OnWith Context
Rank 1 16.7% 1.3%
Rank 2 10.3% 0.0%
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Location Only With Context
Rank 1 16.7% 1.3%
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Fig. 6. Location error rates on E-
Album.

We also evaluated the performance of our framework with clothes features
incorporated as conditional features. With both the people-event and people-
people relations used, there are only three errors (3.2%) on the E-Album (see
Figure 3). The clothing features are unable to correct any of these errors. For
the G-Album, the conditional clothing features yield a slight improvement, with
the best error rate reduced from 14.6% to 14.3%. The people-event and people-
people relations are such powerful contextual cues that clothing adds little.

To validate the statistical significance of our results, we randomly generated
multiple pre-labeled sets, with the percentage of pre-labeled instances varying
from 15% to 55%. Figure 4 contains the median rank-1 results (signified by the
central mark) along with the 25th and 75th percentiles (signified by lower and
upper bars) obtained on E-Album. We also performed such testing on G-Album,
and the results are provided in supplemental materials. The improvement is
significant across the entire range of pre-labeling percentage in both data sets.

5.2 Comparison with Other Approaches

Direct comparison with published methods is difficult due to: (1) lack of a stan-
dard testing protocol, e.g. which instances are tagged in advance, and (2) differ-
ent features were used in different papers, and the features used in prior work
are not available. Hence, the most appropriate way to make a fair comparison
with other approaches is to implement them and evaluate them using exactly
the same data and features that we used. In particular, we compared with a
combination of face feature and time-stamp cues (as in [3]), a combination of
face feature and clothes feature, and an adaptive combination of face feature and
clothes feature conditioned on time stamps (as in [5]). We also note that previ-
ous work that used an MRF to capture exclusivity and the group prior (e.g. [8])
is essentially the special case of our framework where only the people-people
relation is used. In all cases, we performed cross-validation to ensure that the
best possible parameters were set for each particular algorithm.

Figure 5 contains the results on the E-Album. All of the feature-based algo-
rithms yield a reasonable improvement with the rank-1 error rate being reduced
from 27.8% to around 20%− 22%. While the MRF model using just the people-
people relation (group prior and exclusivity) does not yield a notable reduction of
rank-1 errors, it improves the rank-2 and rank-3 performance far more (the error
rates are reduced from 19.0% and 13.5% to 16.7% and 9.7% respectively.) How-
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Fig. 7. The error rates of event, people and location labeling with varying percentages
of missing time-stamps. For (b) the results were obtained with the P-E relation, and
for (c) with the L-E relation.

ever, the performance improvement obtained by all of these methods is dwarfed
by the improvement obtained by our algorithm when both the people-event and
people-people relations are used (the rank-1 error is reduced to 3.2%).

Among the reasons that lead to such an improvement, the effective utiliza-
tion of cross-domain context is the most important. Consider the people-event
relation. When the event of a photo is inferred, the people classes that are not
related to this event will be effectively ruled out from label selection (see Equa-
tions (5) and (12)), leaving only a very small subset of candidate labels to choose
from. This resolves a great deal of ambiguity and makes recognition far easier.

5.3 Location Labeling

Figure 6 shows results for location estimation on the E-Album. We compare the
results without any contextual information (location only) with those obtained
using the event-location relation. The rank-1 error rate is reduced from 16.7%
to 1.3%, and the rank-2 and rank-3 rates to 0%. Note that the event-location
relation plays a similar role to the temporal priors used in video clustering [26].

5.4 Event Labeling with Missing Time-Stamps

The feature used for event labeling is the time-stamp of the photo. When present,
this feature is very powerful; a temporal clustering of most photo collections
breaks it naturally into events. In some cases time-stamps may be missing. For
example, social networking sites such as Facebook remove timestamps. Further-
more, when merging two sets of photos collected on different cameras, it may not
be wise to trust the time-stamps. In this section, we investigate what happens
when time-stamps are missing.

We first investigated if we could estimate the event of a photo without the
time-stamp. We randomly discarded 100%, 50%, 30%, and 10% of the time-
stamps. The performance of event labeling under such conditions is shown in
Figure 7(a). Note that we only compute the error rates over the photos without
time-stamps. If all time-stamps are missing, we can only infer the event labels
by random guessing, resulting in nearly 95% errors. If we know some of the time-
stamps, both event-location and people-event relations can be used to estimate
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a significant fraction of the event labels correctly. These two relations provide
very complementary sources of information. The combination of the two is far
better than either in isolation.

Next we investigated how the presence of missing time-stamps affects the
performance of people and location labeling. In Figure 7(b) we see that the
degradation in people-labeling performance with more and more missing time-
stamps is very graceful. For location labeling, the removal of up to 50% of the
timestamps hardly affects the performance. See Figure 7(c). So long as some
photos captured in the same event retain their timestamps, the contextual benefit
of the event-location relation is retained.

5.5 Labeling with Active Learning

As our framework estimates the posterior probabilities of the labels, it can be
used for active learning [10]. By carefully choosing the order in which instances
are pre-labeled, we can reduce the number of instances that need to be labeled to
obtain a given recognition rate. We conducted preliminary experiments to illus-
trate this ability. In each iteration, we determine the unlabeled person instance
that would lead to the maximum information gain and add it to the pre-labeled
set. On average on the E-Album, it takes 30 iterations to obtain a rank-1 recog-
nition rate of 95% for the people domain. In comparison, it requires 46 iterations
with random sampling of the instances to be pre-labeled.

5.6 Timing Results

Our C# implementation runs in less than 2 seconds for both albums on a 2.0GHz
Core-Duo laptop.

6 Conclusion

We have proposed the use of cross-domain relations as a mechanism to model
context in multi-domain labeling (people, events, locations). Relation estimation
and label inference are unified in a optimization algorithm. Our experimental
results show that cross-domain relations provide a elegant, powerful, and general
method of modeling context in vision-assisted tagging applications.

References

1. Gallagher, A.C., Tsuhan, C.: Using context to recognize people in consumer im-
ages. IPSJ Journal 49 (2008) 1234–1245

2. Zhang, L., Chen, L., Li, M., Zhang, H.: Automated annotation of human faces in
family albums. In: 11th ACM Conf. on Multimedia. (2003)

3. Davis, M., Smith, M., Canny, J., Good, N., King, S., Janakiraman, R.: Towards
context-aware face recognition. In: 13th ACM Conf. on Multimedia. (2005)



14 Joint Recognition using Cross-Domain Context

4. Davis, M., Smith, M., Stentiford, F., Bamidele, A., Canny, J., Good, N., King, S.,
Janakiraman, R.: Using context and similarity for face and location identification.
In: SPIE’06. (2006)

5. Song, Y., Leung, T.: Context-aided human recognition - clustering. In: ECCV’06.
(2006)

6. Naaman, M., Garcia Molina, H., Paepcke, A., Yeh, R.B.: Leveraging context to
resolve identity in photo albums. In: ACM/IEEE-CS Joint Conf. on Digi. Lib.
(2005)

7. Gallagher, A.C., Tsuhan, C.: Using a markov network to recognize people in
consumer images. In: ICIP. (2007)

8. Gallagher, A.C., Chen, T.: Using group prior to identify people in consumer images.
In: CVPR Workshop on SLAM’07. (2007)

9. Anguelov, D., Lee, K.c., Gokturk, S.B., Sumengen, B.: Contextual identity recog-
nition in personal photo albums. In: CVPR’07. (2007)

10. Kapoor, A., Hua, G., Akbarzadeh, A., Baker, S.: Which faces to tag: Adding prior
constraints into active learning. In: ICCV’09. (2009)

11. Torralba, A., Murphy, K.P., Freeman, W.T., Rubin, M.A.: Context-based vision
system for place and object recognition. In: ICCV’03. (2003)

12. Torralba, A.: Contextual priming for object detection. Int’l. J. on Computer Vision
53 (2003) 169–191

13. Rabinovich, A., Vedaldi, A., Galleguillos, C., Wiewiora, E., Belongie, S.: Objects
in context. In: ICCV’07. (2007)

14. Galleguillos, C., Rabinovich, A., Belongie, S.: Object categorization using co-
occurrence, location and appearance. In: CVPR’08. (2008)

15. Li, L.J., Fei-Fei, L.: What, where and who? classifying events by scene and object
recognition. In: CVPR’07. (2007)

16. Li, L.J., Socher, R., Fei-Fei, L.: Towards total scene understanding: Classification,
annotation, and segmentation in an automatic framework. In: CVPR’09. (2009)

17. Cao, L., Luo, J., Kautz, H., Huang, T.S.: Annotating collections of photos using
hierarchical event and scene models. In: CVPR’08. (2008)

18. Sutton, C., McCallum, A.: An Introduction to Conditional Random Fields for
Relational Learning. In: Introduction to Statistical Learning. MIT Press (2007)

19. Wainwright, M.J., Jordan, M.I.: Graphical models, exponential families, and vari-
ational inference. Foundations and Trends in Machine Learning 1 (2008) 1–305

20. Wainwright, M.J., Jaakkola, T., Willsky, A.: A new class of upper bounds on
the log partition function. IEEE Transaction on Information Theory 51 (2005)
2313–2335

21. Byrd, R.H., Lu, P., Nocedal, J.: A limited memory algorithm for bound constrained
optimization. SIAM Journal on SSC 16 (1995) 1190–1208

22. Cui, J., Wen, F., Xiao, R., Tian, Y., Tang, X.: Easyalbum: an interactive photo
annotation system based on face clustering and re-ranking. In: SIGCHI. (2007)
367–376

23. Gallagher, A.C.: Clothing cosegmentation for recognizing people. In: CVPR’08.
(2008)

24. Hua, G., Akbarzadeh, A.: A robust elastic and partial matching metric for face
recognition. In: ICCV’09. (2009)

25. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for
image retrieval. Int’l. Journal on Computer Vision 40 (2000) 99–121

26. Schroff, F., Zitnick, C., Baker, S.: Clustering videos by location. In: British Machine
Vision Conference. (2009)


