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Abstract

In this paper, we propose a novel sequential vanigl maximum a posteriori (MAP) algorithm to reeowthe
articulated human body motion from video for petaapinterfaces. Most probabilistic methods foruastracking
adopt the mean values of the motion posteriorshasestimate. This is due to the general difficoktyhe global
optimization involved in the MAP estimation. Howewbe mean estimate is confronted with the tragkimilure
resulted from the multi-mode motion posteriors. dew, with theoretic guarantee, that the MAP estintauld be
asymptotically achieved from a probabilistic varetal approach. This new algorithm, namely sequnti
variational MAP, could recover the human articutatimore robustly. It also achieves linear compiewitr.t. the
number of body parts, which greatly relieves thesetof-dimensionality. Our experimental results dastrate the
effectiveness and efficiency of the proposed algworifor articulated human body tracking, and itgpbgability to
vision based perceptual interfaces.

1 Introduction

Vision based perceptual interface provides a fotig-invasive way of intelligent human computer iattion (HCI).
Such kinds of systems are very important in virteavironment, intelligent home and autonomous video
surveillance, etc.. Since gesture and body langpémevery important roles in our daily communicati they are
and should be very important inputs to a visioreblgserceptual interface.

To utilize human articulation for perceptual interés, it is essential to achieve the robust trackirthe articulated
motion. There are mainly two approaches: the detestic approach formulates the problem as a pamme
estimation problem (Bregler and Malik 1998, Ju,dlaand Yacoobz 1996, Rehg and Kanade 1995). Tiwico
is usually provided by some nonlinear optimizatiechniques; while the probabilistic approach foraes the
problem as a Bayesian inference problem (Deuts@&iake and Reid 2000, Wu, Hua and Yu 2003, Sighhktt,
Roth and Black 2004). And the solution is provitgdsequentially recovering the articulated motiostpriors.

The articulated structure of the human body resuls very high dimensional representation. Thisfamts both
approaches, e.g., we need to optimize an objeftinetion of at least 25 degrees of freedom to recdkie best
estimate of the full human body motion. The compiote demand may increase exponentially w.r.t. the
dimensionality. Nevertheless, the probabilisticrapgph became popular due to its flexibility of ingorating useful
prior information into the articulated motion trég system in a principled way.

Because of the convenience in calculation, the mahres of the recovered motion posteriors arendéigen as the
estimate results (Isard and Blake 1996, Wu et @32 Hua and Wu 2004, Sigal et al. 2004). Howetlgs is
inadequate when the posteriors are multi-mode elkample, in contour tracking, the motion posterizaa be non-
Gaussian and multi-mode, especially when the backgt is cluttered (Isard and Blake 1996). Therefdre mean
estimate may significantly deviate from the MAPimstte. And thus it is not able to indicate the tnuation.

We propose a novel sequential algorithm to rectveMAP estimate of the motion posteriors. By coaiatng the
mean field variational distribution to be Gaussiameterministic annealing scheme can be nicelgrparated into
the mean field fix-point iterations. Upon convergenthe mean of the variational Gaussian will bey Vi&ely to

converge to the MAP estimate. This new algorithrhieges linear complexity w.r.t. the number of bqubrts,



which greatly relieves the curse-of-dimensiondlityhe particle filtering based algorithm (IsardiéBlake 1996).

Section 2 discusses the related work in the liteeata distributed probabilistic representationtieé human

articulation is presented in Section 3; then, tiveorems of theKL divergence are proved, which are the theoretic
foundation of this paper; the details of the setjakmariational MAP algorithm is presented in Sewt5; various
experimental results are demonstrated in Sectiove6onclude the paper with some future work intisac’.

2 Related work

We briefly discuss the previous work on probabdistticulated human body tracking in this section.

For probabilistic articulated human body trackisgguential Monte Carlo algorithm provides a flegibheans of
Bayesian inference (Isard and Blake 1996), butsit auffers from the exponential increase of thenpatation
demand w.r.t. the dimensionality. This confronts tlirect sequential Monte Carlo simulation on atredized joint
angle representation of the human body due toitffedimensionality (Cham and Rehg 1999, Deutschal. 000,
MacCormick and Isard 2000, Wu, Lin and Huang 20(gveral techniques were proposed to improve the
efficiency, e.g., a multiple hypothesis trackingaithm was proposed by only keeping the salientesoof the
motion posteriors for more efficient Monte Carlonsiation (Cham and Rehg 1999); the partitioned dagp
(MacCormick and Isard 2000) algorithm performs kente Carlo simulation in a hierarchical way basedthe
partition of the parameter space; while (Wu e2801) proposed to learn a manifold from the nathesdd motion

to reduce the dimensionality.

In contrast, a distributed representation modedsnttotion of each body parts individually, but theg subject to
the constraints from the neighboring body parte Tépresentatives are the cardboard people (Ju E236), the
Markov network representation (Wu et al. 2003) #mel loose-limbed model (Sigal, Isard, Sigelman Biatk
2004), to list a few. In (Wu et al. 2003), an &fitt sequential mean field Monte Carlo algorithmHWIC), which
reveals a set of collaborative particle filters,swacely derived from a mean field variational asa (Jordan and
Weiss 2002). Later, (Sigal, Isard, Sigelman andcBla004, Sigal, Bhatia, Roth and Black 2004) apmblibe
PampAs algorithm (Isard 2003) or the nonparametric befisfpagation algorithm (Sudderth, lhler, Freeman and
Willsky 2003), to perform the Bayesian inferencetbe loose-limbed body model. Both algorithms dyealieve

the curse-of-dimensionality through the efficieryBsian inference facilitated by the distributegesentation.

The algorithms discussed above can recover goowxippate inference of the posterior distributiohat they are
unable to recover the MAP estimate thus the metim&t®s are always taken as the results. This raagecserious
tracking failure when the articulated motion poster are multi-mode. Based on the theorems proweseiction 4,
we propose a sequential variational MAP algoritirhich is able to sequentially recover the MAP eaties of the
motion posteriors as well as retain the efficiemcgomputation.
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Figure 1. Markov network: a probabilistic distributed repnesgion of human body.



3 Markov network: a probabilistic distributed representation

In this section, we propose a probabilistic disttéal representation of the human articulation based Markov
network similar to that in (Wu et al. 2003). In ghiepresentation, the motion of each body partsiasleled
individually by a random variable. But each of trendom variables is subject to the constraints fritwe
neighboring subparts, e.g., the motion of the loaren is constrained by the motion of the upper asnshown in
Figure 1.

DenoteL as the set of all the subscripts, then eé@hi L L individually models the motion of one of the body
part indexed by the subscript, e.g., the substift denotes theleft-upper-leg “rla” denotes theight-lower-arm
etc.. Also, each undirected link in the Markov netkvrepresents a potential functigh( X, , Xj), which models

the motion constraints between two neighboring boakys. And eac@(i is associated with an image observation
Z, by a directed link, which represents the imageliliked functiongZ, | X;). Denote X ={X,,i L}, and
Z ={Z,,i 0L}, the joint probability of the Markov network is

P(X,2) == 190X X[ A2 1X). @

N {i,j}0E u[n
where Z, is a normalization constant arfd represents the set of all the undirected linkemforal extension of
the Markov network results in the dynamic Markowwark to model the human articulation, as showRigure 2.

Denote X; ={X/",i 0L} and Z, ={Z,i0L} as the set of articulated motion and the set ofgien

observations of all the body parts at time insthntrespectively. Also denot& ., ={Z,,Z,,....,Z;} as all the

image observations up to the current time instantEach horizontal directed link in the dynamic Marknetwork
in Figure 2 is associated with the individual motidynamics of each of the body parts. Thus a ffalytorized
dynamic model is assumed, i.e.,
P(Xray [ %) = [P IXT). )
1L
Then, the Bayesian inference here is to sequenttiover the posterior distributions
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Figure 2: Part of the ghamic Markov network to model the articulated harbady motion.



P(Xr [Z4r) = —|_|€0(ZT | Xi") l//(X X )j POXT I XT)P(Xp4 | Zrg)dXr . (3)

Q 1oL {i,j} Xy ! L
where ZQ is a normalization constant. In Section 5, we wilbw how to sequentially recover the MAP estimate

from an annealed mean field analysis on Equatiow8.will firstly reveal two theorems of thKL divergence
between a Gaussian distribution and an arbitradhyf.pin Section 4 since they are the theoretimétation of the
proposed algorithm in Section 5.

4 KL divergence between a Gaussian and an arbitrary p.d.f.

The KL divergence between two p.dd(X) and p(X) is defined as

KL(@@0 Il p09) = [ a09log 3% ax @
AT

It functions as a measurement of the similarityaein two distributions. It has the property thasizero when
g(x) and p(X) are equal and is positive otherwise. But it is aakeal distance since it is not symmetric, i.e.,
KL(g(x) ]| p(x)) # KL(p(x)]]a(X)) . We reveal and prove the following two theoremseabon the properties
of the KL divergence. They provide the theoretic foundatidnthe sequential variational MAP algorithm in
Section 5.

Theorem 1 For an arbitrary p.d.f. p(X), X J ", which is positive everywhere with an unique glabalximum,
assumingq(X) be a Gaussian distribution with megh and covariance. , we have

lim argminKL(q(x)|| p(x)) = argmax p(x) ®)
0" %, ’

Proof: According to the definition oKL divergence, we have:

lim argmin KL(G(x)1| p()
=£‘Toar9rnin{f N(XI,U,Z)IOQ(N(XW’Z)Jd }

= ymoarg_min{j N(x| @&, 2)logN(x| 4, Z)dx—.[ N(x|z,2)log p(x)dx}
= ymoarg_min{— Iog((ZIE)” det(Z))—.[ N(x| @&, 2)log p(x)dx}

= ymoarg_min{—.[ N(x|z,2)log p(x)dx}

= ymoarg_min{—.[é(x - ) log p(x)dx}

= lim argmin{- log p(£)}

= argmax p(x) |

Generally, we also have the following corollaryrfr@heorem 1.



Corollary 1 The local minima off([l):ymoKL(q(x)llp(x)) have a monotonically one-to-one

correspondence to the local maxima p{X), i.e., the global minimum df(Z) corresponds to the global
maximum ofp(X) and vice versa.

Proof: The conclusion is straightforward from the proofteé Theorem 1, sinckdg function is a monotonically

increasing function. I

It is worth noting thatf (£Z) may go to infinity, but its topology at infinity nastill be characterized by
~log p(4) .-

5 Sequential variational MAP

The probabilistic inference of Equation 3 by meiidfanalysis firstly involves the mean field apgroation of the
motion posteriors at each time instdnt i.e.,

P(X; 1Zs) = [1Qr (X)) ©

10L
Embedding Equation 6 at time instaht—1 into Equation 3, we have

P(xT|zT)~—|‘|¢(ZT|X) w(x XDJTPOT IXTHR (X HAX™ @)

Q 1oL {i,j} 1oL
Then we can construct the following cost functlon

J:(Q) =logP(Z,;) - KL(I_' Qi,T(XiT MIP(X; |;1T)J

1oL (8)
= -3 H(Qr)+ Q. (X7 EoflogP(X: Z ) X7 Jax
joL
where H (QJ’T) is the entropy of the distributio® (X-T) and
{log P(XT’ZlT | X, } Eﬁ Q,—,T(X,-T)Iog F’()(T,;rr)dxT _ 9)

We can maximizeJ; (Q) to obtain an approximate inference of edeX,' | Z,;) . This is achieved by
formulating a Lagrangian multiplier with the coraits that.[QiT(XT):l. Then using basic calculus of

variations, take the variation of the Lagranglantweacth T( ) and set them to zero, we obtain the following
set of mean field fix-point equations

Q- (x7)=exilEcflogP(x; 2.1 ) 1 X)) 10

S
where ZS is the normalization constant. Embedding Equaffointo Equation 10, we obtain the following
sequential mean field fix-point equations.

Qr (XiT ) = ZLAZ.T | XiT )I P(XiT | XiT_l)Qi,T—l(XiT_l)dXiT_l ex{ju%(i)Qj,T (XjT)IOQw(XiT ) XJT)j

(11)
With the highlight of Theorem 1 and Corollary 1,dorsuit the MAP estimate of the motion posteriavs,further

constrain eact, (X,T) to be a Gaussian distribution with fixed covariai, i.e.,



Q. (X1 =N(XT 1Z.5) (12

Sequential Variational Maximum a Posteriori Algorithm

Input: UnconstrainedQ, ;_, (X' ™) and the MAP estimat@' ~ atT -1, i 0L
Output: UnconstrainedQ, ; (X;) and the MAP estimatgt' at T, i 0L

1. Initialization: Annealing control parametem=0; T .. =[T™,...,T,""] be very large wher the
annealing starts andl,;,, =[T,"",...,T™"] be very small near zero where the annealing stopde the
NnXn identity matrix; Set,[liT’0 =,L7iT_1 as the initialization of the set of mean vectorstloé Gaussia

distribution.

2. Mean field iteration: Iterate the unconstrained mean field fi@int Equation 10 until convergence to ob

Qr(X').i0L.

T _ -
3. Annealingg m=m+1, T=-" then> =TIl ; &' =g _;if T>T_, goto Step 4, else gc
m , ,

Step 5.

4. Gaussian mean field: Update [I,Tm based on the current value ;&‘ITm and the fixed2. according t
Equation 13. lterate this step to convergencenTin@p back to Step 3.

5 Result: g =g, , i0OL are the MAP estimation, an ;(X;), iOL , are the optim:

unconstraine mean field approximation, cP(X." | Z,+)

Figure 3: the sequential Variational MAP algorithm

Note that maximizing, (Q) is equivalent to minimizind(L[l_l Qi+ (X,T)H P(X;,Z44 )] . To solve the
1oL
maximization problem constrained by Equation 12 fel®w a similar strategy of gradient projectidRasen 1960).

We firstly reIain’T (XiT) to be any valid p.d.f., the mean field analysid wabkult in the fix-point equations in
Equation 11. Then, we project the solution to thecfional space spanned by the set of Gaussiatbdisbns with
fixed covariance. by setting the mea;lTIiT to be the expectation of the unconstraif@d. (XiT) ,i.e.,

=[xz O Pb b e ™ T g g
C

This is the set of fix-point equations to update @aussian mean field distribution with fixed coaace . . Based
on this, we can nicely incorporate a deterministimealing scheme into the Gaussian constrained rfielan
analysis in Equation 13. This could be achievednitjally setting the elements of the covarianzeto be very

large. Then it will be decreased asymptotically dotvzero. At each fixe@®. , we iterate Equation 13 until
convergence, which uses the converged mﬁ@Tn under the previou®, as the initialization. Then upon
convergence of the whole annealed iterations, fitieorem 1 and Corollary 1, the mean of the vanmai@Gaussian
distribution will be converged to the global MARigste of the posterioP(XT |Z .+ ) .



Generally, the annealing processXfshould be carefully designed. For ease of conwel,re-enforce), to be
diagonal, i.e..> =TI, whereT =[T,,...,T ] is andimensional constant vector ahg is the N x n identity

matrix. Then we only need to contral parameters for annealing instead of control%i) parameters. Note that

we must also keep the unconstrained mean fieldillision Qi'T_l(XiT'l) at time instanil —1 to perform the

annealed Gaussian constrained mean field iterafi@muation 13 at the time instaht. We propose the sequential
variational MAP algorithm as shown in Figure 3. Apkrbolic decreasing annealing scheme was adofited.
generally achieves good results as shown in ougraxgnts.

6 Experiments

6.1 Recovering human articulation

We implemented the sequential variational MAP dtgar by Monte Carlo simulation to recover the faliman
body motion from a long video sequence of 767 frane the experiment, each body part is represebyed

guadrangle shape and tracked in a 6-dimensionalapilistic affine space. The potential functi[;ﬁ'(Xi , Xj) of

two connected body parts is modeled by a Gaussidialrbasis function. And we use both the visuascaf edge
and intensity to construct the image likelihood diions (U(Zi | Xi). They are all similar to that in (Wu et al.
2003).

The proposed sequential variational MAP algoritleoovers the articulated full-body motion very watkoss the
video sequence. Some of the sample resaits in Figure 4. For comparison, we also implemerhe mean field
Monte Carlo (MFMC) algorithm in (Wu et al. 2003)camultiple independent @vDENSATIONtrackers (MiCT) to
track the human articulation in the same video saqge. Experiments show that the MFMC algorithnmefailo track
the articulated motion after the 36Bame and the MiCT tracker failed to capture thizalation from the start.

Since different component of the affine motion wecK,; has different range, we designed different anngali

= 06.

We design 6 annealing steps and in the first stéipecannealing, we iterate the mean field equatfon 6 times and
in the following annealing steps, we run the mdald ffix-point equations for 3 times. This settiisgbased on the
empirical observation that only at the first animelstep that the mean field equations need memtions to

converge. The algorithm can thus run at the spé8d2drames per second. While the MFMC algorittoaa run at
the speed of 0.6 frames per second where we itématenean field fix-point equations for 6 timeseaich time

instant. The proposed sequential variational MAgoathm does achieve linear complexity w.r.t. thenfer of

body parts, the arguments are similar to thatWwu €t al. 2003) .

scheme for them, e.g., for the translation compbren,; =8, while for the scaling component, _;

6.2 Smart finger mouse

We also applied the proposed algorithm to track3tiek index finger to demonstrate the potence®feloping it
to a vision based mouse controller. The articulatedion of the finger is modeled by a Markov netkarith 3

nodes. We use similar potential functions as wellnaage observation likelihood functions as in Bec6.1. We
define two states of the finger articulation: they/fup state corresponds to when one stretchesde finger to be
a near straight line, which we denote as state 48 the key-down state corresponds to when thexifidger is
like a bow shape, which we denote as state “1”".

! More tracking results of the sequential variatiohdhP algorithm could be found in the online videb a
http://www.ece.northwestern.edu/~ganghua/HCIi200B8pArticulate.avi



Actually, these two states can be easily charagtdrby the 2D joint angles of the recovered fingeiculation.
Denote the joint angle between the distal phalarkdnd the middle phalanx ﬁ and the joint angle between the

middle phalanx and the proximal phalanxﬁ;:, then the recognition of the two are performedtisy following
formula, i.e.,

-

#568 #618 #748
Figure 4: Articulated human body tracking by the sequentzlational MAP algorithm
0, cosg, cosf, >C;
S = , (14)
1 cosg, cosd, < C;
whereC; is a decision threshold which in our experimentseeit to be 0.9. We present some of the sampling

results in Figure 5. We also showed a green ciigssiis the image, which corresponds to the boungaigt of the
joint between the middle phalanx and the proxintalanx. It functions as the mouse cursor. And vee &lave



shown the recognized finger state in the left topner of the image as “key down” and “key up”. Thideo
sequence has a total 364 frames, our algorithm tiybwmacked and recognized the states of the firrg#culation

across it. Some of the sample resudi® shown in Figure 5. Without any optimizationtbae C++ code, the current
- L g

Key DOWNE! k Key DOWN!!

#232 ) #233
Figure5: Variational MAP for tracking and recognition of §iar motion.

algorithm can run at the speed of 7 frames permskadth 50 samples for each body part and 6 anmgalieps. The
experiments demonstrate the applicability of apgythe proposed algorithm for vision based percdpiterface.

In fact, after the finger articulation was robusticovered and the states were robustly recognized;an further
recognize actions such as “click” and “double-ditky using some time series modeling techniqueh sis hidden
Markov model, etc.. Since the motivation of thipeais still focusing on developing algorithms fecovering
human articulation more robustly, we defer that pabe our future work.

7 Conclusion and futurework

In this paper, we propose a novel sequential variat maximum a posterior algorithm to robustly aeer the

human articulations from the videos. Different frdhe previous probabilistic algorithms for trackiagiculated
motion, which generally take the mean value of ithation posteriors as the estimate, we develop rcipted

variational approach to sequentially recover theRvi#stimate of the articulated motion posteriorsdésionstrated
in the experiments, the recovered motion parame@nsthen be adopted as the input for vision basetligent

human computer interaction.

2 More results can be found online at http://www.eogthwestern.edu/~ganghua/HCI12005/Finger.avi



Our future work include more theoretical investigas on the convergence rate and faster anneatingnses, as
that will facilitate to meet the real time requiremts for human computer interaction. We will algotb optimize
our current implementations of the algorithm andhfer develop the prototype finger mouse system, ae will
seek to develop a principled method for the seétfalization of the proposed sequential variatiokBP algorithm.
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