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Abstract. We present the architecture and algorithm design of a visual
motion based perceptual interface for mobile devices with cameras. In
addition to motion vector, we use the term “visual motion” to be any
dynamic changes on consecutive image frames. In the lower architectural
hierarchy, visual motion events are defined by identifying distinctive mo-
tion patterns. In the higher hierarchy, these visual events are used for
interacting with user applications. We present an approach to context
aware motion vector estimation to better tradeoff between speed and
accuracy. It switches among a set of motion estimation algorithms of
different speeds and precisions based on system context such as com-
putation load and battery level. For example, when the CPU is heavily
loaded or the battery level is low, we switch to a fast but less accurate
algorithm, and vice versa. Moreover, to obtain more accurate motion
vectors, we propose to adapt the search center of fast block matching
methods based on previous motion vectors. Both quantitative evalua-
tion of algorithms and subjective usability study are conducted. It is
demonstrated that the proposed approach is very robust yet efficient.

1 Introduction

Video cameras have become a standard setting for all kinds of mobile devices,
such as mobile phones, Pocket-PCs and personal digital assistants (PDAs). How-
ever, so far their functionalities are mostly limited to taking pictures or small
video clips, mainly for entertainment or memorandum purpose. As an alternative
to small keyboard, D-pad or touch screens, we can indeed leverage the rich vi-
sual information from the cameras for more convenient and non-invasive human
machine interaction. This becomes of special interest due to the recent advance-
ment of computer vision based human computer interaction (HCI) techniques
[1,2,3] and the ever increasing computational power the mobile devices have.

To summarize some previous works, TinyMotion [4,5] may be one of the first
general visual motion sensing systems for camera phones, which estimates the
motion vectors by full search block matching (FSBM) [6] on grid samples. Other
earlier work include the bar-code readers [7,8], where the phone cameras are used
for reading highly regular shaped bar-code sheet to fire commands for the mobile
phones. Hannuksela et. al [9] proposed a sparse motion estimation algorithm for
vision based HCI on mobile devices, but they did not really come out of any real
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systems to use that. Some other research works even have investigated using
mobile phone cameras for interacting with large displays [10].

Notwithstanding the demonstrated success of the systems discussed above,
they have not fully leveraged the richness of the visual information we can lever-
age. For example, even the most recent TinyMotion [4,5] system has only utilized
a fraction of the distinctive motion patterns to trigger the commands. What is
worse, systems like bar-code readers [10,7] are obviously of limited use because
they must be played with some distinctive visual patterns in a planar surface.

In this paper, we present the architecture design of a visual motion based
perceptual interface for mobile devices. Here we use the term “visual motion”
to incorporate any dynamic changes of image features. The overall architecture
has two layers: at the lower-level of the hierarchy, we define a set of visual mo-
tion events, e.g., “left”, “right”, “up”, “down”, “rotate clockwise”, “rotate anti-
clockwise”, “blurred”, and “darkened”, based on different characteristic motion
patterns. These visual events are fired through an integrated application pro-
gramming interface (API), which we call portable eye, or in short PEYE. At
the higher hierarchy, the applications can then be manipulated by these visual
events. In view of this, we provide more freedom for the application developers
to utilize these events for their own purpose.

The visual motion we exploited include motion vector, blur-ness and lightness
changes, among which motion vectors still account for the majority of the visual
events. Unlike TinyMotion [4,5], where FSBM is adopted for motion estima-
tion, we explore a set of fast block matching methods such as three step search
(TSS) [11], four step search (FSS) [12], diamond search (DS) [13], hexagon search
(HS) [14], and the adaptive multiple-mode search (AMMS) [15]. To further im-
prove the accuracy of all the above methods, we propose an adaptive search
center scheme by pre-matching three points along the previous motion vectors.
We then design an online scheme to switch among the different motion esti-
mation algorithms, which makes a compromise between matching quality and
computational expenses. For example, when the CPU is heavily loaded or the
battery is low, we switch to a faster but less accurate method such as AMMS,
DS, or HS, and vice versa to a more accurate but slower algorithm such as TSS
and FSS. We call such a scheme context aware motion estimation.

Our contributions reside in three folds: firstly, we presented a novel hierar-
chical architecture design of visual motion based perceptual interface for mobile
devices. Secondly, we designed a context aware motion estimation scheme, which
better tradeoffs speed and accuracy for motion estimation. Thirdly, to the best
of our knowledge, we are the first to utilize visual cues such as blur-ness and
dark-ness changes to define visual events for HCI. Our system runs 25−30 frames
per second, depending on the frame rate of the mobile devices.

2 Platform Architecture

The PEYE API is developed using DirectShow under Windows CE. The over-
all platform architecture is presented in Fig. 1. It can be divided into three
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Fig. 1. The overall architecture of the PEYE system

hierarchies: the applications, the PEYE API, and the hardware devices (e.g.,
the camera). The core is the PEYE API, which analyzes the captured videos,
and sends the visual events to the user applications. When the user applica-
tions receive these events, it responds just as it responds to any other Windows
messages. We must note that under other mobile operating system, the video
interface may need to be changed but the overall architecture is still valid.

The architecture design of our system distinguishes itself from previous ones
(e.g., the TinyMotion [4,5]) in the sense that the motion analysis module is
clearly separated from the applications. All communications between the user
applications and the PEYE API are carried out through the message system of
the OS. In other words, the user applications do not need to code any additional
interfaces to export the results from the visual motion analysis module. Our
hierarchical design also enables the user applications to have more flexibilities
to respond to the different visual events.

3 Visual Events

Based on the different visual cues utilized, the visual events we exploited in
PEYE fall into three categories: motion gestural, lightness, and blur-ness events.

3.1 Motion Gestural Events

The motion vectors provide the richest source of visual events, such as “left”,
“right”, “up”, “down”, “pan”, “tilt”, etc. To detect these motion patterns, we
need to estimate the motion vectors firstly.

Context Aware Motion Estimation with Adaptive Search Center. Due
to the limited computational resource for PEYE, we can not afford dense optical
flow estimation. Thus we partition the image into 4 equal regions, and perform
fast block matching for the 4 center blocks of size 16×16, as illustrated in Fig. 2.
We use the sum of squared difference (SSD) of pixel intensities as the matching
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Fig. 2. Each 16 × 16 matching blocks
(shaded small rectangles) is centered at
one of the four equally sized partitions of
the images

Fig. 3. The adaptive search center: vi−1

represents the previous motion vector.
Three blocks are checked and the center
of the best match is the new search center.

criterion. In our implementation, the square of pixel differences are implemented
using a look-up table, which speeds up the matching at least 8 times.

Instead of utilizing a single matching method, we explored a set of fast
block matching methods including TSS [11], FSS [12], DS [13], HS [14], and
the AMMS [15]. These different fast matching algorithms are all faster than
FSBM [6], although the gain in speed is at the expense of the accuracy to dif-
ferent extent. For example, in general HS is the fastest but least accurate one,
whilst DS may be among the slowest several but it is more accurate. We refer the
readers to the corresponding references for details of the different algorithms.

We improve all these fast block matching methods by introducing an adaptive
search center scheme. Denote vi−1 as the motion vector estimated from the
previous frame, also denote O as the zero search center, which can be the center
of any of the shaded blocks in Fig. 2. We first match the template block at
three points O, O + 1

2vi−1, and O + vi−1. The one with the smallest SSD will
be chosen as the search center to start any of the aforementioned fast block
matching methods, as illustrated in Fig. 3. We add the suffix “AC” to denote
adaptive search center, e.g., FSSAC stands for FSS with adaptive search center.

Our study reveals that these different methods may perform differently over
different motion patterns and/or different scenes. This motivated us to design an
online selection scheme to switch among this set of motion estimation algorithms.
The followings are general selection conditions with descending priorities:

1. If the battery power of the mobile device is below a certain level, then we
always switch to HSAC (i.e., HS with adaptive search center) since it is the
fastest one.

2. If the CPU is heavily loaded, we will select only between HSAC and AMM-
SAC, otherwise select among all algorithms, using Condition 3.

3. Based on the historical matching accuracies of each of the candidate meth-
ods, choose the most accurate one. Note the historical matching accuracy of
each method is obtained by evaluating its accuracies every K frames and is
accumulated over a shifting time window.
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Fig. 4. The motion patterns associated with “rotate clockwise” and ”right” events.
The arcs indicate the direction ranges the motion vectors should fall into. The events
are named according to camera motion, which is the reverse of camera motion. (Left
figure: “rotate clockwise”; Right figure: ”right”)).

The above scheme enables the system to switch to a more accurate but slower
matching method when more computation resource is available, and vice versa.
We call it as context aware motion estimation. The motion vectors for each
block are averaged over 5 consecutive frames to reduce the effects of jittering
noise. Another engineering issue we should highlight here is that all the methods
discussed above work with grey-scale images. In some of the mobile devices, the
video stream is in YUV format, in that case the Y component is used directly.
When the video stream is of the format RGB, we use bit shift to transform it to
a grey scale image [5], i.e., Y = (R >> 2) + (G >> 1) + (G >> 3) + (B >> 3),
which approximates to the RGB to Y conversion formula.

Gestural Events. The motion gestural events can then be defined based on the
four motion vectors estimated for each frame. For example, if all four motion
vectors are going left, then the camera motion and thus the gestural event is
“right”, since we are indeed moving the camera to the right. Fig. 4 presents two
motion patterns, which defines the motion gestural events “rotate clockwise”
and “right”. Other motion gestural events are defined in a similar fashion.

3.2 Lightness Events

The overall lightness of the image is also a very useful visual cue to define visual
events, i.e., the “darkness” change events. Assuming that the environment light-
ing is not too dark, the image can only be dark if the camera view is occluded.
Since the users can very conveniently cover the camera view by hand, it is natural
and non-invasive for them to use it to interact with the mobile applications.

We estimate the darkness of the images by estimating the average pixel in-
tensity Iave over the four matching blocks defined in Fig. 2. If Iave is below
a threshold TI , then it fires the event “darkened”. The threshold TI is set by
collecting a set of images using the mobile cameras under different lighting con-
ditions during which we also intentionally use our hand to block the view of
the camera from time to time. We fit a Gaussian distribution with mean μI
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and variance σ2
I on the average pixel intensities over all these image frames we

collected. The threshold is set to be μI − 3σI .

3.3 Blur-ness Events

There are mainly two types of blurs: the de-focus blur and the motion blur.
De-focus blur happens when the mobile camera is out of focus, and motion blur
happens when either the object or the camera is moving fast. In spite of the
different causes, the blurred images present common characteristics – the lack
of sharp object boundaries. This results in a very simple yet effective method to
judge if an image is blurred. Denote Ix(i, j) and Iy(i, j) as the image gradient
in x and y directions at pixel location (i, j), respectively. We define

IBlur =
4∑

k=1

∑

(i,j)∈Bk

|Ix(i, j)| + |Iy(i, j)| (1)

where Bk indicates the 25× 25 block centered at the kth block defined in Fig. 2.
If IBlur is smaller than a threshold TBlur, the image is regarded as being blurred.

To distinguish between the de-focus blur and the motion blur, we exclude the
case where both of them present simultaneously. Notice that for motion blur,
the background scene is subject to dramatic change due to the large motion,
while for de-focus blur, the frame differences should be subtle since the motion
is small. Denote It(i, j) as the pixel intensity at time frame t. We then define

Im =
4∑

k=1

∑

(i,j)∈Bk

(It(i, j) − It−1(i, j))2. (2)

If Im is larger than a threshold Tm and IBlur > TBlur, then the “motion blur”
event will be alarmed, while if Im ≤ Tm and IBlur > TBlur, the “de-focus blur”
event will be issued. We reuse the square operation look-up table we built for
estimating motion vectors to evaluate Eq. 2. Both TBlur and Tm are determined
empirically and are fixed in PEYE.

4 Applications

We have integrated PEYE with a bunch of interesting applications such as key-
free mobile web browsing, pen-free sketchy, game playing, and automatic phone
pick-up, as visualized in Fig. 5. We present more details as follows.

Key-free Mobile Web Browsing. Not until the recent development of the
DeepFish system [16] has Web-browsing on mobile devices been an enjoyable
experiences. We have integrated PEYE with the DeepFish browser to use motion
gestural events to scroll up/down and zoom in/out the web pages. It provides a
much more natural-to-use and non-invasive interaction scheme for the users to
interact with the web browser. The first two figures in Fig. 5 show two views of
using PEYE for web-browsing, the second is a zoom-in version of the first.
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Fig. 5. Sample PEYE applications: a) key-free web browsing (left two figures), b) pen-
free sketchy (the third), and c) games (last figure shows the game 1942)

Pen-free Sketchy. PEYE provides a natural means to place sketches, where
the users just need to move the mobile devices to place the sketches. We let the
users to push the D-pad once to start or end one sketch. The third figure in
Fig. 5 presents a screen shot on how we can draw a complex sketch. To erase
the sketches, the users just need to use his hand to wipe off the camera view to
trigger a “darkness” event. Possible extensions include recognizing sketches for
inputting characters, especially for east Asian languages [5,4].

Mobile Games. When playing games on mobile devices, it is not that conve-
nient to respond quickly using either small key-board or D-pad. We demonstrate
that using PEYE, the users can respond very quickly since all he/she need to do
is to move the mobile devices in a certain way. To show one example game we
have deployed, the last figure in Fig. 5 presents a screen shot of an air-fighter
game called 1942. Certainly, we are also exploring means to let two or more users
to play games together, each with his/her own mobile device.

Automatic Phone Pick-up. When the users put the mobile devices on the
table, the cameras are usually facing down. If there is an incoming phone call and
the users grab the mobile devices, PEYE will automatically detect a darkness
transition event. Upon receipt of this event, the application can automatically
answer the phone call instead of waiting for the users to push the pick-up button.

5 Evaluation

In this section, we evaluate the performance of the PEYE algorithms, and con-
duct usability studies for the mobile web browsing experiences.

5.1 Evaluation of Algorithms

In this section we evaluate the performances of the different block matching
methods in terms of both speed and accuracy, with or without adaptive search
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Table 1. The average number of matching positions for the different methods

Average number of matching positions (#/frame)
Methods\Video# V1 V2 V3 V4 V5 V6 V7 V8 V9 Overall

FSBM 225 225
TSS 25 25
FSS 20.6 21.6 24.6 24.7 24.6 19.6 24.5 20.6 21.7 22.9
DS 18.9 20.4 26.6 25.5 25.5 16.8 24.7 18.6 20.5 22.6
HS 14.2 15.3 15.2 17.6 18.3 13.1 17.6 14.4 15.2 16.0

AMMS 11.4 14.4 25.2 25.3 25.5 8.9 22.9 11.8 14.7 18.9
TSSAC 26.4 25.8 26.9 26.9 26.9 26.3 27.0 26.6 26.7 26.8
FSSAC 20.2 20.3 25.6 24.2 24.8 18.8 24.6 18.9 20.0 22.3
DSAC 17.2 17.2 26.3 23.5 24.9 14.4 24.0 14.6 16.6 20.5
HSAC 13.7 14.4 17.0 16.4 17.0 12.8 16.5 13.3 14.2 15.3

AMMSAC 9.3 10.0 22.6 18.6 20.8 6.8 18.8 7.2 9.4 14.6

Table 2. The average SSD of the matching results for the different methods

Average SSD /frame
Methods\Video# V1 V2 V3 V4 V5 V6 V7 V8 V9 Overall

FSBM 3.24 9.11 14.35 12.11 19.95 9.10 9.51 21.71 28.98 14.23
TSS 2.28 9.86 15.13 12.93 21.33 10.27 10.34 23.94 30.95 15.33
FSS 3.33 10.57 15.50 13.15 21.99 9.57 10.70 23.02 33.40 15.69
DS 3.32 9.95 14.77 12.58 20.84 9.28 10.44 23.18 33.08 15.27
HS 3.38 15.34 14.74 14.02 22.78 10.08 11.25 24.82 36.24 16.50

AMMS 3.39 14.45 14.86 12.51 20.74 9.47 10.57 24.99 35.07 15.79
TSSAC 3.23 9.05 11.59 8.53 14.38 9.37 8.44 21.71 28.13 13.13
FSSAC 3.24 9.15 12.15 8.64 15.60 9.34 8.77 21.98 29.21 13.12
DSAC 3.24 9.12 11.56 8.43 14.29 9.27 8.78 22.06 29.02 12.86
HSAC 3.32 10.50 13.34 11.75 19.43 9.86 10.33 23.66 33.78 15.10

AMMSAC 3.27 9.32 11.88 8.65 14.58 9.36 9.05 22.20 29.68 13.11

centers. The speed is measured by the number of matching locations. The less
the number is, the faster the algorithm is. The accuracy is quantified by the
SSD. The smaller it is, the better the match is. We use the results of FSBM as
a baseline. Note all the matching are confined in a block of size 15 × 15.

Since we can not afford to do all the evaluations on the mobile device. We
recorded 9 video sequences, which were taken against different background and/
or with different motions patterns using a Samsung Pocket-PC. Then we evalu-
ated all the algorithms on a PC. We summarize the evaluation results in Table 1
and Table 2. As we can easily observe, except for TSS where only accuracy
is improved, the adaptive center scheme does improve all the other algorithms
in terms of both speed and accuracy. For example, AMMSAC on average only
evaluates 14.6 positions (v.s. 18.9 for AMMS). DSAC achieves the best average
matching error as low as 12.86 (v.s. 15.27 for DS). Another observation is that
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w.r.t. either speed or accuracy, none of the methods is constantly the best. This
is the main motivation for us to design the third selection scheme in Sec. 3.1.

5.2 Usability Study

We perform usability study on the application of web-browsing using PEYE.
With just some brief how-to-use descriptions, we let the users to browse a web
using PEYE for interaction. The users then rank their experience in 5 grades,
with 5 being “very satisfactory” and 1 being “very unsatisfactory”. We also
ask the users to compare their PEYE browsing experiences with that of using
D-Pad. It is also ranked in 5 grades, with 5 being “much better” and 1 being
“much worse”. The users are also categorize to be “novice”, “intermediate” or
“advanced” based on how long they have been using mobile devices. 15 users
participated in our usability study (6 novice, 8 intermediate, and 1 advanced).

The histograms of the users’ scores

Fig. 6. The blue bar presents the distribu-
tion of the experiences of the users using
PEYE, and the red bar displays the distri-
bution of the users’ experiences compared
with that of using D-Pad

of the two studies are summarized in
Fig. 6. As we can observe, 80% users
rank their experiences using PEYE to
be either satisfactory or very satisfac-
tory (46.7%+33.3%). For comparison
with the users’ experience using D-
Pad, 66.7% of the users think that it
is much better or better to use PEYE
than using D-Pad. On the other hand,
three users (i.e., 20%) think that it
is more convenient to use D-Pad. We
found that two of the three users are
in the intermediate level, and the
other is in the advanced level. More-
over, the only user who ranked his/
her experience with PEYE as unsat-
isfactory is an intermediate level user.

This implies that they may have been biased toward using D-Pad since they have
got used to it. We expect the users to prefer PEYE more, once they became more
familiar with it.

6 Conclusion and Future Work

In this paper, we have presented PEYE: a novel computer vision based percep-
tual interface for mobile devices. Although the current implementation is under
Windows CE, the algorithms as well as the architectural design can certainly be
applied to other embedded OS. Our algorithm evaluation and usability study
demonstrate the efficacy of the proposed approach. Future work includes iden-
tifying more visual events and developing novel applications based on PEYE.
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