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Abstract—We propose a novel global-local variational energy to automatically

extract objects of interest from images. Previous formulations only incorporate

local region potentials, which are sensitive to incorrectly classified pixels during

iteration. We introduce a global likelihood potential to achieve better estimation of

the foreground and background models and, thus, better extraction results.

Extensive experiments demonstrate its efficacy.

Index Terms—Variational energy, level set, semisupervised learning.
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1 INTRODUCTION

AUTOMATIC extraction of objects of interest (OOI) is very important
in early vision with applications to object recognition, image
painting, visual content analysis, etc. Given an arbitrary image, the
OOI is usually subjective, but should be at the focus of attention.
When one takes a picture of an OOI, one normally tries to put it
roughly at the center. With this weak assumption, we are able to
build a fully automatic extraction system. Note that this assump-
tion does not tell us where the OOI boundary is.

To extract the OOI, we need to model both the OOI and
background regions, e.g., the models can be Gaussian [1], Gaussian
mixture (GMM) [2], [3], [4], or kernel densities [5]. The OOI extraction
and the estimation of the models is a chicken-and-egg problem, i.e.,
knowing one leads to the other. When both are unknown, the
problem can be solved iteratively as an energy minimization
problem [1], [5], [4], i.e., fixing the models, performing the
segmentation, fixing the segmentation, and re-estimating the
models.

Previous variational energy formulations only incorporate local
region potentials. One challenge is that at each iteration the model
estimations are based on inaccurately labeled image pixels since
the current segmentation is usually not perfect. The incorrect labels
affect the accuracy of the estimated models which, in turn, affects
the subsequent segmentation. To relieve this problem, our energy
formulation incorporates an additional potential term that repre-
sents the global image data likelihood. The intuition is that instead
of just fitting the models locally on the current segmented
subregions, we also seek for the best global description of the
whole image, which results in more accurate model estimations
and, thus, better OOI extraction.

The local-global energy minimization involves two steps: fixing
the models, optimizing the OOI boundary by level set, and fixing
the boundary curve, estimating the OOI and background models
by fixed-point iterations. The fixed-point iterations, called quasi-
semisupervised EM, is a robust method for estimating GMMs

when some unknown portion of the data are labeled incorrectly.

The added global likelihood potential increases the robustness.
Related work is summarized in Section 2. Our local-global

energy formulation is presented in Section 3. In Section 4, we

describe the energy minimization algorithm. Extensive experi-

mental results are presented in Section 5. Finally, we conclude in

Section 6.

2 RELATED WORK

Image segmentation by variational energy minimization can be

traced back to SNAKES [6]. Later works include the Mumford-

Shah model [7], [8], active contour with balloon forces [9], region

competition approach [1], geodesic active contours [10], [11],

region-based active contour [12], [13], [14], [15], geodesic active

region [16], [2], [5], active contour with shape derivatives [17], etc.

In practice, energy formulation purely based on image gradient [6],

[9], [10], [8], [11] are vulnerable to a local solution, while using

various image cues such as the intensity, color, and texture [1],

[13], [2], [18], [14], [17], [15] can largely overcome this problem.
Region-based energy formulation can be categorized into two:

supervised method [16], [2], [12], [18], [17] and unsupervised method

[1], [5], [13], [14], [15]. Supervised methods assume the region

models be known, while unsupervised methods need to jointly

perform the segmentation and estimate the region models, which

are normally solved by minimizing an energy with regard to the

region boundary and region models alternatively. The methods of

minimizing the energy with regard to the region boundary has

evolved from the finite difference method (FDM) [6], [1] and finite

element method (FEM) [9] to the level set method [19], [20], [10],

[13], [2], [14], [17], [15].
Our local-global energy formulation combines different image

cues including gradient, color, and spatial coherence of the pixels.

It is different from previous works because of the additional global

image likelihood potential.

3 ROBUST VARIATIONAL ENERGY FORMULATION

For segmentation, it is essential to define the “coherence” of

different image regions to group the pixels. It is natural to model it

probabilistically. For general OOI extraction, it is not realistic to

assume either the OOI or the background model to be a single

Gaussian. In our formulation, we use GMM to model the OOI,

denoted by F , and the background, denoted by B. That is, for

M2 fF ;Bg

PMðuðx; yÞÞ ¼ P ðuðx; yÞjðx; yÞ 2 MÞ ¼
XKM
i¼1

�Mi N
�
uðx; yÞj~�Mi ; ~�Mi

�
;

ð1Þ

where �i, ~�i, and ~�i are, respectively, the weight, mean, and

covariance of the ith mixture component, K is the number of

mixtures, and uðx; yÞ is the feature vector at pixel ðx; yÞ. Denote the

image data I ¼ F [ B. Assuming image pixels are drawn i.i.d.

from the two GMMs, the image data likelihood model is simply a

mixture of the two, i.e.,

PI ðuðx; yÞÞ ¼ !FPF ðuðx; yÞÞ þ !BPBðuðx; yÞÞ; ð2Þ

where !F ¼ P ððx; yÞ 2 FÞ, !B ¼ P ððx; yÞ 2 BÞ are the priors such

that !F þ !B ¼ 1.

3.1 Local Region Potential

Denote AF and AB as the estimates of OOI and background

regions, where I ¼ AF [ AB. The estimation quality can be

evaluated by the local region likelihoods [1], [2], [16], i.e.,
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Ehl ¼
Y

ðx;yÞ2AF
P ðuðx; yÞ; ðx; yÞ 2 FÞ

Y
ðx;yÞ2AB

P ðuðx; yÞ; ðx; yÞ 2 BÞ

¼
Y

ðx;yÞ2AF
!FPF ðuðx; yÞÞ

Y
ðx;yÞ2AB

!BPBðuðx; yÞÞ:
ð3Þ

Taking the logarithm on both sides, we obtain the local region
likelihood potential, i.e.,

Eh ¼
Z
AF
flogPF ðuðx; yÞÞ þ log!Fg þ

Z
AB
flogPBðuðx; yÞÞ þ log!Bg:

ð4Þ

Our local region potential is more general than those in [1], [2],
[16] since we incorporate the priors !F and !B in it. When we
have no a priori knowledge about !F and !B (i.e., they are equal),
(4) boils down to what is used in [1], [2], [16].

3.2 Global Image Data Likelihood Potential

Notice that (4) only locally evaluates the fitness of AF and AB.
When they are close to the ground truth, maximizing (4) gives the
maximum likelihood estimation for the OOI and background
models. But, in practice, the initial estimates of AF and AB are
usually quite different from the ground truth. AF may not contain
all the OOI pixels and it may even contain some background
pixels. The same problem exists with AB . This affects the accuracy
of the estimates of the model parameters, which, in turn, affects the
subsequent segmentation. This problem arises because we ignore
the optimality of the global description of the entire image if we
only maximize (4). Therefore, we propose to add a global image
likelihood potential describing the entire image data. The intuition
is that seeking for an optimal global description at the same time
may largely reduce the negative effects of those erroneously
labeled pixels.

The global image data likelihood is

Ell ¼
Y

ðx;yÞ2AF[AB
PI ðuðx; yÞÞ

¼
Y
ðx;yÞ2I

!FPF ðuðx; yÞÞ þ !BPBðuðx; yÞÞ:
ð5Þ

Taking the logarithm on both sides, the image data likelihood
potential is defined as

El ¼
Z
I

logf!FPF ðuðx; yÞÞ þ !BPBðuðx; yÞÞg: ð6Þ

Later in the experiments, we will demonstrate that incorporating it
does significantly reduce the negative effects of the erroneously
labeled pixels in the model estimation step.

3.3 Boundary Potential

Image edges provide valuable information for segmentation. A lot of
work incorporates a boundary edge potential in a variational energy
formulation [6], [9], [2]. Denoting �ðcÞ : c 2 ½0; 1� ! ðx; yÞ 2 R2 as the
closed curve between AF and AB such that �ðcÞ ¼ AF \ AB , we
adopt a geodesic boundary potential to evaluate the alignment of
�ðcÞ to image edges, i.e.,

Eeð�ðcÞÞ ¼
Z 1

0

1

1þ jgxð�ðcÞÞj þ jgyð�ðcÞÞj
j _�ðcÞjdc

¼
Z 1

0

Gð�ðcÞÞj _�ðcÞjdc;
ð7Þ

where ðgx;gyÞ is the image gradient vector, and _�ðcÞ is the
derivative of �ðcÞ. Minimizing Ee will align �ðcÞ to the image
pixels with maximum gradient while _�ðcÞ ensures the smoothness.

3.4 Boundary, Region, and Data Likelihood Synergism

Our energy functional is then defined as the synergism of the
above three potentials, i.e.,

Epð�ðcÞ; PI Þ ¼ �Ee � �Eh � �El; ð8Þ

where �, �, and � are positive, which balance the three potentials
and �þ � þ � ¼ 1.

4 ENERGY MINIMIZATION ALGORITHMS

The energy is minimized iteratively. Each iteration consists of two
steps: First, we fix PI ðuÞ and solve for �ðcÞ by level set. Second, we
fix �ðcÞ and re-estimate PI ðuÞ by fixed-point iteration.

4.1 Boundary Optimization by Level Set

At the first step, we fix PI ðuÞ and minimize Ep with regard to �ðcÞ.
This is achieved by gradient decent. Taking the variation of
Epð�ðcÞ; PI Þ with regard to �ðcÞ, we have

@Ep

@�ðcÞ ¼
(
� log

!FPF ðuð�ðcÞÞÞ
!BPBðuð�ðcÞÞÞ

� �

þ �
�
Gð�ðcÞÞKð�ðcÞÞ � rGð�ðcÞÞ�~nð�ðcÞÞ

�)
� ~nð�ðcÞÞ;

ð9Þ

where ~nð�Þ is the normal vector of �ðcÞ pointing outward and Kð�Þ
is the curvature. One interesting observation is that the partial
variation in (9) is very similar to that in [2], [16] except that it
contains the additional parameters !F and !B . This is easy to
understand because the global image likelihood potential El does
not rely on the boundary �ðcÞ.

We use the level set technique to solve the above PDE. At each
step t during the curve optimization, �ðc; tÞ is represented by the
zero level set of a two-dimensional surface ’ðx; y; tÞ (e.g., a signed
distance function), i.e., �ðc; tÞ :¼ fðx; yÞj’ðx; y; tÞ ¼ 0g. Then, we
have

@’ðx; y; tÞ
@t

¼
(
� log

!FPF ðuðx; yÞÞ
!BPBðuðx; yÞÞ

� �

þ � Gðx; yÞKðx; yÞ � rGðx; yÞ � r’jr’j

� �)
jr’j;

ð10Þ

where

Kðx; yÞ ¼
’xx’

2
y � 2’xy’x’y þ ’yy’2

x

ð’2
x þ ’2

yÞ
3
2

among which ’x and ’y, and ’xx, ’yy, and ’xy are the first and
second order partial derivatives of ’ð�Þ. The surface evolution is
then calculated by

’ðx; y; tþ�Þ ¼’ðx; y; tÞþ� �
(
� log

�
!FPF ðuðx; yÞÞ
!BPBðuðx; yÞÞ

�
jr’ð�Þj

þ�
�
Gðx; yÞKðx; yÞ�rGðx; yÞ � r’ð�Þjr’ð�Þj

�
jr’ð�Þj

)
;

ð11Þ

where � is the step size. We have �ðc; tþ �Þ ¼ fðx; yÞj’
ðx; y; tþ �Þ ¼ 0g. In practice, all derivatives are replaced by
discrete differences, i.e., ’t is approximated by forward
differences and ’x and ’y are approximated by central
differences.

4.2 Image Data Model Estimation

At the second step, we fix �ðcÞ and minimize Ep with regard to
PI ðuÞ. This involves the minimization of Ep with regard to
���� ¼ !F ; !B; f�Fi ; ~�Fi ; ~�Fi g

KF
i¼1; f�Bi ; ~�Bi ; ~�Bi g

KB
i¼1

n o
, the parameter set

of PI ðuÞ. Notice that Ee is independent of ����. By taking the
derivatives of Ep with regard to all parameters and setting them to
zero, after easy manipulations, we obtain the following fixed-point
equations: For M 2 fF ;Bg
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!�M ¼
�
R
AM 1þ �

R
I

2!MPMðuÞ
!FPF ðuÞþ!BPBðuÞ

�
R
I

PMðuÞ
!FPF ðuÞþ!BPBðuÞ

; ð12Þ

�M�i ¼
�
R
AM

�Mi Nðuj~�
M
i ;~�Mi Þ

!MPMðuÞ

�
R
AM

2Nðuj~�M
i
;~�M

i
Þ

!MPMðuÞ þ �
R
I

N ðuj~�M
i
;~�M

i
Þ

!FPF ðuÞþ!BPBðuÞ

; ð13Þ

~�M�i ¼
�
R
AM

uNðuj~�M
i
;~�M

i
Þ

!MPMðuÞ þ �
R
I

uNðuj~�M
i
;~�M

i
Þ

!FPF ðuÞþ!BPBðuÞ

�
R
AM

Nðuj~�M
i
;~�M

i
Þ

!MPMðuÞ þ �
R
I

N ðuj~�M
i
;~�M

i
Þ

!FPF ðuÞþ!BPBðuÞ

; ð14Þ

~�M�i ¼

�
R
AM

ðu�~�M
i
Þðu�~�M

i
ÞTNðuj~�M

i
;~�M

i
Þ

!MPMðuÞ þ �
R
I
ðu�~�M

i
Þðu�~�M

i
ÞTNðuj~�M

i
;~�M

i
Þ

!FPF ðuÞþ!BPBðuÞ

�
R
AM

Nðuj~�Mi ;~�Mi Þ
!MPMðuÞ þ �

R
I

N ðuj~�Fi ;~�
F
i Þ

!FPF ðuÞþ!BPBðuÞ

: ð15Þ

During the fixed-point iterations, !�F , !�B , �F�i , and �B�i are

normalized so that !�F þ !�B ¼ 1;
PKF

i¼1 �
F�
i ¼ 1;

PKB
i¼1 �

B�
i ¼ 1. This

set of fixed-point equations, called quasi-semisupervised EM, is a

robust scheme for estimating the GMMs of two classes in the case

when all the data are labeled, but some unknown portion of the

labels are erroneous. Here, the OOI and background are the two

classes and AF and AB are the inaccurate labels of the OOI and

background pixels.
It is easy to figure out that estimating the model parameters by

optimizing the local region potential Eh is purely a supervised

estimation, while estimating the model parameters by optimizing

the global likelihood potential El is purely an unsupervised

estimation. In the iterative energy minimization process, purely

supervised estimation is confronted by the erroneously labeled

pixels, while purely unsupervised estimation does not have this

problem but it totally ignores the useful information from those

correctly labeled pixels. In [21], a robust method of estimating

Fisher discriminant under the presence of label noise is presented,

but it restricts to Gaussian distributions which may not be that

interesting in our case of estimation GMMs.
The fixed-point equations derived above indeed seek a tradeoff

between the supervised estimation and the unsupervised estima-
tion. This can be easily observed in the numerator of (14), where
the first integral over AM is the estimation from the inaccurately
labeled data while the second integral over I is a soft classification
of the image pixels by the current estimation of the image data
model. Those image pixels which have been labeled to be in AM
and which have also been classified with high confidence as M
will be assigned with more weights. This suppresses the negative
effects of those erroneously labeled data.

5 EXPERIMENTS

We first use a synthetic example to demonstrate that the additional
global likelihood potential does improve the accuracy of the model
estimation. Since the model estimation is independent of the
boundary potential, the synthetic example does not include the

boundary energy term. We then present extensive experiments on
real data to automatically extract OOI from images.

5.1 Validation of Minimizing the Local-Global Energy

In this experiment, the ground-truth of the one-dimensional data
model is

P ðdj����Þ ¼ !1P1ðdj����1Þ þ !2P2ðdj����2Þ
¼ !1 �11Nðdj�11; �

2
11Þ þ �12Nðdj�12; �

2
12Þ

� �
þ !2 �21Nðdj�21; �

2
21Þ þ �22Nðdj�22; �

2
22Þ

� �
;

ð16Þ

where ���� is the parameters set. We denote !!!! as a binomial random
variable with p.m.f. f!1; !2g.

With a specific ����, we randomly draw a set D of 20,000 data
samples and record the setL of ground-truth labels, which indicates
whether a sample is from P1 or P2. We denote L1 ¼ fli ¼ 1g and
L2 ¼ fli ¼ 2g. To simulate the inaccurate labeling, we randomly
exchange 30 percent labels between L1 and L2. We denote the
exchanged label set as Z1 and Z2, which are regarded as the known
conditions for model estimation. We then compare the model
estimated by minimizing the local energy �Eh and the model
estimated by minimizing the local-global energy��Eh � ð1� �ÞEl.
In the experiments, the local-global energy minimization (LGEM) is
performed by the quasi-semisupervised EM algorithm similar to
that in Section 4.2. The local energy minimization (LEM) is
performed by applying the classical EM algorithm [22] indepen-
dently to the two data sets induced by Z1 and Z2.

Denote P �ðdÞ ¼ !�1P �1 ðdÞ þ !�2P �2 ðdÞ as the estimated distribu-
tion and !� as the binomial random variable with p.m.f. f!�1; !�2g.
We then evaluate the quality of the estimated distribution with
regard to the ground truth by the following joint KLs distance, i.e.,

DðP �; P Þ ¼ KLsð!�; !Þ þKLsðP �1 ; P1Þ þKLsðP �2 ; P2Þ; ð17Þ

where KLsðf; gÞ ¼ KLðfkgÞþKLðgkfÞ
2 is the symmetric KL distance.

Notice that by definition, when the joint KLs distance in (17) is
small, we can assure that all the estimated parameters are close to
the ground truth.

We have extensively evaluated the quality of the estimated
models from both algorithms. Fixing a �, we randomly generate
1,000 data models and, thus, run 1,000 simulations of the
experiments described above. For both algorithms, in each
simulation we randomly choose 10 different initializations and
the best results are adopted. The experimental results are listed in
Table 1. The third row of Table 1 presents the percentage of the
1,000 simulations for a fixed � in which the LGEM estimated better
models than the LEM.

Table 1 clearly shows that with 30 percent erroneous labels, the
estimated models from LGEM is significantly more accurate than
those from LEM when we set � be 0.01 for the local-global energy,
i.e., the average D for LGEM is only 0.2 with standard deviation 0.2
over the 1,000 simulations. While the LEM obtains a average D of
5.6 with standard deviation 3.1. We can also notice that if we
increase �, the models estimated by LGEM will degrade. When
� > 0:2, the performance of LGEM is almost the same or even
worse than LEM.

We observed similar results for 20 percent and 10 percent
erroneous labels, although � needs to be larger to degrade the

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 10, OCTOBER 2006 1703

TABLE 1
Comparison of Local-Global Energy Minimization (LGEM) and Local Energy Minimization (LEM)

The table shows the average joint KLs distance and its standard deviation between the estimated model and the ground truth from 1,000 simulations for each �.



performance of LGEM to that of LEM. All these suggested us to set
a small � for the local-global energy. We usually set it to be 0.01
since we also found that setting � < 0:01 will not improve the
performance too much while the quasi-semisupervised EM may
take much longer to converge. Following the idea of [23], theoretic
analysis of choosing � may be possible, we defer it to our future
work. As pointed out in [24], estimating the GMM in a purely
unsupervised fashion can hardly keep the identity of the Gaussian
component. We do not have this problem because we combine the
global energy with the local region energy. We plotted in Fig. 1 the
models estimated from LGEM, from LEM, and the ground truth in
one simulation when � ¼ 0:05. The model from LGEM is far more
accurate than that from LEM.

5.2 Automatic Extraction of Objects of Interest

The weak assumption of focus-of-attention enables us to build a
fully automatic system to extract the OOI from images. Some
implementation details are as follows:

. Feature: u ¼ ðL;U; V ; x; yÞ, i.e., the LUV pixel values with
the image coordinates [25].

. Model: KF ¼ 2 and KB ¼ 8.

. Surface Initialization: The level set surface is initialized from
a centered rectangle with 1

8 image width and length by a
signed distance transform.

. Foreground initialization: We sort the pixels inside the initial
rectangle according to their L value. We take the two
average feature vectors of the lightest 10 percent pixels and
the darkest 10 percent pixels inside it as the seeds for the
mean-shift to obtain two feature modes. The two modes are
adopted to initialize ~�F1 and ~�F2 . The �F1 and �F2 are
initialized as 0:5. Each ~�Fi is initialized with the same
diagonal matrix: the variance of ðx; yÞ are set to be the square

of the 1
5 of the image width and height; the variances of

ðL;U; V Þ are all initialized as 25.
. Background initialization: The average feature vectors inside

eight 10� 10 rectangles around the image borders are used
as the seeds of mean-shift to obtain KB ¼ 8 feature modes.
The modes are used to initialize the ~�Bi for i ¼ 1; . . . ; 8.
Each ~�Bi has the same initialization as the ~�Fj . All the �Bi s
are initialized as 1

8 .
. INITIALIZATION OF !F AND !B: They are initialized

as 1
2 .

. Convergence criterion: When the OOI region has less than
1 percent change in two consecutive iterations, we consider
that the algorithm is converged.

We now present the OOI extraction results on images including
business card, road signs, and other more general objects.

5.2.1 Business Card Extraction

We first tested our OOI extraction algorithm on a set of business
card images. One interesting application is in mobile note taking.
One can use his/her mobile phone camera to scan and thus
manage the business card he received from the others. The
proposed approach generally produces satisfactory results and we
achieve 95 percent successful rate on over 300 images tested. We
regard a result as being successful if it almost matches the human
segmentation. The evaluation was done subjectively. Fig. 2
presents some of the result images.

5.2.2 Segmentation of Road Sign Images

We have collected a set of 37 road sign images in which the road
signs are at the focus of attention. It contains road signs of
different shapes and different poses with a large variety of
backgrounds. We asked seven people to evaluate the quality of the
extraction results by giving a rating of “good,” “fair,” or “bad” to
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Fig. 1. Visual comparison of model estimation by local and local-global energy minimization in one simulation (� ¼ 0:05). (a) Ground truth. (b) Local-global energy
estimation. (c) Local energy estimation.

Fig. 2. Card segmentation results.



each image. The majority rule is adopted to categorize each result.
Overall there are 27 good, 5 fair, and 5 bad. Some of the successful
results are shown in Fig. 3.

Two reasons may cause the unsatisfactory results: 1) The OOIs
are too small or too thin in the images. In that case, the initial OOI
region may contain a large number of background pixels. 2) There
are very strong spurious edges surrounding the OOI while there is
not enough contrast between the foreground and the background
colors to overcome the biased energy force from the spurious
edges. One possible solution might be to reduce �, but how to tune
it adaptively is an open issue. Note that these reasons also apply to
the bad examples to be presented next.

5.2.3 Segmentation of General Objects

To test the effectiveness and robustness of the proposed algorithm
for extracting general OOIs, we have tested on a set of 63 images, in
which the OOIs are at the focus of attention, from the Berkley image
database [26]. This set of images are more challenging. With the

same evaluation method, 31 extraction results are good, 15 are fair,
and 17 are bad. We present some typical successful results in Fig. 4.

5.2.4 Comparison with the Energy Formulation without the

Global Potential

For comparison, we also implemented the algorithm with the energy
formulation without the global likelihood potential. Under this
formulation, in the model estimation step, the classical EM
algorithm [22] is applied to AF and AB independently to obtain
the OOI and background GMMs. Its performance is, in general,
inferior to the proposed approach. We tested it on the 37 road sign
images and 63 images from the Berkeley image database. The
comparison results1 are summarized in Table 2. As we can notice, for
the 37 road sign images, the local energy formulation produces
19 good, 7 fair, and 8 bad results, which are significantly inferior to
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Fig. 4. Extract OOIs on Berkeley image database.

Fig. 3. Segmentation results of road sign images.

1. The image results can be accessed at http://www.ece.northwestern.
edu/~ganghua/PAMI2006/.



the 27 good, 5 fair, and 5 bad results obtained with our local-global

energy formulation. For the 63 Berkeley images, the local energy

formulation produces 19 good, 16 fair, and 28 bad results, which are

again significantly inferior to the results obtained with our

approach.
For one-on-one comparison on each image, we also found that

the extraction results from our local-global energy formulation is

always superior to those from the local energy formulation. In other

words, whenever the local energy formulation produces a good

result, our approach can also produce a good result if not better. On

the other hand, on a significant number of test images, our approach

produced good results while the local energy formulation failed. It is

the global image likelihood potential that makes this difference. It

enables the model estimation step to be more accurate.

6 CONCLUSION AND FUTURE WORK

We have proposed a novel local-global variational energy formula-

tion to automatically extract OOI from images, and developed an

efficient iterative scheme to minimize it. Our main contributions are:

1) the incorporation of a global image likelihood potential for better

estimating the OOI and background models and 2) a set of fixed-

point equations which we call quasi-semisupervised EM for robust

estimation of GMMs from inaccurately labeled data. Extensive

experiments demonstrated the efficacy of our approach. Future

work includes extending the variational energy formulation for

automatic extraction of multiple objects.
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TABLE 2
Comparison Results of the Proposed Local-Global Variational Energy

Formulation and the Variational Energy Formulation without the Global
Potential Term on the Road Sign Images and Berkeley Images
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