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Abstract—We propose a novel method for removing irrelevant frames from a video given user-provided frame-level labeling for a very

small number of frames. We first hypothesize a number of windows which possibly contain the object of interest, and then determine

which window(s) truly contain the object of interest. Our method enjoys several favorable properties. First, compared to approaches

where a single descriptor is used to describe a whole frame, each window’s feature descriptor has the chance of genuinely describing

the object of interest; hence it is less affected by background clutter. Second, by considering the temporal continuity of a video instead

of treating frames as independent, we can hypothesize the location of the windows more accurately. Third, by infusing prior knowledge

into the patch-level model, we can precisely follow the trajectory of the object of interest. This allows us to largely reduce the number of

windows and hence reduce the chance of overfitting the data during learning. We demonstrate the effectiveness of the method by

comparing it to several other semi-supervised learning approaches on challenging video clips.

Index Terms—Topic model, probabilistic graphical model, Multiple Instance Learning, semi-supervised learning, object detection,

video object summarization.

Ç

1 INTRODUCTION

THE endless streams of videos on the Internet often
contain irrelevant data. Our goal is to cut video clips

shorter and retain the frames that are relevant to the user
input. We assume the user has an “object of interest” (OOI) in
mind, which can, for example, be a car, a book, or the scene
of a forest. The system infers which frames contain the OOI
and determines these frames as relevant. This application
can be used for, e.g., shortening surveillance videos or TV
programs. Fig. 1 shows an illustration.

The amount of user label information, as well as its
format, has a major impact on system design. The amount
of user label information can range from all frames being
labeled to none. For those frames being labeled, the labeling
can be as detailed as providing bounding boxes for each
frame (which we call pixel-level labeling) or as coarse as
“this frame does (or does not) contain the OOI” (which we
call frame-level labeling). We consider the case where the
system is provided with very limited information. Specifi-
cally, the user will label at least one frame as relevant and
another frame as irrelevant. These labels are at the frame
level instead of at the pixel level. Although pixel-level
labeling (such as using a bounding box or segmentation
mask to specify the location of the OOI) can provide more

information, we intend to explore the possibility of letting
the user provide coarser and less tedious labeling.

Frame-level labeling is not only easier to provide, but
also can be tightly integrated with real-world applications.
For example, when a user watches a video and rewinds to
play back a certain portion, the user is implicitly telling the
system that she or he is more interested in that part of the
video. In other words, the user does not need to consciously
do the labeling. The framework we introduce in this paper
can readily be applied to such scenarios and takes
advantage of such kind of user information.

Our approach is to discover the object of interest in a
video given a very small number of frame-level labels. In
order to learn the appearance variability of the object of
interest, we build up a codebook of local appearances that
are characteristic for the object of interest. This is done by
extracting local features around interest points and cluster-
ing them. Based on this codebook, we simultaneously
estimate the appearance, location, and scale of the object.
The estimated location and scale are rough estimates, based
on which we further sample multiple windows to obtain
multiple hypotheses. For the frames that are labeled as
positive, we assume that at least one of the hypotheses will
genuinely describe the OOI. For the frames that are labeled
as negative, we assume that none of the hypotheses
correspond to the OOI. Based on these assumptions, we
simultaneously learn a window-level classifier and a frame-
level classifier. The window-level classifier provides feed-
back to the location and scale estimates obtained in the
previous iteration, using which we can obtain more
accurate windows. After a couple of iterations, the
estimated windows converge in location and scale, and
we use the frame-level classifier to assign a score to each
frame that determines the relevant and irrelevant frames.

Our contribution can be summarized as follows: 1) a
novel application that summarizes videos based on the
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implicitly specified OOI, 2) a novel system that uses weakly

labeled data for object discovery in video, and 3) a novel

method that takes advantage of the temporal smoothness

property during semi-supervised learning.
The paper is organized as follows: In Section 2, we give a

review on related work. In Section 3, we introduce a

multilevel image representation. In Section 4, we explain

how the multiple levels interact with each other. In Section 5,

we experimentally evaluate the framework and quantify

the robustness of the resulting approach in cluttered, low-

resolution real-world Internet videos. In Section 6, we

conclude the paper with remarks on future directions.

2 LITERATURE REVIEW

This work is an extension of our work in [1], with a more

detailed account of the theory and the experiments.

2.1 Extensions of Classic Object Detection

Our approach is deeply connected to the literature on object

detection. Classic object detection methods include [2] and

[3]. Since then, a lot of work has addressed specific

components and drawbacks of these methods. By making

comparisons to these specific components, we can provide

an overview of the literature and relate them to our work.

The specific components of classic object detection methods

include at least the following:

1. The need for pixel-level labeling. In classic object
detection, a bounding box covering the OOI needs to
be annotated for each image. In our work, we
consider the more challenging task of having as
input only frame-level labeling; see Fig. 2 for a
comparison. This kind of “weak labeling” is very
different from classic object detection, where the
characteristics of the OOI are learned from plenty of
pixel-level labeled data. It is also different from the
recent video retrieval work in [4], [5], where
bounding boxes of the OOI are manually specified
in a number of frames.

We use the Multiple Instance Learning (MIL)
framework [6], which handles the scenario where
class labels are associated with sets of samples
instead of individual samples, thereby providing a
framework for learning based on frame-level label-
ing. In computer vision problems, there is often no
natural choice of samples, and the design of the set of
samples varies for different applications. In the
context of image categorization [7], class labels are
annotated for each image, and the set of samples
consists of nonoverlapping windows of 4� 4 pixels.
In the context of object detection [8], a coarse
bounding box is annotated for each image, and the
set of samples consists of a large number of windows
that are similar in position and scale to the annotated
bounding box. The number of windows is a crucial
design parameter. If the number of windows is too
small and none of the windows truly cover the object
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Fig. 1. Video object summarization with frame-level labels. Frames are unlabeled (top left), labeled as irrelevant (middle left), or relevant (bottom
left). The system then finds out what the object of interest is (in this case, the black vehicle) and removes the frames that don’t contain the vehicle.

Fig. 2. (a) Labeling at the frame level. (b) The bounding box type of
labeling provides more explicit information regarding the object of
interest, but is also more tedious in the labeling process.



of interest, the object of interest cannot be learned. A
too large number of windows, however, would yield
a classifier that is too expressive and cannot general-
ize properly.

The set of samples in our work is generated
differently. We don’t need humans to annotate
bounding boxes, as in [8]. The windows are
automatically sampled from a window-proposal
distribution that keeps the number of windows to
a small and yet effective number.

2. Frames are treated independently. In videos, how-
ever, objects tend to move in a smooth trajectory;
therefore, the frames should not be treated indepen-
dently. There are a few object recognition papers that
take the temporal smoothness property into account
during detection [9], [10], but none of them use
frame-level labels during training. Our window-
proposal distribution takes into account the tempor-
al smoothness property of videos. Therefore, the
windows are “dynamic” and are being sampled
differently for different frames.

3. Detection involves the computation of local fea-
tures in a fixed spatial configuration. A fixed
spatial configuration is, however, not robust to local
variations. One way to model local variations is by
representing objects as an assembly of parts or
patches. In the Constellation Model [11], an object is
represented by a small number of parts, and the joint
spatial and appearance distribution are modeled by
a fully connected graph that can tolerate slight
spatial deformations. In a later version [12], the fully
connected graph is replaced by a simpler star
topology, which can handle a larger number of parts
and take advantage of an efficient inference algo-
rithm [13]. In the Implicit Shape Model [14], the
inference of the object position and scale is achieved
by a probabilistic extension of the Generalized
Hough Transform. In our work, the object appear-
ance is described by a histogram of discretized local
feature descriptors, thereby achieving robustness to
local variations.

Different than other part-based methods such as
the Constellation Model, the ISM, and the one-shot
learning framework [15], we leverage motion con-
sistency to improve detection.

Many object recognition and detection systems are
using a parts-based representation [11], [13], [14].
When the scene contains background clutter, parts-
based approaches face the difficulty of the grouping
problem, that is, which parts should be grouped
together to form the object and which parts should be
left as background. Another popular representation
is the window-level representation, commonly used in
sliding windows approaches [2], [3], where one
considers the statistics inside a window. This
approach has been the common practice for face
detection [2], [3], and lends itself to weakly super-
vised learning through the MIL framework [8]. In
general, the number of sliding windows that need to
be considered is huge, especially when there is no
prior knowledge about the location and scale of the
object of interest. Under certain circumstances,

sliding windows approaches can be vastly acceler-
ated by branch-and-bound techniques [16], but this is
beyond our discussion.

Our image representation is a hierarchical repre-
sentation that consists of both the part-level and the
window-level representation. The hierarchical repre-
sentation provides a bridge between the parts-based
approaches and the sliding windows approaches.

4. Training requires lots of labeled data, which is not
an option in many cases. In some applications, the
system needs to learn effectively from limited labeled
data. We use self-learning [17], which is a semi-
supervised learning framework shown to be useful
when labeled data are limited and yet there are plenty
of unlabeled data. It incrementally builds a single
classifier using labeled training data and converts the
most confidently predicted unlabeled data into
labeled training examples. It has been used in various
domains [18], such as semi-supervised object detec-
tion [19], [20]. In [19], learning requires both pixel-
level labeled data and frame-level labeled data. An
object detector is initially trained on the pixel-level
labeled data, and the learned model is used to
estimate labels for the frame-level labeled data. Our
approach is also based on self-learning, but requires
only frame-level labels.

5. The need for exhaustive window scanning. An
exhaustive search over all possible object locations
and scales means high computational complexity, as
for an image of as low resolution as 320� 240, millions
of windows need to be examined. It also imposes
constraints on the detector’s capability since a large
number of potential false positives need to be
excluded.

One novelty of our work is the window-proposal
distribution, from which we sample a relatively
small number of windows, thereby avoiding ex-
haustive window scanning.

2.2 Unsupervised and Weakly Supervised Object
Detection

Our framework is also related to topic models such as
PLSA, LDA, and HLDA [21], [22], [23], [24], [25], [26], [27],
[28]. Topic models belong to the family of probabilistic
graphical models [29], [30]. Probabilistic graphical models
are graphs with nodes representing random variables and
edges representing conditional independence assumptions.
Topic models have recently been introduced from the text
understanding community [31] to computer vision due to
their strength in unsupervised learning. We leverage the
topic model in [27], [28] and extend it to a semi-supervised
setting by incorporating additional prior models during
learning. Our image representation, which is based on a
hierarchical part-level and window-level representation, is
similar to [22] and [26]. The problem solved, the application
targeted, as well as the fundamental approach adopted in
our paper, are significantly different from these works.

Recent work on weakly supervised learning methods
includes [32] and [33]. Chum and Zisserman [33] introduce
a method to detect object classes based on frame-level
labeling. The region of interest is initially determined by the
top N most discriminative patches and iteratively being
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updated. Finally, a classifier is trained based on the regions
of interest. Our approach is model-based and therefore
estimates the region of interest in a more principled
manner. It also avoids hard thresholding of the patches.

2.3 Object Instance Recognition and Retrieval

Object instance recognition in [34], [4], and [5] is matching-
based approaches; in particular, Sivic et al. [5] take into
account temporal information during matching, and their
study is related to the literature of wide-baseline matching
in multiple-view geometry. Our method is based on a
probabilistic model and is related to topic models and
Multiple Instance Learning. Our model considers the image
as being composed of foreground and background, and
learning takes advantage of both the positive and negative
frames. Matching-based methods generally do not explicitly
make use of image background or negative frames.

The vast literature on retrieval [4] and relevance feed-
back [35] is related to our work. Image retrieval systems
often allow users to provide positive and negative feedback;
hence, the task of image retrieval can also be cast under the
self-training [17] or Multiple Instance Learning framework
[8], [7]. Nonetheless, our system exploits temporal informa-
tion of videos in a novel way which distinguishes itself from
the image retrieval literature.

2.4 Contextual Object Detection and Other Work

It has been observed that background context is often
correlated with the foreground object, and hence modeling
their relationship can benefit object detection [36], [37], [38].

In our application, the location of the object of interest is not
labeled. The topic model models the foreground and
background histograms and hence takes into account
background context. The Multiple Instance Learning frame-
work uses multiple windows that hypothetically cover the
object of interest and automatically determines the window
size. These windows also naturally include a certain
amount of background context.

Our hierarchical visual model propagates information
across multiple levels of image representations, namely, the
patch level, the window level, and the frame level. The
concept of hierarchically propagating information across
layers has been used in the object recognition literature for
building up complex detectors from smaller ones [39], [40],
for learning atomic parts of object structure and parsing
image compositions [41], [42], [43], [44], [45], and for
hierarchical decomposition of the set of possible presenta-
tions of an object [46].

In [47], activities in a video are condensed into a shorter
period by simultaneously showing multiple activities. It
does not intend to discover the frames that contain the user-
desired OOI from limited user input.

3 MULTILEVEL IMAGE REPRESENTATION

3.1 Patch-Level Representation

We use the Maximally Stable Extremal Regions (MSER)
operator [48] to extract patches or parts (we use these two
terms interchangeably) from video frames.1 Examples are
shown in Fig. 3. MSERs are the patches of an image where
local contrast is high. Other operators could also be used;
see [49] for a collection.

Patch-level features are extracted from these MSERs by
Scale Invariant Feature Transform (SIFT) [34]. In this work,
we extract MSERs and SIFT descriptors from gray-scale
images, although color images [50] can also be used. The
SIFT features are collected from all frames in the video and
are vector quantized using K-Means Clustering. The
resulting J ¼ 50 cluster centers form the dictionary of
visual words, fw1; . . . ; wJg. Each patch is then represented
by its closest visual word in the SIFT feature space.

3.2 Window-Level Representation

A video frame is covered by multiple windows, each
window being a hypothesis trying to explain the location
and scale of the OOI. A window is represented by a
histogram of visual words, or textons [51], as shown in Fig. 4.
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Fig. 3. Maximally Stable Extremal Regions (MSERs). (a) Position of
MSERs. (b) Coverage of MSERs.

Fig. 4. Windows, each represented by a histogram over visual words.
We use a variety windows with different locations and scales.

1. The word “region” in MSER should not be confused with the
“windows” to be introduced later. Each window consists of a set of MSERs.



Windows are sampled from a window-proposal distribution,
defined as a probability mixture model,

pWP
k ðrÞ ¼ �Nðrĵrk; �̂kÞ þ ð1� �ÞN ðrĵr0; �̂0Þ; ð1Þ

where k is the frame index.
The first distribution, Nðrĵrk; �̂kÞ, is an estimate of

where the object of interest is located at. The derivation of
the parameters is deferred until Section 4.2.

The second mixture component is a Gaussian-near-uni-
form distribution, and the purpose of including it is to
increase the robustness when the first mixture component is
estimated poorly. The parameter r̂0 is set to the center of the
image plane, and �̂0 is set with large diagonal variances equal
to 1;0002. Such types of outlier distributions have been used in
the real-valued graphical models literature [52].

To sample a window, we first select one of the two
distributions according to the value of �, and then sample a
point from the respective Normal distribution. This gives us
the center of the window. Based on the center, we use a
1.2 scale ratio to obtain different window sizes, with the
smallest one equal to the variance specified by �̂k. This is
illustrated in Fig. 5, with the informative windows sampled
from the first mixture component and the random windows
sampled from the second component. Using various sizes is
to increase the robustness in case of inaccurate scale
estimates.

Finally, each window is represented by a histogram,
xk;n, of visual words that it contains, where n is an index
over windows.

This window sampling scheme yields informative
windows, to be distinguished from the common practice
of using uniform sampling or uninformative windows in
Multiple Instance Learning [7]. Besides, the window-
proposal distribution is frame dependent and hence the
windows are “dynamic,” i.e., the windows change their
locations and scales over frames.

4 INFORMATION PROPAGATION BETWEEN LEVELS

The window-level representation provides a bridge be-
tween frame-level labels and patch-level observations. In
the following sections, we explain how information is
propagated between these levels. Basically, in the first
iteration, we sample windows from a near-uniform dis-
tribution. Using the framework in Section 4.1, we propagate
user label information from frames to windows. A window
classifier is learned, which assigns patch scores. Using the
framework in Section 4.2, an updated spatial distribution is

estimated. Starting from the second iteration, we sample
windows based on the updated spatial distribution.

4.1 Information Propagation between Window Level
and Frame Level

Given the multiple windows, our goal in this section is to
propagate the information from the frame-level labels into
the windows. In other words, we will estimate how likely it
is that each window contains the OOI. Formally, each frame
has a frame probability qk and each window has a window
probability qk;n. The frame probability is the probability that
the frame contains the OOI and the window probability is the
probability that the window contains the OOI. This section
explains how to estimate these probabilities.

Assume a frame is labeled by the user as positive when
at least one of its windows covers the OOI and negative
when none of its windows cover the OOI. This assumption
naturally corresponds to the Noisy-OR model [29], which
models the relationship between qk and qk;n as follows:

qk ¼ 1�
YNk

n¼1

ð1� qk;nÞ; ð2Þ

where Nk is the number of windows in frame k. We can
see that the frame probability is close to zero if and only
if the window probabilities are all close to zero. We also
see that once qk;n is determined, so is qk. The MILBoost [8]
and AnyBoost [53] algorithms provide a way to estimate
qk;n as follows:

Define a window classifier that has the form of a weighted
sum of weak learners,

Cð:Þ ¼
X

j

�jcjð:Þ; cjð:Þ 2 f�1;þ1g: ð3Þ

Assume that the window probability is related to the output
of the window classifier, Cðxk;nÞ, through the logistic
sigmoid function,

qk;n ¼ 1=ð1þ expð�Cðxk;nÞÞÞ: ð4Þ

The goal now is to estimate f�jg and fcjð:Þg so that qk;n
approaches its true value. Since Cð:Þ is additive, this can be
achieved by maximizing likelihood through gradient ascent
[53]. Here, we outline the procedure. Let uk 2 f0; 1g denote
the label of frame k. The likelihood is defined as

L ¼
Y

k

qk
ukð1� qkÞð1�ukÞ; ð5Þ

and is maximum when qk ¼ uk. To find a window classifier
that maximizes the likelihood, we first express the log-
likelihood as a function of Cð:Þ. The derivative of the log-
likelihood with respect to Cð:Þ is easily derived as uk�qk

qk
qk;n,

which we denote by $k;n. Gradient ascent in each round j is
then achieved in two steps. First, one solves the optimal
cjð:Þ 2 f�1;þ1g through the optimization problem

cjð:Þ ¼ arg max
c0ð:Þ

X

k;n

c0ðxk;nÞ$k;n: ð6Þ

Second, a line search is performed to seek for the optimal
�j, i.e.,

�j ¼ arg max
�
LðC þ �cjÞ: ð7Þ
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Fig. 5. Window-proposal distribution. Left: Informative Windows. Right:
Random Windows.



After these two steps, Cð:Þ is updated by Cð:Þ  Cð:Þ þ
�jcjð:Þ, and a new round of gradient ascent begins.

As a summary, the boosted classifier is operating at the
window level, but the labels are only provided at the frame
level, and (2) and (5) provide the links between the two.

Since only a subset of frames are labeled, we use a self-
training procedure as follows: First, we use the user-labeled
frames to train a classifier Cð:Þ as explained above. The
classifier is then trained again with the pseudolabels
included, which are obtained by classifying the unlabeled
frames. We call the resulting classifier the Self-learning-
MILBoost classifier, or S-MILBoost for short. At the end,
S-MILBoost estimates the frame probabilities and the
window probabilities. The frame probabilities are used to
classify the frames into positives and negatives. The
window probabilities will be utilized in the next section.

4.2 Information Propagation between Patch Level
and Window Level

Now that we have derived the frame probabilities, we can
classify the frames into those that contain the OOI and those
that don’t. However, the derivation is based on the premise
that at least one of the windows reasonably covers the OOI. If
this assumption doesn’t hold, the Noisy-OR model would be
invalid, and the classifier would be biased. In this section, we
introduce a way to estimate where the OOI is located based
on information propagation between patches and windows.
This extra layer of propagation introduces new information
and provides a good estimate of the OOI location.

The hidden variable z denotes the origination of a patch,
being either background, z�, or object of interest, zþ. We
assert that the joint distribution of visual word w, location r,
and hidden label z of a patch in frame k obeys the
conditional independence assertions postulated in the
probabilistic graphical model in Fig. 6. This corresponds
to the following decomposition:

pkðz; r; wÞ ¼ pkðrjw; zÞpkðwjzÞpkðzÞ � pkðrjzÞpðwjzÞpkðzÞ: ð8Þ

The distribution pkðzÞ gives the prior probabilities of a
patch in frame k originating from the OOI and from the
background. When pkðzþÞ is very small, the OOI is very
unlikely to be present in frame k. This means we can model
occlusion and disappearing objects.

The appearance distribution pðwjzþÞ models the appear-

ance of the OOI. Likewise, pðwjz�Þ models the appearance

of the background. In (8), we assert that pkðwjzÞ ¼ pðwjzÞ,
which means the appearance distribution is frame inde-

pendent. This is the same assertion made in the PLSA

model [31], [21]. This assertion allows us to learn the object

appearance using all frames.
The spatial distribution, pkðrjzÞ, describes how the patches

from the OOI and those from the background are distributed.
We use the Expectation-Maximization (EM) algorithm

[54] to estimate the distributions pkðzÞ, pðwjzÞ, and pkðrjzÞ.
The EM algorithm consists of two steps. The E-step computes

the posterior probabilities for the hidden variables:

pk
�
z
ðiÞ
k jw

ðiÞ
k ; r

ðiÞ
k

�
¼

pk
�
z
ðiÞ
k

�
p
�
w
ðiÞ
k jz

ðiÞ
k

�
pk
�
r
ðiÞ
k jz

ðiÞ
k

�
P

z2fzþ;z�g pkðzÞp
�
w
ðiÞ
k jz

�
pk
�
r
ðiÞ
k jz

� ; ð9Þ

where i is an index over all patches in frame k, and z
ðiÞ
k 2

fzþ; z�g denotes the hidden origination of patch i. In the

M-step, we adopt a Bayesian approach to estimating the

probabilities, using m-probability estimation [55]:

pkðzþÞ ¼
PRk

i¼1

�
m
ðiÞ
k þ pk

�
z
ðiÞ
k ¼ zþ

��wðiÞk ; r
ðiÞ
k

���

2Rk
; ð10Þ

pkðz�Þ ¼
PRk

i¼1

�
1�mðiÞk þ pk

�
z
ðiÞ
k ¼ z�

��wðiÞk ; r
ðiÞ
k

���

2Rk
; ð11Þ

where Rk is the number of patches in frame k and m
ðiÞ
k is

prior information of patches obtained as follows: Based on

the window probability of S-MILBoost, we define the patch

score as an indicator of how likely a patch originates from

the OOI. Noticing that each patch can belong to multiple

windows, we define the patch score as the largest window

probability among the windows that cover the patch. The

patch score is denoted by m
ðiÞ
k , where i is indexing over all

patches in frame k.
The appearance distribution is updated as follows:

pðw0jzþÞ ¼
1

b

X

k;i

�
m
ðiÞ
k þ pk

�
z
ðiÞ
k ¼ zþ

��wðiÞk ¼ w0; r
ðiÞ
k

��
; ð12Þ
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Fig. 6. The graphical model in plate notation. Rk is the number of patches and Nk is the number of windows in frame k. Each patch is associated with
a visual word w, a location r, and a hidden variable z. The histogram of visual words inside a window is denoted as x. Frame labels are denoted as u,
which are observed for the labeled frames and hidden for the unlabeled frames. The location and scale parameters of the window-proposal
distribution are denoted as �.



pðw0jz�Þ ¼
1

b0

X

k;i

�
1�mðiÞk þ pk

�
z
ðiÞ
k ¼ z�

��wðiÞk ¼ w0; r
ðiÞ
k

��
;

ð13Þ

where k is summing over all frames, i is summing over all

patches in frame k, and b and b0 are normalization constants

so that pðwjzþÞ and pðwjz�Þ are proper probability distribu-

tions. The above update equations are derived in the same

manner as in [31], with the addition of patch scores for the

m-probability estimation.

4.2.1 Temporal Smoothing

The spatial distribution is derived in a manner that takes

into account the temporal smoothness of object motion.

Intuitively, we use a filter that smoothes the estimated

trajectory of the OOI. While the Kalman filter models the

trajectory of only a single spatial-temporal observation, the

PDA filter [56] explicitly models target-originated and

background-originated spatial-temporal observations;

hence we use the PDA filter as described below.
Define the state sk as the unknown location and velocity

of the OOI in frame k. We assume a constant velocity motion

model and the state evolves according to skþ1 ¼ Fsk þ ��k,
where F is the state matrix and the process noise sequence ��k
is white Gaussian. If patch i in frame k originates from the

OOI, then its location can be expressed as r
ðiÞ
k ¼ Hsk þ ��ðiÞk ,

where H is the output matrix and the observation noise

sequence ��
ðiÞ
k is white Gaussian; otherwise, the location is

modeled as a uniform spatial distribution.2

The state estimate can be written as ŝk ¼
PRk

i¼1 ŝ
ðiÞ
k �

ðiÞ
k ,

where ŝ
ðiÞ
k ¼ ŝk� þWk�

ðiÞ
k is the updated state estimate

conditioned on the event that patch i in frame k originates

from the OOI, where �
ðiÞ
k ¼ r

ðiÞ
k � r̂k� is the innovation, r̂k�

is the observation prediction, ŝk� is the state prediction,

and Wk is the Kalman Filter gain [56]. The state

estimation equations are essentially the same as in the

PDA filter. The association probability �
ðiÞ
k is defined as

�
ðiÞ
k / Nð�

ðiÞ
k j0;�kÞpkðzðiÞk jw

ðiÞ
k ; r

ðiÞ
k Þ, where the first term

contains motion information, the second term contains

appearance, location, and scale information, and �k is the

innovation covariance. We then have

pk
�
r
ðiÞ
k jzþ

�
¼ 1

b
N
�
r
ðiÞ
k

��̂rk; �̂k

�
; i ¼ 1; . . . ; Rk; ð14Þ

where r̂k ¼ Hŝk is the location estimate and b is a constant

to ensure the spatial distribution is normalized. The spatial

distribution, pkðrjzþÞ, is a probability mass function, taking

unnormalized values from the Normal distribution in (14).

The weighted covariance matrix �̂k is the covariance matrix

of the locations r
ðiÞ
k with a weighted mass for each data

point, with weights equal to the association probabilities

�
ðiÞ
k . As a result, if the association probabilities have high

uncertainty, the spatial distribution will be flatter; if low

uncertainty, it will be sharper around the location of the

OOI. The spatial distribution of background patches,

pkðrjz�Þ, is assumed to be a uniform distribution.

We use �k ¼ ðr̂k; �̂k) to denote the parameters of the
spatial distribution. As illustrated in Fig. 6, � is correlated
across frames due to the motion filtering framework
explained above. This allows us to learn the appearance,
location, and scale information of the OOI using all frames,
while taking advantage of the motion smoothness property
of objects in videos.

A similar framework appears in [27], [28]. We improve it
by using prior knowledge, indirectly learned from the
frame-level user labels. More specifically, the window
probabilities in S-MILBoost contain information about the
OOI. This prior knowledge is incorporated into the
estimation of the appearance and spatial distributions in
(9)-(14). On the other hand, the framework in [27], [28] was
completely unsupervised.

4.3 Summary

In the first iteration, we sample windows with � ¼ 0 in (1),
i.e., sample only from the Gaussian-near-uniform distribu-
tion. Using the framework in Section 4.1, we propagate user
label information from frames to windows. A window
classifier is learned which assigns patch scores. Using the
framework in Section 4.2, an updated spatial distribution,
Nðrĵrk; �̂kÞ, is estimated. Starting from the second iteration,
we sample windows with � ¼ 0:5 in (1). We notice that the
system usually converges after three iterations.

5 EXPERIMENTS

We use 15 video clips from YouTube.com and TRECVID
[57]. Sample frames are shown in Fig. 7. Most of the clips
are commercial advertisements with a well-defined OOI
and range from 20 to 356 seconds in length. We sample
each video at two frames per second. In total, there are
3,128 frames of size 320� 240. The frames have visible
compression artifacts.

The video frames are ground-truthed as positive or
negative according to whether they contain the OOI
determined by three human labelers, e.g., in the soda
video, the soda logo is the OOI. Each method is run 30 times
(due to the stochastic nature of the k-means visual word
clustering and the EM algorithm), where in each run we
randomly select Np frames from the positive frames and Nn

frames from the negative frames as labeled data, where Np

and Nn are one or three. The rest of the frames are treated as
unlabeled data. Some videos only have four positive
frames; therefore, we used up to Np ¼ 3. Results are
averaged over 20 runs. The labeled frames are labeled at
the frame level but not pixel level.

Table 1 shows the average precision of different
methods. We compare our framework with several other
methods that replace or omit some modules of the proposed
method. We also compare with some important prior work
in literature. The methods are first characterized by the type
of annotation available during training (frame level versus
window level). The methods are further characterized by
frame-based versus window-based image representation. In
frame-based representation, features are extracted from the
whole frame; in window-based representation, features are
extracted from one or multiple windows. In the following,
we will introduce these comparative methods while we
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2. With an abuse of notation, r denotes the continuous image plane
coordinates, while r denotes the finite set of patch locations with cardinality
Rk for frame k.



discuss the results. Some results are not listed in the table

but only mentioned in the text.
Method-A: Frame-level learning. The histograms of the

labeled frames along with their labels are used to train a
classifier. The classifier we use is Discrete AdaBoost [58].
The classifier is then applied to the unlabeled frames.
Frames with high confidence scores are assigned pseudo-
labels. The pseudolabeled data are combined with the
original labeled data and the classifier is trained again. This
kind of self-training [17] procedure has been used exten-
sively in different domains [18], [19] and achieved top
results in the NIPS competition [59].

Method-A learns at the frame-level representation. There
are two disadvantages to learning at the frame level:

1. The OOI can be small and visual words from the
whole frame are usually dominated by background
clutter. Hence, the full-frame histogram representa-
tion is more of a representation of the background
clutter, instead of representing the OOI.

2. Objects in video often follow a smooth motion
trajectory. When working with frames instead of
with windows, this smoothness property cannot be
readily exploited.

Methods-B and C described below learn at the window-level
representation and significantly improve in performance.

Method-B: Window-level learning with random win-

dows. Method-B uses S-MILBoost as discussed in Section 4.1
to propagate information between the frame level and the
window level. This method outperforms Method-A in most
cases. Using windows helps the learning process to focus on

features originated from the OOI and get less affected by
background clutter.

Method-B is a simplified version of our final proposed
method, Method-C. It has the S-MILBoost component, but
it does not learn a window-proposal distribution. Instead,
the windows are placed in a fixed pattern as follows: The
windows consist of rectangles of size 160� 120 with equal
spacing between each other. In addition, a rectangle of size
320� 240 covering the whole frame is used in order to
take care of large objects. After running S-MILBoost, we do
not refine the placing of windows, as we do in the
proposed method.

We experimented with different numbers of rectangles
by changing the spacing between them and obtained
different performances, as shown in Fig. 8. There is a sweet
spot at the number of 10 windows, which shows that
having more windows does not necessarily yield better
performance. Even though increasing the number of
windows will increase the chance that one of the windows
faithfully represents the OOI, the Noisy-OR Multiple
Instance Learning framework will become too expressive
and generalize worse, hence the drop in performance. We
also experimented with placing the windows more con-
centrated around the center of the frame but obtained
similar results.

Method-B’: Most confident window propagation. This
method is not listed in the table. It is an extension of
Method-B, and is the closest one to the proposed method.
See illustration in Fig. 9. Windows are first placed regularly
as in Method-B. The window classifier in Section 4.1 is then
applied to the windows in the labeled frames, and the
window with the highest score in each frame is called the
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Fig. 7. Sample frames. Name of video clip: (a) car, (b) spice, (c) sode, (d) candy, and (e) cat food.



“base window.” Each unlabeled frame then obtains an

additional window by interpolating the location of the base

windows from the nearest labeled frames. Nearness can be

defined as the visual similarity between frames or as the

time difference between frames. We found the latter to

work better. The replicated window is then replicated

again within the frame with different sizes using a 1.2 scale

ratio between two windows, with the smallest one equal to

the size of the base window and no more than five

windows in total. Since videos often contain multiple scene

transitions or shots, we only allow the replication to

happen within a shot and not across shots. The average

precision of this method is 53.9 and 67.3 percent for

ð1þ; 1�Þ and ð3þ; 3�Þ, respectively.
Method-B0 is different from the final proposed method in

that there is no information propagating between the patch
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TABLE 1
Comparing the Average Precision (Percent)

The number of labeled frames are one positive (1þ) and one negative (1�) in the upper row, and three positives and three negatives in the lower row
for each video sequence. Method-C is the proposed method. Videos with an (*) are the more difficult ones and have a separate average precision at
the bottom.



level and the window level. Therefore, its windows often

don’t cover the OOI as well as in the proposed method.
Method-C is the proposed method. From Table 1, we see

that Method-B and Method-C are most of the time the best
performers when using frame-level labels. Together with
Fig. 8, this justifies our expectation that properly placed
windows are crucial to the performance. Using a huge
number of windows overfits the data and lowers the
performance. Using a proper window-proposal distribution
reduces the need for a large number of uninformative
windows. In Fig. 10, we display some frames that are
inferred by the proposed method as positive, together with
the window with highest window probability shown in
yellow. Processing speed is around 2 seconds per frame for
patch-level feature extraction, and 1 second per frame for
the rest of computation.

There are some failure cases. In the soda video (Fig. 7c),
frames that contain the soda logo are labeled as positive
frames. For this video, Method-C performs slightly worse
than Method-B’. The reason is that the spatial distribution
in (14) is centered around the truck front in some frames,
and the window-proposal distribution in turn generates
many windows that cover the truck front. This increases the
chance that the system considers the truck front as the OOI,
instead of the logo. One such frame is shown in Fig. 11.
Another example is shown for the candy video. Frames
containing the candy logo are labeled as positive. Perfor-
mance of using random windows (Method-B) is on par with
using informative windows (Method-C). We noticed that
the spatial distribution in Method-C does not truly cover
the OOI. One such frame is shown in Fig. 11.

Method-D. This is the method presented in [33]. We use
the patch-level representation as described in Section 3.1. The
method tries to identify the region of interest iteratively,
starting from the region identified by the 10 most discrimi-
native visual words. Varying this number beyond 15 lowers
the performance. Finally, Discrete Adaboost is trained based
on the regions of interest. While this method is similar to
Method-C in that it tries to estimate the location of the OOI, it
does not maintain multiple windows with varying amount of
background context as in Method-C, and it also does not
model the motion smoothness. Therefore, its performance is
closer to Method-B and worse than Method-C. Besides,
Method-C estimates the region of interest based on a
probabilistic model and avoids hard thresholding of the
patches.

Method-E. Using Lowe’s method [34] to match SIFT
descriptors from an unlabeled frame to a positive frame.
Good matches are identified by finding the two nearest
neighbors of each SIFT descriptors from the first image
among those in the second image, and only accepting a
match if the distance to the closest neighbor is less than
0.6 of that to the second closest neighbor. The score of an
unlabeled frame is the number of good matches found.
When multiple positive frames are available, we keep the
largest score. We made the method a semisupervised
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Fig. 9. Illustration of Method-B’.

Fig. 10. Sample frames that are inferred as positive. A yellow box shows
the window with highest window probability. Name of video clip: (a) car,
(b) spice, (c) soda, and (d) cat food.

Fig. 11. Sample frames where the proposed method does not perform

well. (a) Soda. (b) Candy.

Fig. 8. Increasing the number of windows does not lead to increase in
performance.



version as follows: Frames with high scores are pseudo-
labeled as positive, and the method is run again.

This method provides very good results when the OOI is
highly textured, for example, in the cat food video (Fig. 7e).
In some other videos, the performance is poor. We tried an
alternative method where, instead of assigning a score
based on the number of good matches, frames are classified
as positive or negative based on nearest neighbor classifica-
tion using both positive and negative frames. The perfor-
mance is much worse than Method-E.

The results reported do not include the geometric
verification step in [34] due to an average drop in perfor-
mance from 62.3 to 61.1 percent. In only 3 out of 15 videos did
the verification step improve performance. It should be noted
that the verification step in [34] was based on the difference of
Gaussian (DoG) function while we are using the MSER. The
DoG is not affine invariant, while the MSER is. Besides, the
MSER has the highest repeatability score among affine
invariant region detectors as reported in [60]. An explicit
geometric verification step could, therefore, provide more
benefit to DoG than to MSER. In addition, the tracking process
in our system can follow the gradual change of the video
objects even when the verification step is not performed or
when there is not much geometric consistency across
different views.

5.1 Using Window-Level Labels

Throughout this paper, the discussion and experiments were
based on frame-level labels. What if window-level annota-
tion is available? In Methods-F, G, and H, we experiment
with using window-level labels for classification.

Method-F. Method-F is an extension of Method-E, the
matching-based method. When performing matching, we
only use the SIFT descriptors that fall within the annotated
window containing the object of interest, instead of using
the whole image. We can see that the performance is better
than that of Method-E.

Method-G. As in Method-F, whenever labeled windows
are available, we extract features only within the window,
but this time using Discrete AdaBoost as classifier. The
performance is better than that of Method-A.

Method-H. To better understand why Method-C per-
forms so well, we conduct a comparative experiment which
tells us the “upper bound” performance of Method-C.
Instead of sampling windows from the window-proposal
distribution, we use the user-labeled windows in the
following manner: We sample eight windows that are
cocentered with the annotated window but with larger
scales (each one increasing 10 pixels in width and height),
and one additional window that covers the whole image.
The classifier used is S-MILBoost. The performance is better
than that of Method-C.

Summary. Experiments with Methods-F, G, and H show
that when window-level annotation is available, the overall
performance increases, at the expense of more labeling effort
from the user’s side. However, Method-C achieves nearly the
same performance as Method-H, despite having only frame-
level annotations. This shows the promise of a frame-level
user labeling system and validates our idea of using multiple
windows. Different windows contain different amount of
background context, and Multiple Instance Learning auto-
matically decides the right amount of background context
required for classification.

6 CONCLUSION

We have presented an approach for removing irrelevant
frames in a video by discovering the object of interest.
Through extensive experiments, we have shown that this is
not easily achieved by directly applying supervised or
semisupervised learning methods in the literature devel-
oped for still images.

On a higher level, our method can be considered as a
“weakly initialized” tracking system but without manual
track initialization; The system finds out automatically what
the “best track” is, with the objective of agreeing with the
user’s labeling on which frames contain the object of interest.

There are several future directions of interest. Currently,
the spatial distribution in Section 4.2 is suitable for one or
zero OOI in a frame. But this is not a problem for our
system because, as long as one of the possibly many OOIs is
discovered, the frame probability in Section 4.1 will be high.
In other words, we don’t need to identify every OOI in
order to decide if a frame is relevant or irrelevant. If, in
addition to determining the relevance of a frame, one also
wants to discover all OOIs, one possible extension would be
to use a mixture of Gaussians as spatial distribution.
Having more parameters to estimate, however, is likely to
decrease the performance, since the amount of user labels is
very limited.

As we noted in the experiments, the performance
depends directly on the placing of the windows. It would
be helpful to adapt the window-proposal distribution’s
� parameter so that more windows are sampled from the
Gaussian-near-uniform distribution when the estimated
spatial distribution is bad. This might seem like a tautolo-
gical statement since we don’t know where the OOI is
located. However, by means of estimating the quality of data
fitting, this is potentially achievable. For example, if by
examining the data log-likelihood we have a means of
measuring the fitness of the spatial distribution, then we
could adjust the value of � in (1) to control the number of
windows being sampled from the estimated spatial distribu-
tion versus from the Gaussian-near-uniform distribution.
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