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A b s t r a c t .  This paper presents a formal framework for specifying ac- 
tive database systems. Declarative characterization of active databases 
allows additional flexibility in defining an implementation-independent 
semantics of the active rules. The results extend the active database de- 
scription language introduced in [5] with additional semantic dimensions. 
We demonstrate through examples how we can encode the active rules 
and their operational behavior from different existing systems. 

1 I n t r o d u c t i o n  a n d  M o t i v a t i o n  

The core concept which makes a database system active is the concept of an 
active rule. The origin of the active rules is the production rule paradigm from 
the field of Artificial Intelligence with languages like OPS5 [8], used in expert  
systems. Typically, a production rule is of the form condition--+ action, where an 
inference engine cycles through all the rules and matches the condition part  with 
the data  in the working memory. Active rules, on the other hand, typically follow 
the event-conditwn-action (ECA) paradigm which specifies an action (possibly 
a sequence of actions) to be executed when a given event occurs, provided that  
certain conditions hold. The reactive capabilities of active databases are useful 
for many applications, such as views [10, 11], integrity constraints [37, 9], and 
workflows. Several active database languages [34, 23, 22] have been proposed, 
and many systems and prototypes have been designed and, partially or com- 
pletely, implemented [26, 29, 12, 20, 35, 41] (many systems are presented in 
the collection [42]). Each system has some active features, expressed in its own 
syntax and (operational) semantics. However, it can be noticed that  sometimes 
rules with a similar form will behave differently in different systems ([25] and 
[14] present surveys of several systems functionalities and operational semantics). 
The  dissimilarities arise because there are many different functional features [31] 
tha t  make a database system active and the existing systems have taken differ- 
ent choices among appropriate alternatives. This has resulted in recognizing 
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[15, 31, 42] that  there has been very little activity on formal foundations of ac- 
tive behavior. Some recent results on formal characterization of active database 
are [17, 19, 18, 5, 32, 39, 43, 44]. 

This paper extends the language £act~e introduced in [5] to describe the 
semantics of active database systems. £.active is based on the action description 
language £0 of Baral, Gelfond and Provetti [4]. One of the advantages of £0 
is the clear distinction the language makes between actual and hypothetical 
occurrence of an action. This feature enables the active database designer reason 
about various effects of executing a sequence of actions [17] such as: 

- Is the particular sequence executable? 
- Will certain data  hold after executing a particular sequence? 
- Will certain events occur as a result of executing a given sequence or, equiv- 

alently, will a certain active rule be triggered? 

In 1:active we allow for the description of the effects of executing actions, 
definition of events, and definition of active rules which can encode different 
semantic options. The semantics of £act~ve is based on the automata-based se- 
mantics of action description languages [21] and allows us to define an entailment 
relation between an active database description and queries about the state of 
the database after execution of a sequence of actions. A state of the database is 
described both by the data  and the events. This is similar to [19] where the au- 
thors present a very comprehensive study of the existing active database systems 
and various semantic dimensions (functional features) and also offer a formal- 
ism (EECA) for encoding them. The rules from EECA format are translated 
into a core format for which the execution semantics is given by an algorithm 
specified in a C-lik e language. In contrast to [19] our formalism is completely 
declarative. In our approach, given the description of the active database, the key 
feature of the semantics is a transition function which generates the evolution 
of the states when a particular sequence of actions is executed. This function is 
implementation-independent. As we demonstrate later in the paper, the sepa- 
ration of the event definition from the active rule allows us to specify more 
complex events that  the ones in [19] (although not the full class of [30]). An im- 
portant aspect of our language is that  it can be easily extended to incorporate 
additional features such as concurrent actions [3] and deductive rules [27, 2, 28] 
using previous results from action description languages. Furthermore, there are 
straightforward translations of active database descriptions into logic programs 
that  implement the entailment relation giving us a tool to automatically reason 
about hypothetical executions. 

The remainder of the paper is structured as follows. We introduce the syntax 
and semantics of £ac~ve, with some examples from the existing systems. Next, 
we present more examples showing how different active database semantics can 
be captured in our language. Next, we formally describe the semantics and show 
how we can ask queries about the database behavior based on the entailment 
relation. Last, we give a brief comparison with the existing works, draw some 
conclusions and indicate directions for future work. 
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2 S y n t a x  o f / : a c t i w  

We assume that  there are four (possibly countably infinite) pairwise disjoint sets 
of symbols: A - action names, 5 r - fluents, $ - event names, and 7~ - rule names; 
and a set of variables. Each symbol has an arity associated with it and literals 
from each set are defined as usual. Atoms from ~4, b r ,  $ and 7~ are called actions, 
fluents, events, and rule_ids respectively. We will restrict the use of literals to 
fluent and event literals. There is a special action symbol j', called the processing 
point action symbol (see section 2.1). 

Fluents are data  items which can change their values as the active database 
evolves. They can take different forms according to the kind of database being 
used. For example, in an object oriented database, they could be a name of 
an object attribute,  together with a value from the domain of the attribute.  
In a relational model, fluents correspond to the tuples that  can appear in the 
relations. Variables can be used in the literals and they represent parameters 
tha t  can be replaced by any value from the underlying domain of the attributes. 
Our examples will be loosely based on the relational model, in order to minimize 
the introduction of new notation. 

There are three types of propositions in £ac t i ve  : 

(i) The first kind of propositions are the causal or effect laws which are expres- 
sions of the form: 

a(X) causes  f ( Y ) i f  p l ( X l ) , . . . , p n ( X ~ )  (1) 

where a(X) is an action and f (Y) ,  Pl (X-~),... ,  Pn (Xn) are fluent literals (n _> 0). 

pl (X 1 ) , . . . ,  Pn (~nn) are called preconditions. The intuitive meaning of (1) is that  
in any state of the active database execution in which p t (X 1 ) , . . .  ,pn(X,~) are 
true, the execution of the action a(X) causes f(Y) to be true in the resulting 
state. The preconditions pl (X-~-I),..., pn (X-~) will be evaluated as regular queries 
in the database and a(X) is an action that  could be invoked by a user or an active 
rule. Thus, variables appearing in Y or in any negated fluent in the preconditions 
must also appear in one of the positive fluents in the precondition. If there 
are variables in X that  do not appear in any of the positive fluents in the 
preconditions this arguments most be ground at the time of the invocation of 
the action, otherwise there will be an error in the execution. 

Example 1. The actions common to most database systems are the SQL op- 
erations insert, delete and update, which we will refer to as add, del and upd 
respectively. Consider, for example, an update request which will change the 
salary of all the employees whose name is joe in the department  dl  to 2000, 
regardless of their current sMary. 

upd(emp.salary, 2000)) causes  emp(SS, joe, dl,  2000) 

i f  emp(SS, joe, dl, X) 
upd(emp.salary, 2000) causes  -~ernp(SS, joe, dl,  X) 

if  emp(SS, joe, dl, X) 
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This correctly reflects the semantics of the update which is, if the tuple exists, 
substitute it with a new one with modified values for the attributes. If the tuple 
does not exist, the effect is null. 

In general, actions are the operations provided by the systems that  can be applied 
to the data. Some of them may have no direct effect on the database, and there 
will not be causal laws associated with them. An example of such action could 
be the retrieve operations defined in Postgres. Other actions could be commit, 
abort ,  or even application procedures defined by the user. We would like to 
remark that  the role of the causal laws is not the define how to implement the 
actions but to specify what are the effects of the actions in the da ta  stored in 
the database. We assume that  actions are atomic. 

(ii) The event definition proposition is an expression of the form: 

e(X)  a f t e r  a(W) i f  el(~-1),...,em(Y-~),ql(-~1),.--,q~(Z--~n) (2) 

where e(X),  el ( ~ ) ,  • • •, em (~mm) are event literals and ql ( ~ ) ,  • • •, qn (Z-~) are flu- 

ent literals. This proposition says that  the execution of the action a(W) ordered 
in a state in which each of the fluent literals q i (~ )  is true and each of the event 
literals ej (Y-I) is t rue (i.e. the event in the event literal belongs to the current 
set of events if the event literal is positive, or it does not belong to the set if the 
event literal is negative) generates the event literal e(X), i.e. it is added to the 
set of current events if the event literal is positive, or removes the event from 
the set of current events if the event literal e(X) is negative. If the execution 
is ordered in a state in which some of the q i (~ )  or ej (Y'jj) does not hold then 
(2) has no effect. Each of the variables appearing in X or in a negated event or 
fluent titerals, has to appear either in W or in a positive event/fluent literal. 

In general, must of the actions in a database system are part  of the events, but 
it is not s tandard which action will become an event. For example, in SQL-3, the 
events are insertions, deletions and updates. Postgres adds retrieve to the list. In 
addition, there are composite events (events defined by other events or a set of 
actions), and possibly clock-ticks. Thus, we would like to separate actions from 
events, and in case an action directly defines and event we must make an explicit 
definition. Also note that  the arguments in the events have two purposes: One is 
obviously to pass information from the actions and other events that  define the 
event to the condition and action part  of the active rules (to be defined). The 
second is to distinguish between set vs. tuple at the time events. For example, 
when a set of tuples is inserted in a relational table a rule can be triggered for 
each tuple inserted or the insertion as a whole (depending if there are variables 
in the event or no). For example the event definition: 

e_ins(emp) a f t e r  ins(emp( SS, N, D, Sal) 
will generate an event after the insertion of a set of tuples in the emp relation. 
The following event definition defines an event for each tuple inserted in the emp 
relation: 

e_ins(emp( SS, N, D, Sal) a f t e r  ins( emp( S S, N, D, Sal) 
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We can obtain other granularities by removing arguments from the event. If we 
would like an event for each depar tment  where an insertion is made, then we 
wilt write: 

e_ins(emp(D)) a f t e r  ins(emp(SS, N, D, Sal) 

The default assumption is that  the events persist from one s tate  to another,  
with two possible exceptions: either the event is consumed by an active rule 
(see below), or the event is removed by an action based on the specification 
of an event definition. For example, if we have an expression -ez  a f t e r  a l ,  
the execution of the action al will cause the event el not to be present in the 
resulting state. Hence, the meaning of "an event is true in a given state" is: the 
event was induced (i.e. generated) in some state  prior to the given one and the 
event persisted, or the event was induced by an execution of an action in the 
previous state. 

Example 2. This example shows how event definition propositions enable us to 
capture the concept of net effects. Many database systems allow the execution 
of a set of actions in bulks before the active rules are processed and events are 
defined in terms of the net effects the bulk of actions has in the database  (as 
suppose to the individual effect of each action). The complication here is tha t  the 
definition of net effect varies from system to system. For example, the premises 
for defining a net effect in Starburst  are: 

- If a tuple is inserted and then updated,  it is considered an insertion of the 
updated tuple. 

- If a tuple is updated and then deleted, it is considered as a deletion of the 
original tuple. 

- If a tuple is updated more than once, it is considered as an update  from the 
original value to the newest value. 

- K a tuple is inserted and then deleted, it is not considered in the net effect 
at all. 

These four premises can be encoded in l:~cti.e as: 

e_add(H) a f t e r  upd(G,H) if e_add(G) 
e_del(G) a f t e r  del(G) if e_upd(G,F) 

e_upd(G, I) a f t e r  upd(H,I) i f  e_upd(G,H) (3) 

In addition, due to our assumption of the persistence of events, we need the 

following event definition propositions to remove events from the current set of 
events: 

-,e_add(G) 
-,e_upd( G, F) 
-,e_upd( G, H) 

,e_add(G) 

a f t e r  upd(G,H) i f  e_add(G) 
a f t e r  del(G) if  e_upd(G, F) 

a f t e r  upd(H,I) i f  e_upd(G,H) 
a f t e r  del(G) i f  e_add(G) (4) 
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There are few observations that  we need to make. A common use of active rules 
(for applications such as alerting) is the ability of being triggered before the 
execution of a particular action. We can model this behavior by a simple re- 
quirement that  the elements of ,4 are actually pairs. Each action a is specified 
as a pair (abeg~n, aexecu$e). While the action part  of a causal taw could have 
only aexecute type of symbols, the event definition would be allowed to have 
both types. Hence, the before behavior can be modeled by defining a trigger- 
ing event of an active rule as: e_trigg a f t e r  ab~9~n i f  Q. Splitting the rule in 
begin and execute is being borrowed from transaction oriented processing tech- 
niques [24]. Also, observe that  the syntax of / :~t i~e enables us to define more 
complex events than most of the existing active database systems. For exam- 
ple, we can easily define the "sharp increase" event which occurs if the updated 
value of a particular at tr ibute is more than 10% higher than its current value: 
e_sharp_increase a f t e r  upd(rell (A, X),  rell (-A, Y)) i f  rell (-A, X),  X >_ 1.1 * Y.  

(iii) An active rule proposition is an expression of the form: 

r ( X r ) :  et(Z-'~) c o n s u m e d  (C_s) 
i n i t i a t e s  [a] a t  e~(X~) 

i f  Pl(X-~),--. ,Pn(X--~) a t  e~(X-~) (5) 

where r ( ~ )  is a rule identifier, e~ (~ ) ,  ea(~aa), and ec(Xc) denote the triggering 
event, action-execution event, and condition-evaluation event respectively, ~ is 
a sequence of actions, called the action part  of the rule, and Pl (X--~),... ,p,~ (X-~) 
are fluent literals, called the condition of the rule. C_s is one of the symbols no, 
local or global. Variables appearing in X~, in any of the input arguments of the 
actions in (~ or in any negative literal in the condition must also appear in X~ or 
in a positive literal in the condition. Variables appearing in Xr or Xc must also 
appear in X~. 

Following is the intuitive meaning of each part  in the rule: 

• The triggering event et(X-~t): We assume that  the rule is triggered in the very 
first state in which the event e~ (~ )  has occurred. Due to the assumption of 
"persistence" of the events, the rule remains triggered for as long as et(X~) is in 
the current set of events. Notice that  all the variables in the event are already 
instantiated during rule processing since they were instantiated by the event 
definition proposition. 

• C_s denotes the consumption scope which the active rule has over the e~, with 
respect to itself and the other active rules with the same triggering event. As 
we said earlier, it is an element of the set {no, local, global}. These modes were 
introduced in the specification model of [19]. The mode no consumption means 
that  neither the condition evaluation nor the action execution of the active rule 
have any influence on the persistence of the triggering event et (X~). This mode is 
typical of production rule systems such OPS5. Once a rule is triggered, each time 
its condition is true, its action part  will be executed. Before explaining the other 
two options, let us discuss an issue closely associated with the coupling modes - 
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the notion of an active rule being considered. A rule may be t reated as considered 
as soon as its condition par t  is to be evaluated regardless of the outcome of the 
query. Another option is to t reat  a rule as considered only when its action par t  is 
to be executed. By default, we assume tha t  the rule is considered at  the moment  
of its condition evaluation. 3 Now, if the consumption scope of the active rule is 
local, its consideration will cause tha t  the particular rule is no longer triggered by 
et. However, the other rules which were triggered by et remain triggered. On the 
other hand, if the consumption scope is set to be global, then the consideration 
of a part icular  active rule consumes the triggering event in such a manner  tha t  
all the other rules triggered by the same et are detriggered. 

• c~ is a sequence of actions. 

• The two other events, ec(~cc) and ea(~aa), denote the events in which the 
condition evaluation and the execution of the actions take place. The purpose 
of the explicit specification of the action and condition events is twofold: One, 
it lets us define the different coupling modes. Two, when the mode is deferred, 
ra ther  than fixing the event for the condition evaluation or the action execution 
(such as just before commit),  the events will appear  in the rule. For example, if 
the designer wants to have the condition of the active rule evaluated immediately 
when the rule is triggered, than the rule will be of the form: 

r (Xr)  : et(Xt) c o n s u m e d  (C_s) 

i n i t i a t e s  [c~] a t  et(Xt) 

i f  Pl (X--~), . . . ,pn(~) a t  ec(X---~) (6) 

where the triggering event and the condition event are the same. For a deferred 
evaluation of the condition to just before commit  and immediate execution of 
the action part ,  we could set both  ec and ea to, say, commitbegi,~. Although 
in this paper  we consider only rules tha t  execute inside the same transaction,  
nothing prevents the use of actions from extended transaction models, such as 
open nested transaction models [24, 38] to define actions or conditions tha t  are 
evaluated outside the current transaction. 

If  all the three events in an active rule are the same, then we allow the omission of 
ea and ec. If two events in an active rule are the same, then instead of repeating 
we may  just  refer to the first event. 

• The  condition par t  of the active rule is essentially a query posed to the database  
and it may also contain some evaluable comparison predicates (like "<"  or "=") .  

2.1 R u l e  p r o c e s s i n g  p o i n t s  

Before we present examples of active rules we need to introduce the concept of 
rule processing points. The reason for introducing this notion is the variety of 

3 If needed, we can add an expression of the form at ec or at  e~ in the first line 
of (5), to specify that consideration of the rule will occur when the actions begin to 
execute. 
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"when the rules are considered," among different systems. For example, Postgres 
considers rules after the execution of each action; Starburst considers rules only a 
commit time. There axe systems, such as Ariel, where the user can group actions 
in blocks and rule processing happens at the end of each block. In Lactlve we 
will have a special action symbol 1". There are no effect laws associated with t ,  
but  the occurrence of 1" in a sequence of actions will indicate a processing point. 
Thus, if we would like to process rules after each action as in Postgres, we will 
add an 1" after each regular action. The 1" appearing in the action list of a rule, 
allows the recursive processing of rules. 

In the next subsection we demonstrate tha t  much of the existing behaviors 
described in the literature, which make reference to some pre-events states can 
be elegantly captured by making a smart usage of the variables and the event 
definitions. 

3 Examples from the existing systems 

This section presents some examples which demonstrate how our approach can 
be used to encode different active behaviors from the existing systems. Since 
[19] presents a very comprehensive comparative study of many active database 
systems, we borrow the next two examples from it in order to illustrate the 
relative power of £active. We also accompany them with comments regarding 
some variations. 

Example 3. Consider a domain description that  has an active rule rule_pjs (prop- 
agate_joe's_salary) which reacts to changes of the salary of a particular employee 
named joe 4 in such a manner that  it causes the salary two other employees, sam 
and bob, to have the same salary as joe. However, there is also another rule 
rule_iss (increase_sam's_salary) which is triggered any time the salary of sam 
is changed. The rule recursively increases his salary by 10% until it becomes 
larger than 5000 (provided it has been changed to any value <_ 5000). Assume 
tha t  we would like to have the salary of bob to be the same as sam's every time 
joe's salary has been changed. The situation can be described with the following 
domain. The triggering event for rule_pjs is defined by: 

e_change_j s( Sn~w ) a f t e r  upd(emp( E #  , joe, $1), emp( E# ,  joe, Shed)) 

The actions of setting Sam's salary equal to Bob's and Bob's salary equal to 
Sam's are specified by the following effect propositions: 

upd_sam_joe causes  emp(E#s~m, sam, Sjoe) i f  emp(E#jo~, joe, Sjo~) 
upd_sam_joe causes  ",ernp( E#sam , sam, Sotd) i f  emp( E#sam , sam, Sold) 

upd_bob_sam causes  emp( E#bob, bob, Ssam ) i f  emp( E#8~m, sam, S~m ) 
upd_bob_sam causes  -"emp( E #bob, bob, Stotd) i f  emp( E #bob, bob, StoZd) 

a Note that within the examples we axe using PROLOG-like notation (i.e. constants 
begin with a small letter and variables begin with a capital letter). 
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The active rule is specified as follows: 

rule_pj s : e_change_j s( Snew ) c o n s u m e d  (local) 
in i t ia tes  upd_sam_joe, 

upd_bob_sam, 

The triggering event for rule_iss and the active rule are specified as follows: 

e_upd_s s after  upd( emp( E # , sam, $I),  emp( E # , sam, $2)) 
rule_iss : e_upd_ss c o n s u m e d  (local) 

in i t ia tes  upd( emp( E # , sam, S) , 
emp(E#,  sam, 1.1 * S)), T 

i f  S _< 5OOO 

Notice that  if we remove the rule processing point ~ after upd_sam_joe in 
rule_pjs the effect is that  any time Joe's salary is changed to some value less 
than 5000, the database will end up in a state in which Bob has the same salary 
as Joe, and only Sam has a salary larger than 5000. 

The different use of processing points illustrates different types of active be- 
havior. The former corresponds to Postgres type of processing while the latter 
demonstrates Starburst-like behavior. 

Example4. This example illustrates the behavior of the Starburst active 
database system. The active rule is intended to cut the excessive salary in- 
crease of the employees. If as the result of the execution of a user-requested 
transaction the salary of any employee has been increased more than 10% of its 
pre-transact ion value, it is reset to only 10% increase. 

First, we need to be careful in encoding the net effect policy of the triggering 
events: 

e_upd_sal ( E_name, $1, $3) 
after upd(emp( E# ,  E_name, $2), emp( E # ,  E_name, $3 ) ) 
i f  e_upd_sal ( E_name, $1, $2) 

-~e_upd_sal ( E_name, $I, $2) 
after upd( emp( E # , E_name, $2), emp( E # , E_name, $3)) 
i f  e_upd_sal( E_name, $1, $2) 

Now, the active rule can be encoded as follows: 

rule_cut_excess(E_name, X~ Y) : 
e_upd.sal( E_name, X,  Y) c o n s u m e d  (local) 

i n i t i a t e s  upd(emp( E #  , E_name, X ), emp( E # ,  E_name, 1.1 * X ) ), 
at commit_begin 

i f  Y > 1.1 • X at commit_begin 

Note that  the user's transaction may have caused an excessive salary increase 
to more than one employee. We have captured this with the variables in the 
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definition of the active rule. Namely, in case several employees have received an 
excessive salary increase, the description would have triggered as many different 
ground instances of rule_cut_excess. By carefully specifying the event definition 
propositions we have correctly captured the net effect triggering policy and the 
proper pre-transact ion old value of the employees salary. 

The context of the last example in this section is a simplified version of the 
running example in [44]. Its main purpose is to illustrate how £:aaive can be 
used for maintaining integrity constraints. 

Example 5. Consider the following relations: 
dept( Dept# , Dname, Div, Loc) 
crop(E#, Ename, JobTitle, Sal, Dept# ) 

where there is a referential integrity constraint (a foreign key) between the re- 
lations dept and emp. Hence, anytime a particular department is deleted from 
the dept relation, all the tuples with employees from that  department should be 
deleted from the emp relation. 

The triggering event is specified as: 

e_dept_del( D #  ) a f t e r  del(dept( D#,  Dname, Div, Loc), 
and the active rule is: 

r_dept_emp( D #  ) : 
e_dept_del(D# ) c o n s u m e d  (local) 

initiates del(emp( E# ,  Ename, JobTitle, Sal, D #  ) ), 

Last example illustrates that  we could easily encode the example given in [41] 
(Section 5), however, we'd like to make a subtle observation. The aforementioned 
example uses the aggregate statement avg from SQL. We can demonstrate tha t  
the calculation of an average value can be accomplished by using active rules, 
with undesirable inefficiency. We leave for future work how to formalize the 
extension of the sets A and Y to incorporate such actions and fluents. 

4 S e m a n t i c s  o f  Lacti~,e 

For the rest of this section we assume that  D is the set of ground instances of 
the propositions in the domain description under consideration. 

We will refer to any set of fluents as a fluent state and any set of events as an 
event state. We say that  a fluent f holds in a fluent state a if f E a. -~f holds 
in a if f ¢ a. Similarly, an event e holds in an event state e if e E e. ~e holds in 
e i f e  •e. 

Let ¢ be an event state and a a fluent state. Let r be a set of (triggered) rules. 
Let ~ be set of (considered) rules (to be fired). We refer to a tuple of the form 
< a, ¢, ~-, ~ > as an active database state or simply as a state. 

The central concept in our semantics are the definition of transition functions 
called causal interpretations. A causal interpretation is a partial function kV tha t  



257 

maps  a (possibly empty)  sequence of  actions a and a s ta te  < a, c, % ~ :> into a 
new state.  Given a domain description D,  we would like to identify the  causal  
in terpreta t ions  tha t  model  the behavior  of D given any initial state. We will 
do tha t  t h rough  four auxiliary functions tha t  will describe how an action, when 
executed in a s ta te  < a ,c ,  r, ~ > ,  affects each component  of the state.  We will 
also need an act ion selection function. An action selection function S is a to ta l  
funct ion t h a t  takes a set of events e and  a set of  considered rules ~, and  re turns  
the sequence of  actions appear ing in some rule r~ in ~, such tha t  act ion execution 
event e~ ~ of ri is in e. If  such a rule does not  exists it returns a special null act ion 
#. Each  selection function S has an associated function S ~ tha t  when applied to 
e and ~, re turns  a singleton set with the rule {ri} which contains the sequence 
S(e, ~) if it is not  the null action; otherwise it re turns an e m p t y  set. Act ion 
selection functions will be used to determine which act ions '  sequence will be 
selected for execution when several active rules in D are ready to be executed. 

We s tar t  with the definition of the funct ion tha t  describes the effects of an act ion 
a in the fluent state a, when a is executed in a state < a, e, T, ~ >.  Actually,  
this funct ion only depends on a, the other  par t s  of the s ta te  are irrelevant. 
Firs t  we need the  following definitions. We say tha t  a fluent literal f is an 
( immediate)  effect of (executing) a in a fluent s ta te  a if there is a fluent effect 
law a c a u s e s  f i f  p t , . . . , P , ,  in D whose precondit ions P l , . - . , P n  hold in a. 

Let 

F + ( a )  = { f :  f E j r  and ] is an effect of  a in a}, 

F~-(a) = { f  : f E j r  and -~f is an effect of a in a}  and 

ne y(a,o) = (o U F : ( o ) )  \ F:(o). 
Resj: is referred to as the fluent transition ]unction. 

The  second function defines the changes on the set of events. We say tha t  an 
event literal e is an (immediate) effect of (executing) a in a fluent s ta te  a and  
event s tate  ~ if there is an event effect law e a f t e r  a i f  e l , . . .  , e m , q l , . . .  ,qn in 
D whose precondit ions q l , . . . ,  q ,  hold in a and e l , . . . ,  e , ,  hold in ~. Let  

E + ( a , ~ )  = {e :  e E £ and e is an effect of a in a,~}, 

E~- (a, ~) -- {e : e E $ and -~e is an effect of a in a, ~}. 

These  two sets identify the events directly generated or removed by 
a. However, events can also be consumed by tr iggered rules t ha t  
are considered and whose consumpt ion  mode  is global. A rule "r : 
et c o n s u m e d  (C_s) i n i t i a t e s  [a] a t  ea i f  Pl , . . .  ,pn a t  ec", ground  instance 
of rule of  the  form (5), is called positively considered in a fluent s ta te  cr and an 
event s ta te  ~ if ec E ¢ and P l , - . . , P n  hold in a.  I t  is called negatively considered 
if ec E 6 and P l , . . . , P n  do not  hold in a. r is called considered if it is either 
negatively or positively considered. Thus,  the events consumed by considered 

rules is defined as 

E - ( a , ~ , r )  -- {e : e E $, r E T, C_s -- global and r is considered in a , e} ,  and 
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ResE(a, < a,~, T >) = (~UE+Ca, s)) \ CE[Ca,~)UE-(Res~=Ca, a), (EuE+Ca, c ) ) \  

Resc is referred to as the event transition function. 

Note that  to change the definition of consideration to time when the condition 
part  of a triggered rule is true we need to change "considered" to "positively 
considered" in E - .  

Next function describes how the set of triggered rules changes after the execution 
of a. New rules become triggered by the new events generated by a, mad there 
are three possible reasons to detrigger a rule. 1) The trigger event of the rule 
is removed from the event state by a; 2) The rule becomes considered and the 
consumption mode is local; 3) The trigger event of the rule is removed from the 
event state by a rule 5 that becomes considered with consumption mode global. 

We say that  a ground instance of a rule of the form (5): r : 
et c o n s u m e d  (C_s) in i t ia tes  [a] at ea if  Pl , . . - ,P ,~  a t  ec, is triggered by 
a set of events ~ if et E c. Let T + (~) be the set of rules triggered by ~ in D. For 
a set of active rules T, let T - (T , e )  = ~" \ T+(~). Let, 

L - ( a , z ,  r) = {r : r E T, C_s = local and r is considered in a,~} and 

ResT(a, < a,S,T >) = (T U T+(E+(a,~)) ) \  
( L -  (Resy(a,  a), (~ U E + ( a, E)) \ E a Ca, e), T) U T -  ( T, ( E :  ( a, ~) U E -  (Res~:( a , a),  

u Et(o,  \ E:(o,  

ResT is referred to as the triggered rule transition function. 

So far transition functions do not depend on the set of considered rules ~. Addi- 
tions to ~ are the positively considered rules based on the new set of fluent and 
event states. The deletions depend on the selection function S. We will define the 
function for t~ only for additions. Deletion of elements (rules) from ~ is achieved 
using the S ~ function, as specified in Definition 1. below. 

C+(a ,c ,T)  = {r : r E r and r is positively considered in a,~}, and 

Resc(a,  < ~, ~, T, ~ >) = ~ U C + (Res~:Ca, a), (e U E + ( a, ~)) \ E a ( a, ~), ~-). Resc  
is referred to as the considered rule transition function. 

D e f i n i t i o n  1. A causal interpretation ~ is a model for a domain description D 
iff for any state s = <  a, e, T, ~ >, there exists an action selection function S such 
that  for any sequence of actions a 

1. if a = 0 then q~(a, s) = s. 
2. if a =1" o~ then 

• 8) = < o, \ >)). 

Note that this rule is also being detriggered by this case. 
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3. i f a = a o f l a n d a ~ ' t h e n  
~(~, s) = ~ (~ ,  < R e ~ ( a ,  o), 

ResE(a, < a,c,~- >),  
ResT(a, < a, ~, 7 >), 
Rest(a, < ~,c,~,~ >) >), 

if F+(a)  A F~'(a) = 0 and E+(a,E) A E a ( a , c  ) = 0. Otherwise is undefined 
for the state. [] 

Observe tha t  if S selects a sequence of actions which does not have a process- 
ing point at  the end of the list, no new rules will be allowed to fire at  the end of 
executing the selected sequence (i.e. the rules in ~ wilt have to wait until a new 
processing point is encountered). With  minor modifications to the definition of 
models we could assume that  rules by default are processed each t ime we get into 
an empty  sequence of actions (so that  rules will be processed at least at the end 
of the transaction) in addition to the explicit processing points. Furthermore,  
we can put  a restriction on a syntax which will require tha t  every sequence of 
actions must  end with a 1" symbol. 

The query language associated with with ~act~ve consists of hypothetical  facts of 
the form: 

f a l t e r  h a t  a (7) 

where f is a fluent literal, a a sequence of actions, and a a fluent state. For a 
query q, we will denote by ~q the query g a f t e r  a a t  a if f in the query is -~g. 
If f is positive, it denotes ~ f  after  a a t  ~. 

D e f i n i t i o n  2. We say that  a query q of the form (7) is true in a model q~ of 
an active database  description D iff f holds in the fluent s tate  of the s ta te  
~(a,< ~,¢,¢,~ >). [] 

D e f i n i t i o n  3. An active database description D entails a query q (written as 
D ~ q) iff q is true in all models of D. The set of all facts entailed by D will be 
denoted by Cn(D).  

We will say tha t  the answer given by D to a query q is yes, if D ~ q; no, if 
D ~ --q; and unknown otherwise. [] 

4.1 O p e r a t i o n a l  s e m a n t i c s  

We present a procedure which, given a sequence of actions a and a s tate  of the 
active database  < eYin,gin,Tin , ~in ~> as an input, returns a state of the active 
database < ao~t, ¢out, Tout, ~o~t > after executing the sequence a in the presence 
of the active rules. The procedure execute_adb realizes the causal intepretat ion 
~P from the declarative semantics of £:acti~e. The supscripts used below have the 
obvious meaning (for example el' denotes the triggering event of the rule ri). 

execute_adb(IN:o~, < ain, ~in, Tin, ~in > , O U T : <  ao~t, ~o~t, 7o~t, t%ut >) 
b e g i n  
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(T = f f i n , C  = G i n ,  T = T i n , E  = ;~in; 

whi le  (a # D) 
if  (a  = a o fl) 

i f  (a #1") 
t h e n  b e g i n  

a = fi, r -  = 0 , G -  = 0 , a '  = 0; 
a = (a U Fa+(a)) \ F a  (a); 
G = G u E~+ (o, G) \ E : ( ~ , G ) ;  
for each  r i :  

i f  (el' e E +(a, G) 
T = tau U {ri]; 

for each  ri : if  ((ri e T)AND(e~c ' e G)) 
r l  r i  _ if  ({PI ,"',Pn,} C a) 

= ~ u {p~}; 

if  ( C 2  = local) 
- ,--  = t_  u {r~); 

i f  (C;' = global) 
G- = G- u { e y ;  

T:T\T--; 
for each rj: if ((rj e ~)AND(e2 ¢ ~)) 

r = -,- \ {rj}; 
e n d  

if  (a =$) 
~' = S(G, ~); 
rf  : S'(~, ~); 

= ~ \ { r J ;  
: ~' o fl; 

w e n d  
f l o u t  : O', Gout : G, Tou~ : T~ ~ o u t  : ~ ;  

end  

We have the following: 

P r o p o s i t i o n  4. Given a domain description D and a causal interpretation @ 
which is a model of D, a query q of the form f a f t e r  a a t  a is true in a state 
k0(a, < a, 0, @, 0 >) iff f E aout generated by execute_adb(a, < a, O, 0, ~ >). 

Space limitations do not allow us to present the proof of the Proposition 4 
and the translation of an active database description to a logic program (both 
given in [7]). The translation of domain description into a logic program [7] pro- 
vides a computational vehicle to implement the entailment relation. It exdends 
the one presented in [5] by capturing the extensions to the syntax of £:~ctive. 
Non-determinism is implemented using the choice operator of Zaniolo and the 
situation calculus is used to characterize the dynamic nature of active databases. 
This gives us the ability to reason about  hypothetical situations which, in turn, 
we will enables to develop a more sophist icated query language. 
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5 C o n c l u s i o n  a n d  F u t u r e  W o r k  

We have presented a very simple language for describing active databases with 
an implementation-independent semantics for characterizing the evolution of the 
database in response to a sequence of actions. The distinction between actual 
and hypothetical situations enables the designer to reason about  various conse- 
quences of actions' execution. This is, in a sense, very similar to the distinction 
between when and apply operators for 5s [22] which can be used to specify a 
wide range of execution modes, in a bit less declarative style than £:active. Work 
with similar goals to ours is presented in [32]. Based on the relational machines 
(i.e. Turing machines augmented with relational store [1]) the authors develop 
a common framework for analyzing the expressive power of some of the exist- 
ing systems. The tradeoff of such an in depth analysis is that  only a limited 
number of functional features is considered. One of the main differences between 
our approach and the works on characterizing the active behavior by formal 
semantics in [39, 43] is the explicit notion of event incorporated in the active 
database state. This allows us to capture the effects of different coupling modes 
into the transition function. In [18], based on the event calculus, the authors 
use the notion of history to define event occurrences, database states and ac- 
tions. The main idea is to keep the two operational semantics (deductive rules 
and active rule) independent of each other and integrate them, instead of one 
subsuming the other. This is, in a sense, a compromise between the perspectives 
taken in [40] (which argues that  active rules and deductive rules lie at oppo- 
site sides of a spectrum, trading declarativeness for more powerful expression of 
active behavior) and [43] (which proposes a fixpoint-based extension of the op- 
erational semantics for deductive rules, providing a common view for active and 
deductive rules). Although we do not present here the translation of database 
descriptions into logic programs, similar to [18] where the event calculus is used, 
we use situation calculus in our translation. However, instead of suggesting an 
architecture for ADBMS, we are describing a language in which multiple types 
of active databases can be modeled. The work presented in [17] concentrates on 
the ability to reason about implications of event occurrences and interactions 
among rules, which is similar to our work. However, there is no clear account 
for the description language of the active databases. The result of [44] makes a 
distinction between two types of changes caused by a transaction execution in a 
presence of active rules: ephemeral and durable. Identifying the durable changes 
enables an efficient implementation of the operational semantics and adds the 
benefit of automatic determination of priority among the rules and termination 
detection. This, in a sense, refines the net-effect based triggering policy of Star- 
burst. We need to verify if we are able to capture durable changes under our 
current formalism. 

Observe that  throughout the paper we were very cautious about the "transac- 
tional terminology". The reason is that  transaction processing [24] has recently 
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developed many  variations of its own a t tempt ing  to model different advanced 
database  applications [16]. One of the goals of our future work is to allow for 
concurrent and complex actions, which wilt inevitably lead us into using some 
form of advanced transaction model. This, in turn, may require modifications of 
the notion of active rule processing itself, and may impose a tradeoff on some of 
the functional features. Another extension is to allow active rules in which the 
condition par t  refers to previous states in the evolution of the active da tabase  
[13, 33]. Also, we are planning to introduce instead options, to override the effects 
of an action with the execution of a rule. This behavior can be obtained by using 
defensible specification of effect propositions similar to the ones described in [6]. 
Other  issues that  we plan to address are extending our language to incorporate 
deductive rules and examine the criteria for terminat ion of the active rules. 
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