
Context-Aware Optimization of Continuous Range Queries
Maintenance for Trajectories

Goce Trajcevski Hui Ding Peter Scheuermann∗

goce,hdi117,peters@ece.northwestern.edu
Department of Electrical and Computer Engineering

Northwestern University
Evanston, Il 60208

ABSTRACT
This work addresses the problem of efficient maintenance
of the (correct) answers to the continuous spatio-temporal
range queries in Moving Objects Databases (MOD), which
represent the objects’ motion as trajectories. Specifically, we
consider the settings of optimizing the response time of the
system when the queries need to be brought up-to-date as
a result of bulk update to the trajectories in the MOD. Such
updates occur when an abnormality occurs in some context
dimension (e.g., road accident; fire) that affects many trajec-
tories in a given region. However, the updates of those tra-
jectories may affect the correctness of the answers to queries
which pertain to regions that are not spatially close to the
region where the abnormality occurred, and are interested in
some future-time with respect to the time of the occurrence
of that abnormality.

Categories and Subject Descriptors: H.2.4 [Database
Management]: Systems: query processing

General Terms: Algorithms

Keywords: Moving Objects Databases, Triggers

1. INTRODUCTION
Location management [11] is an enabling technology for

many novel classes of applications and the management of
the transient (location,time) information of a large number
of mobile entities has been a subject of many research efforts
in the field called Moving Objects Databases (MOD). Var-
ious categories of problems of interest to MOD have been
investigated – access methods (indexing), modelling, query
processing and a relatively recent collection with many rele-
vant references is presented in [6].

Several research prototypes have been implemented (e.g.,

∗Research partially supported by NSF grant IIS-0325144

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiDE’05,June 12, 2005, Baltimore, Maryland, USA.
Copyright 2005 ACM 1-59593-088-4/05/0006 ...$5.00.

[2, 7]) dedicated to various categories of problems of inter-
est to MOD. However, on the commercial side, there have
been very few database vendors that have enabled MOD-
like capabilities in their products. A particularly appealing
commercial Object-Relational Database Management Sys-
tem (ORDBMS) is Oracle1 9i [9] which, on top the reliabil-
ity of a stable and mature technology, also offers:
1. PL/SQL as an environment for implementing User-Defined
Functions (UDF) and specifying User-Defined Types (UDT);
2. Oracle Spatial which provides the Linear Referencing

System (LRS) and the SDO_GEOMETRY type for specifying and
managing (querying) spatial objects, as well as the ability
for using spatial indexing;
3. Triggers as declarative means to specify a reactive behav-
ior in response to modifications to the MOD.

When it comes to representing the motion of the objects,
there are three distinct models which are, in a sense, “at-
tractor centers” along the spectra: 1. Sequence of (location,
time) updates periodically reported to the MOD (e.g., ob-
tained by a GPS device); 2. Sequence of (location, time,
velocity) updates, which are reported only when an object
deviates from the expected motion according to the previous
update; 3. trajectory, which represents the future motion of
an object and is obtained based on the points that an object
intends to visit and some extra information (map and speed
patterns). In this work we assume that the motion of each
object is represented as a trajectory in the MOD. This is
the case for many entities in practical settings, e.g., public
transportation vehicles, police patrol cars, delivery trucks,
individuals going back-and-forth between home and work,
etc. One of the peculiarities of the MOD queries is that
they are not only instantaneous, but can also be continuous,
which is, pertaining to the future, and may have to be re-
evaluated upon modifications to the MOD [14]. Regardless
of the motion model adopted, the MOD will have to react
to the changes, in order to maintain the correctness of the
(pending) continuous queries.

1.1 Motivational Scenario
To get a better intuitive idea about the main aspects of

our work, observe the scenario depicted in Figure 1. It il-
lustrates three spatio-temporal range queries Q1, Q2 and
Q3 (solid prisms) and six trajectories Tr1, . . ., Tr6, rep-

1We would like to point out that our approach can be im-
plemented on any ORDBMS that features triggers whose
semantics conforms with the SQL99 standard.

1

���������
���������
���������

���������
���������
���������
���������
���������
���������

���������
���������
���������

Zone

Q2

Q1

Disturbancy

Q3

X

Y

T Tr3’
Tr3

Tr2’

Tr2

Tr1’
Tr1 Tr4’

Tr4

Tr6

Tr5
t2

t1

Figure 1: Trajectories, Updates and Continuous
Range Queries

resenting the expected future motion plans of six objects
(solid polylines). After the queries have been posed, a traf-
fic abnormality occurs at some time t1, which affects the
distribution of the speed patterns on the segments in the
particular Disturbance Zone. The abnormality persists un-
til some time t2 and its effect is that any object moving
through the Disturbance Zone will have to slow down for a
certain percentage of its expected speed. Thus, the future-
portions of the affected trajectories will have to be updated
(Tr1’, Tr2’, Tr3’ and Tr4’) as illustrated with dashed lines.
This, in turn, affects the answers to the pending continuous
queries. For example, Tr2’ is no longer part of the answer
to the query Q1, but instead becomes a part of the answer
to Q2, which was not the case for Tr2, prior to the traffic
abnormality. Clearly, upon updating the trajectories, it is
necessary to re-evaluate the pending queries, however, there
are subtleties which are the main motivations for this work:
1. The query Q3 need not be re-evaluated because none of
the trajectories in its answer is affected by the given traffic
abnormality and none of the trajectories affected by the ab-
normality has any impact on Q3; 2. When re-evaluating Q1
and Q2, we need not take Tr5 and Tr6 into consideration.

Our goal in this paper is to optimize the time that it
takes to re-evaluate a set of pending queries in a MOD
when a set of trajectories is being updated. Clearly, this
is a form of a reactive behavior triggered by changes in
spatio-temporal context dimensions and we show how the
dependencies among the values in the spatio-temporal di-
mensions and the various system-level context dimensions
can be exploited in order to optimize the response time when
re-evaluating a set of continuous range queries. Our main
contribution are:
• We investigate the impact of the values of various se-
mantic dimensions (c.f. [10]), as declaratively specified for
each individual trigger, on the penalties due to the context-
switching.
• We utilize the spatio-temporal correlation between the
pending queries and (updated) trajectories to: 1. limit the
search space and 2. to generate an ordering among the trig-
gers’ execution that will improve the response time.

• We have completely implemented our system2 on top of
an existing ORDBMS – Oracle 9i using triggers (whose pro-
cessing was subject to optimization) to achieve the reactive
behavior, and we provide experimental results which demon-
strate the validity of our approach.

The rest of this paper is structured as follows. In Section
2 we introduce the notation and set up the foundation for
presenting our main results in Section 3. Section 4 presents
our experimental observations and in Section 5 we position
our work with respect to the related literature and outline
directions for future work.

2. PRELIMINARIES AND SYSTEM
ARCHITECTURE

In this section we introduce the terminology and the main
concepts used in the rest of the paper and we describe the
basic components of our system.

The spatio-temporal nature of a given moving object, is
represented using a trajectory [18], which is a piece-wise lin-
ear function f : T → (x, y), represented as a sequence of
points (x1, y1, t1), (x2, y2, t2), ..., (xn, yn, tn) (t1 < t2 <
... < tn). For a given a trajectory Tr, its projection on
the XY plane is called the route of Tr. This representation
entails that the object is at (xi, yi) at time ti, and during
each segment [ti, ti+1], the object moves along a straight
line from (xi, yi) to (xi+1, yi+1), and at a constant speed.
The expected location of the object at any time t ∈ [ti, ti+1]
(1 ≤ i < n) is obtained by a linear interpolation between
(xi, yi) and (xi+1, yi+1).

Relative to now, a trajectory can represent both the past
and the future motion of objects. The future part of a tra-
jectory corresponds to a motion plan of the moving object
and we construct3 it using an electronic map like, for ex-
ample, the ones provided by Geographic Data Technology
(www.geographic.com). The map is, essentially, a graph,
represented as a relation where each tuple corresponds to
a block with attributes such as:
– Polyline: Each block is a polygonal line segment. Polyline
gives the sequence of the endpoints: (x1, y1), (x2, y2), . . . ,
(xn, yn)
– Length: Length of the block.
– Fid: The block id number.
– Drive Time: Typical drive time from one end of the block
to the other.
An important observation is that the Drive Time attribute,
commonly provided by the electronic maps, is “static”, in
the sense that it does not consider variations of the traffic
(e.g. the speed in a given block is 35 mph during mid-day
hours, and 15 mph during “rush” hours). Similarly to [18],
we assume Speed Profile attribute for each block which cap-
tures the distribution of the traffic patterns during a given
time-period (e.g., a day) and this is used in constructing the
trajectory. We assume that a given moving object transmits
its start point and start time, and the destination point (pos-
sibly, a sequence of other “to-be-visited” points too), which
are used as input to the time-dependent (A∗ extension) vari-
ant of the Dijkstra’s shortest path algorithm, where the cost

2The source code of the PL/SQL routines that we wrote,
as well as the data set used in our experiments is available
from http://www.ece.northwestern.edu/peters/ContextMOD
3See [18] for a more detailed description of the trajectories’
construction.

2

of an edge in a graph depends on the start time to travel
along that edge. Using this, we generate the shortest (in
travel-time or distance) path and for each straight line seg-
ment, we compute the object’s arrival time at its end-points.
The past trajectory of a given object can be constructed us-
ing a set of 3D points (x1, y1, t1), (x2, y2, t2), . . . , (xn, yn, tn)
which transmitted by the moving object periodically, say us-
ing an on-board GPS to detect location at given time points.
The points are “snapped” on the map then connected with
the time-dependent shortest path.

As we mentioned in the Introduction, throughout this
work we will focus on the spatio-temporal range queries of
the form:
Qi: “Retrieve all the objects that will be inside the region
Ri between the time tbi and tei”
Ri denotes the (spatial) region of interest and tbi (resp. tei)
denote the begin (resp. end) time-values of interest. One
may observe that there can be different variations of the
query Qi depending whether the object is inside Ri some-
time or always (or even certain percentage of the time) be-
tween tbi and tei [18], however, this is not relevant for the
problems addressed in this paper and, without loss of gen-
erality, we assume the sometime semantics. We are only
considering queries that pertain to the future of the MOD –
in other words, we assume that the query Qi was posed at
some time tpi ≤ tbi. A detailed classification of categories
of spatio-temporal queries and the impact of the (semantics
of the) relevant elements of their syntax is given in [16] and,
due to lack of space we omit it here. In the rest of this work,
we will use A Qi to denote the answer-set of a particular
query Qi.

We assume that, once Qi has been processed, the MOD
transmits the answer to the user that posed the queries.
However, the MOD needs to keep on monitoring A Qi,
at least until the time tei, because its value may change.
There are several sources that could change A Qi: – in-
sertion of new trajectories in MOD; – deletion of existing
trajectories from MOD; – update of a trajectory, specifically
requested by a given user. However, one particularly in-
teresting source, which is the topic of this work, is when
unexpected abnormalities (e.g., an accident, a flood) occur.
They affect a given region and may change the (expected)
values of some of the parameters used in some trajectories’
construction. Specifically, the Speed Profile attributes along
some segments may be impacted which, in turn, requires
that the future-motion of the associated trajectories be re-
constructed. Consequently, some of the answers to the pend-
ing continuous queries may need to be re-evaluated and the
optimization of this process is our main goal.

Figure 2 illustrates the main components of our system:
• Moving Objects Table (MOT) which stores the trajectories
(plus some other static attributes like name, model, etc.) It
is defined as
CREATE TABLE MOT

traj_id number primary key,

traj_name varchar2(30),

traj_shape MDSYS.SDO_GEOMETRY,

The traj shape attribute is the spatio-temporal attribute
representing the trajectory of the moving object. It is de-
fined as of type SDO GEOMETRY, which is a pre-defined
type in Oracle Spatial. In order to speed up the filtering
stage for processing queries (and updates), the traj_shape

attribute is indexed (INDEXTYPE IS MDSYS.SPATIAL_INDEX;).

• Traffic Abnormalities Table (TAT) which stores the in-
formation about the disturbances which affect some of the
parameters used in trajectories construction. The main at-
tributes of this table are:

Disturbancy_Zone MDSYS.SDO_GEOMETRY,

Duration timestamp,

Disturbancy_Type UDT

The Disturbancy_Type is a User-Defined Type that con-
tains the information specifying the effect(s) that a partic-
ular disturbance has on the road segments in the region of
its Disturbancy_Zone. Essentially, it describes the type of
the disturbance (e.g., road-work, accident) and its impact
on the Speed Profile attribute, in terms of the relative slow-
down effect on the road segments. Typically, a trajectory
entering a road segment in the Distrubancy Zone will have a
short period of deceleration; followed by a period of motion
with a constant speed, but much slower than normal (the
expected value for that period); followed by an acceleration
on the road segment exiting the Disturbance Zone, until the
motion reaches the expected value of the Speed Profile. The
details of incorporating these effects in the process of updat-
ing future portions of the trajectories affected by a particular
abnormality are presented in [19].
• Queries Table (QT) stores the information pertaining to
(pending) queries posed to the MOD, with attributes:
Query_ID number,

Region MDSYS.SDO_GEOMETRY,

begin_time timestamp,

end_time timestamp

Current_Answer UDT

Viewed in 3D (c.f. Figure 1), the query occupies a volume of
a prism with base at Region located at the horizontal plane
begin_time, and with a height end_time - begin_time. The
Current_Answer attribute is essentially a UDT representing
the list of the trajectories in the answer-set for a particular
query.

Once the system receives a new query request from a given
user, its interface extracts the elements of its syntax neces-
sary for its maintenance (e.g., the tei specifies the time after
which the query no longer needs to be monitored and can be
purged from the system). The basic paradigm for maintain-
ing the answer to a given continuous query can be described
as follows:

When a new query Qnew is posed:
1. Process Qnew and get its answer A Qnew;
2. Transmit the answer to the user;
3. Set up a trigger TR Qnew of the form:

ON UPDATE TO MOT

IF A Qnew Affected

Update A Qnew

In terms of the actual execution model, the step of check-
ing if A Qnew was affected requires evaluating the query on
the modified trajectory(ies). On the other hand, for the up-
date of A Qnew it suffices to change current answer attribute
of Qnew in QT.

The necessary components of a system that will ensure
correctness of the reactive behavior under this paradigm
were presented in [16] and an implementation for maintain-
ing a particular type of continuous spatio-temporal queries
– (Within Distance) – was presented in [17], however, in
those works we were not concerned with the optimization
of the reactive behavior. In this paper, we focus on range
queries, and we assume that the sources for the reactive be-

3

Context Parser and Extraction Stored
 Procedures

T
rig

ge
rs

Main Memory

Cache
Table

∆αταβασε

SDO_GEOMETRY type

Index Engine
Query Operators

Geometry
Engine

Linear Referencing
System

Traj.
Shape

...

Pending

Query

...

Query
Region

Query
ID

...

Current
Answer

Moving Object Table

Query Table

∆αταβασε Dist.
Zone

Zone
ID

...
Time

Duration

Traffic Abnormality Table

User Interface

Traj
ID

Figure 2: System Architecture

havior are modifications to the TAT that enable a trigger
TR TAT whose high-level description is:

ON INSERT/UPDATE to TAT

IF MOT.traj_shape affected

UPDATE MOT.traj_shape

We would like to point out that the optimization of the
query processing for the purpose of initial/instantaneous gen-
eration of the answer is not the topic of this work. In our
settings, given the trajectory model that we assume, the al-
gorithms presented in [3] can be straightforwardly adopted
and implemented in PL/SQL. Our main goal is to optimize
the processing time spent from the moment a particular ab-
normality is presented to the MOD up to the point that
all the pending continuous queries’ answer-sets are brought
up-to-date. We focus on orchestrating the execution of the
respective triggers, based on intelligent usage of the depen-
dencies among various context/semantic dimensions as main
means towards our goal. This makes the results of our ap-
proach valid regardless of which particular query processing
strategies are used for instantaneous evaluation.

3. THE LEVELS OF CONTEXT-AWARENESS
We address now the various aspects of optimizing the

maintenance of a set of pending continuous range queries in a
MOD. Specifically, we target the minimization of the compu-
tational overhead at several semantic (context) dimensions,
both at the system level and the spatio-temporal relationship
level

3.1 System-Level Context Awareness
One of the sources of significant overhead in the re-evaluation

of pending continuous range queries is the penalty involved
in context-switching. Recall (c.f. Section 2) that upon re-
ceiving a particular query, say Qi, our system, besides initi-
ating the calculation of its answer, automatically sets up a
trigger TR Qi which will react to the updates to the MOT
table. In our setting, this can only occur when the TAT
table is updated due to traffic abnormalities which, in turn,
“awakes” the TR TAT trigger, whose action part generates
the enabling event of TR Qi. The syntax of TR Qi is:

1. CREATE TRIGGER TR_Qi

2. on UPDATE to MOT

3. if A_Qi affected

4. Update A_Qi

and in the sequel we analyze the impact that some of the
options available for specifying TR Qi have on the response
time.
• Set vs. Instance Level: One of the semantic dimensions
that may have different values in a particular trigger, as
specified in the SQL99 [1] standard (as well as being imple-
mented in the Oracle 9i [9]) is the response to modifications
of a particular table in an instance (tuple)-oriented and set-
oriented manner [10]. To achieve the behavior corresponding
to each of these options, one needs to use (typically, after
line 2.) in the specification of TR Qi the statement either
FOR EACH ROW, or FOR EACH STATEMENT, respectively.

If the executional semantics is FOR EACH ROW then, when-
ever a particular trajectory Trj is updated, the correspond-
ing instance of TR Qi will evaluate it against Qi, in order to
check if the modifications to Trj affect the answer-set A Qi.
If so, A Qi will updated accordingly. This behavioral cycle
will be repeated for the subsequent trajectory, say Trk, that
was affected by the update to the TAT. However, at each
cycle, we have (at least) three major context-switchings that
the (OR)DBMS4 needs to do, and will be reflected at the
Operating System (OS) level: 1. From update of the MOT
mode to querying if A Qi is affected; 2. From querying if
A Qi is affected to (eventually) updating it; 3. From up-
dating A Qi, back to the update mode for processing the
modifications to the Trk.

On the other hand, if TR Qi is specified to execute in a
FOR EACH STATEMENT manner, then all the trajectories (like
Trj and Trk) affected by the traffic abnormality will be up-
dated in the MOT first and, subsequently, the ORDBMS
will proceed towards evaluation of the condition part of
the TR Qi for all the updated rows. Clearly, this behav-
ior, achieves some savings in the context-switching overhead
which are far from negligible, as illustrated by the experi-
ments in Section 5.
• Before vs. After Triggers: We re-iterate that, from the
perspective of the user who posed a given query Qi, the most
important issue is that answer-set of the Qi be brought to
“current” state as soon as possible. Part of that race can be
won if one observes that the modifications (updates) of the
trajectories that are affected by the traffic abnormality need

4The specification of the SQL99 standard distinguishes be-
tween statement execution context, routine execution con-
text, and trigger execution context [1].

4

not be actually completed in the database table (MOT), in
order to bring the queries’ answers up-to-date. Once the
trajectories that are affected by the update to the TAT are
identified and brought in the main memory and their new
shapes are calculated, the information needed to re-evaluate
Qi is already available.

In order to utilize this kind of behavioral optimization for
the response time of the pending queries in the MOD, we
can utilize some of the options provided by the Oracle 9i [9]
(and, again, part of the SQL99 standard [1]): the BEFORE
option for triggers’ specification. Namely, line 2. of the trig-
ger TR Qi can be specified either as:
2’. BEFORE UPDATE on MOT or as:
2’’. AFTER UPDATE on MOT, which is the default be-

havior (if the specification is omitted).
Both specifications will generate correct updates of the answer-
set of Qi, however, as we demonstrate in Section 5, the
BEFORE option yields much faster response time. Again,
this is due to context-switching issues because the BEFORE
mode avoids an extra retrieval for the set of the updated tra-
jectories that could potentially affect some of the pending
queries.

3.2 Intra-Query Relationship and Triggers
Selection

In the previous section we discussed the benefits of avoid-
ing some of the context-switching penalties, by carefully spec-
ifying the syntax of the trigger corresponding to a continuous
range query. However, there is another dimension of context
awareness which, if utilized, can further improve the mini-
mization of the response time for maintaining the answer-
sets of the pending continuous queries. This is especially
significant when there is more than one query posed to the
MOD.
• Selecting the relevant subset of triggers: Let us recall query
Q3 from our motivational scenario in Section 1.1). None of
the trajectories affected by the given traffic abnormality at
the particular disturbance zone impact the correctness of
the answer-set A Q3. In order to utilize this kind of intel-
ligent behavior in our setting we propose to do some extra
work when a particular query is submitted which,enables
our system to behave in an “output sensitive” spirit when
processing the respective triggers. Similar ideas have been
used in [12, 21], however, the motion model used in these
works – a sequence of (location,time) updates as the objects
are moving – is different from our representation of the tra-
jectories.

The basic idea is to index the queries (c.f. [12]) as they
are being posed to the system. In Oracle 9i, this is achieved
by the statement:
CREATE INDEX query_lrs_idx

ON tbl_query_lrs(query_region)

INDEXTYPE IS MDSYS.SPATIAL_INDEX;

Subsequently, after updating the TAT due to a traffic ab-
normality, as each trajectory is being accordingly modified,
we maintain the Minimum Bounding Box (MBB) of the up-
dated portions of the trajectories “on the fly”. When de-
termining the triggers that need to be fired in order to re-
evaluate their respective pending queries, we only choose a
subset of them, which consists of the ones whose with the
queries’ 3D prisms intersect the MBB constructed during
the process of updating the trajectories. This will prevent
re-evaluation of queries like Q3 in our motivational scenario.

• Ordering among the triggers: Whenever there is a set of
triggers enabled by a same event, upon that event’s oc-
currence, there must be some priority criteria for ordering
among the triggers, in the sense of when a particular trigger
will have its condition evaluated (and, eventually, its action
executed5). Some prototype active database systems actu-
ally allowed the programmer to specify a pre-determined
criterion as part of the syntax of a trigger (i.e., PRECEDES
and FOLLOWS clauses) [10]. However, Oracle 9i orders the
triggers by the time-stamps of their creation in the system
and does not allow for explicit specifications any ordering
criteria by the user(s). To overcome this, we had to write
our own PL/SQL procedures that will reflect user’s criteria
in the actual triggers selection.

Can ordering among the triggers be used to, potentially,
eliminate certain computational overheads? The answer is
yes, due to some subtle issues related to the LRU policy
used for swapping the pages between the disk and the main
memory. Thus, if two range queries like Q1 and Q2, which
correspond to the condition evaluations of two distinct trig-
gers, are “close” in spatio-temporal sense, there is a high
chance of per-page(s) overlap of the MOT data used by
both of them. Consequently, if there is a third query, like
Q3 any of the sequences: (TR Q1, TR Q2, TR Q3),
(TR Q2, TR Q1, TR Q3), (TR Q3, TR Q1, TR Q2)
or (TR Q3, TR Q2, TR Q1) of executing the (condi-
tion parts of the) corresponding triggers, will have much
higher chance of minimizing the swap-overhead as opposed
to the sequences: (TR Q1, TR Q3, TR Q2) or (TR Q2,
TR Q3, TR Q1). In order to achieve this benefit, one
should sort the triggers in such a manner that their order-
ing sequence exploits to the maximum the spatio-temporal
proximity of the corresponding queries’ parts.

����
����
����
����
����
����
����

����
����
����
����
����
����
����

R

Figure 3: Space-filling Z-curve

Towards this goal, the approach that we took in our sys-
tem is to use an ordering among the triggers based on space-
filling curves [8]. As illustrated in Figure 3, we impose a
grid over the entire region of interest and we order the cells
according to their position of the sequence based on the Z-
curve (sometimes also referred to as Peano curve) [8]. To
determine the value of a particular trigger in the precedence

5The detailed analysis of the impact of the coupling modes
[10] of the different parts of a particular trigger (Event, Con-
dition or Action) among themselves and with the transaction
that generated its enabling Event is beyond the scope of this
paper.

5

order, we use the cell to which the geometric centroid of
the region R of the associated query belongs. As a conflict-
resolution policy, in case that the centroids of two (or more)
query-regions fall in the same cell, we used the begin-time pa-
rameter of each query to determine the order among them.
As our experiments demonstrate, this exploitation of the
spatial proximity indeed achieves improvements in the re-
sponse time.

In summary, the analysis that we conducted in this section
has shown a number of tuning options which can improve
the response time for maintenance of the spatio-temporal
range queries in our settings:
• An index should be maintained for the query regions which
can be checked against the MBB of the updated trajectories,
in order to eliminate the triggers that need not be executed.
• Triggers should be ordered according to the Z-curve or-
dering of their corresponding query regions.
• Each individual trigger should be specified to execute in
BEFORE and FOR EACH STATEMENT manner.

4. EXPERIMENTAL RESULTS
In this section we assess the effectiveness of our methodol-

ogy by presenting experimental evaluation of all the aspects
that were subject to the analysis in Section 3.

Our experiments are performed on Intel Pentium IV CPU
3.6GHz processor with 1Gigabytes of DDR2 memory and a
80Gigabytes SATA hard disk, and the ORDBMS system
that we used is Oracle Release 2, version 9.2.0.1.0.

The data set used in our experiment contains 5000 tra-
jectories. They were generated using 1, 000 real trajecto-
ries from the DOMINO project conducted by the DBMC
laboratory (www.cs.uic.edu/ wolfson/html/mobile.html), at
the UIC, which were constructed based on the Chicagoland
(Cook County) electronic map. Based on these, we gen-
erated another 4000 trajectories, using road-segment end-
points from the source data-set and averaging the speed
patterns the segments that existed in the real data-set, inci-
dent to each endpoint. The distribution of trajectory length
in terms of number of segments per trajectory is shown in
Figure 4. Assuming the average length of eight blocks to
be one mile, the length of the trajectories in our data varies
from 1 to 60 miles. Unless otherwise specified, the query re-
gions were randomly generated within the area of interests
to the MOD, and the time interval spans are distributed
evenly throughout the lifetime of MOD. The disturbance
zones that we considered were also defined by polygons in
the spatial dimension and a time interval in the temporal
dimension and are generated using the same method.

Recall that the metrics that we use is the response time
for re-evaluating a set of pending continuous queries. We
measure this from the time an INSERT request is specified
to the TAT table (reflecting a traffic abnormality), until the
answer-set (Current_Answer attribute in the QT table) of
every pending query in the MOD is brought up-to-date.
• Set vs. Tuple, and Before vs. After: When is comes to the
different semantic dimensions used in the specification of a
particular trigger, we investigated two of them, each with
two values: BEFORE vs. AFTER, and SET vs. TUPLE
execution. Combining each of the values, we have 4 pos-
sibilities and we investigated the running times for each of
them. In the experiments, we focused on one single query
(consequently, one trigger) and we were varying the number
of trajectories affected by the disturbance zone from 8 to

0

100

200

300

400

500

600

700

800

20

40

60

80

10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

40
0+

Number of Segments
(1 segment corresponds to 1 block, which is around 1 mile in reality)

N
um

be
r

of
 T

ra
je

ct
or

ie
s

Figure 4: Trajectories Length Distribution

0 50 100 150 200 250
0

1

2

3

4

5

6

7

8

Number of Affected Trajectories

T
im

e

Tuple−level After Trigger
Set−level After Trigger
Tuple−level Before Trigger
Set−level Before Trigger

Figure 5: Semantic Dimensions of the Triggers

200, by varying the spatial location and time interval of the
disturbance zone. The average response times are shown
in Figure 5. As expected, the best performance is obtained
when the BEFORE trigger executes in a SET oriented man-
ner. A noteworthy observation is that loading of the Oracle
Spatial package incurs a substantial context-switching time
penalty and this is part of the reason why the discrepancy
between the SET based vs. TUPLE based manner in the
BEFORE context is somewhat diminished. However, the
benefits of SET and BEFORE combination of semantic di-
mensions increase as the number of pending queries increases
(c.f. Figure 9).
• Triggers Ordering and Query Indexing: To evaluate these
approaches, we randomly selected a number of range queries
that are distributed evenly in the area of interest. The num-
ber of pending queries varied from 4 to 100, and the number
of affected trajectories is 100 and 200, respectively.

Figure 6 demonstrates the validity of our hypothesis that
using ordering among the triggers improves the response
time. However, as indicated in Figures 7 and 8, the us-
age of the query index used to intersect the MBB of the af-
fected trajectories achieves significant improvements in the
response time. This is due to the elimination of the triggers
whose associated queries need not be re-evaluated. Observe
that the improvements are better as the number of the pend-
ing queries increases. In Figures 7 and 8 the response time
increases with the number of the trajectories affected by
a given abnormality. However, the shapes (as well as the

6

20 30 40 50 60 70 80
8

10

12

14

16

18

20

22

24

26

28

Number of Pending Queries

T
im

e

With Z−ordering
Without Z−ordering

Figure 6: Z-Curve Based Ordering of Triggers

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

Number of Pending Queries

T
im

e

With Query−indexing
Without Query−indexing

Figure 7: Query Indexing

ratios) of the two curves – with and without using query
indexing – follow a similar pattern.

So far, we analyzed the impact on the response time for
each semantic/context dimension in isolation. In summary,
Figure 9 presents our experimental observations when com-
paring the “naive” maintenance (i.e., TUPLE and AFTER
triggers; no query index, no ordering among triggers) against
the “full-fledge” incorporation of our methods in the system.

5. RELATED WORK AND CONCLUSIONS
The field of MOD has generated a large body of research

in the past few years and a recent collection, which a large
number of references is presented in [6]. There are several
recent results that are similar in spirit to our work.

A body of recent work that is related to our results is af-
filiated with the PLACE project (www.cs.purdue.edu/place)
The idea of indexing the queries instead of trajectories, for
the purpose of efficient spatio-temporal query processing
was presented in [12], and was further extended for the in-
memory evaluation in [5]. Besides indexing the queries (in-
stead of the moving objects), the works also consider the ve-
locity constrained indexing, thus enabling the usage of incre-
mental evaluation of queries’ answers upon objects update,
based on the relative locations of the objects and queries,
and the assumption of maximum possible speed. Subse-
quently, [7, 21] utilized the concepts of locality and No Ac-
tion regions which enables elimination of un-necessary calcu-
lations when maintaining the answers to continuous queries.
The works have also addressed the problems of efficient
maintenance of the NN queries and spatio-temporal joins,
and have taken into consideration the settings where the re-

0 10 20 30 40 50 60 70 80 90 100
1

2

3

4

5

6

7

8

9

10

11

Number of Pending Queries

T
im

e

200 Affected Trajectories

With Query−indexing
Without Query−indexing

Figure 8: Query Indexing

0

5

10

15

20

25

20 40 60 80

Number of Pending Queries

T
im

e
Set-level After Trigger, no query indexing and no query ordering

Set-level Before Trigger, with query indexing and query ordering

Figure 9: Potential Answers Caching

gions (modelled as rectangles) are also mobile. The main
source of difference between the PLACE-related works and
the one presented in this paper is the very model of the mov-
ing objects’ motion. [12, 5, 7, 21] assume that the motion
is represented as a sequence of (location,time) updates, or
a sequence of (location, time, velocity) updates, arriving in
the MOD in a stream-like manner. As a consequence, in or-
der to maintain the queries’ answers up-to-date, some work
has to be done very frequently (theoretically, upon receiving
each update) and the “global” goal of is to minimize that
work by avoiding un-necessary calculations. On the other
hand, along the lines of the DOMINO project, we assume
that the motion represented as a trajectory which specifies
the future positions of the objects. One of the advantages
of our model of motion is that queries can be posed pertain-
ing to the not-so-near future, however, as a consequences
a spatially-local abnormality in the parameters used in the
trajectories’ construction may affect the answers to many
continuous queries pertaining to regions that are not spa-
tially close to the region where the abnormality occurred.

A different model in which the objects’ motion is repre-
sented as a collection of dynamic attributes of the form (loca-
tion, time, velocity) was introduced in [14]. This model pos-
sesses some knowledge about the “near-future” whereabouts
of the moving objects and the efficient processing (and main-
tenance) of various categories of continuous spatio-temporal
queries was also investigated in some other recent works [4,
15]. Typically, a TPR∗ tree (based on the TPR tree in [13])
is used to index the moving objects, which has the problem
of “aging” of the quality of the index. The works are focused

7

on efficient maintenance of the queries when new moving
objects are inserted or existing ones are being deleted from
the MOD, however, the impact that the bulk-updates of the
trajectories (due to unexpected updates of some values in
different context dimension) has on the pending queries was
not addressed. On the other hand, due to the inherent prop-
erties of the model of the motion that we adopted, dealing
with bulk updates is one of the main issues for our work.

We addressed the problem of efficient maintenance of the
answer-sets to continuous range queries for trajectories. Our
main goal was to utilize the dependencies among the seman-
tic/context dimensions in order to minimize computational
overheads. We have implemented our system of top of an
industry-strength ORDBMS (Oracle 9i) and we experimen-
tally validated our ideas.

There are a few immediate extensions of our work. Cur-
rently, we are trying to achieve completeness of our system,
in the manner discussed in [3, 7]. We are incorporating other
categories of queries (NN and spatio-temporal joins), and we
plan to consider all the possible combinations of the dynam-
ics of the entities involved in the pending queries. In particu-
lar, in this work, the reference object (the query region) was
Static, while the answer objects were Mobile. However, in a
query like: “Retrieve all the motels that will be within 1.5
miles from the trajectory Tr1”, the reverse holds– the refer-
ence object is mobile, whereas the answer objects are static.
To say the least, for this type of queries, the tuple/instance
oriented processing of the triggers may be more appropriate.
One of our goals is to also investigate the optimization of
other parameters of interest, such as average response time
and system’s throughput. Regardless of the model of motion
adopted, the uncertainty is an inevitable parameter [18, 20],
and we are also investigating the efficient maintenance of the
pending continuous queries when the uncertainty is present
in the system and a bound on the queries’ error needs to
be ensured. Another line of investigation, for which some
preliminary results are encouraging, is to calculate a super-
set of the answers upon the instantaneous evaluation of the
queries, and carry more computations in the main memory.

Acknowledgments: The authors would like to express
their gratitude to Ouri Wolfson and his DBMC laboratory
members for letting us borrow the Chicagoland trajectories
data set that they designed for their DOMINO project.

6. REFERENCES
[1] Ansi/iso international standard: Database language

sql. http://webstore.ansi.org.

[2] M. Breunig, C. Türker, M. Böhlen, S. Dieker, R.H.
Güting, C. Jensen, L. Relly, P. Rigaux, H.-J. Schek,
and M. Scholl. Architectures and implementations of
spatio-temporal database management systems. In
Spatio-Temporal Databases – the Chorochronos
Approach. 2003.

[3] R. H. Güting, M. H. Bohlen, M. Erwig, C. S. Jensen,
N. Lorentzos, E. Nardeli, M. Schneider, and J. R. R.
Viqueira. Spatio-temporal models and languages: An
approach based on data types. In Spatio-Temporal
Databases – the Chorochronos Approach. 2003.

[4] G. Iwerks, H. Samet, and K. Smith. Continuous
k-nearest neighbor queries for continuously moving
points with updates. In Proceedings of VLDB, 2003.

[5] D. Kalashnikov, S. Prabhakar, and S. Hambrusch.

Main memory evaluation of monitoring queries over
moving objects. Distributed and Parallel Databases,
15((2)), 2004.

[6] M. Koubarakis, T. Sellis, A.U. Frank, S. Grumbach,
R.H. Güting, C.S. Jensen, N. Lorentzos,
Y. Manolopoulos, E. Nardelli, B. Pernici, H.-J.
Scheck, M. Scholl, B. Theodoulidis, and N. Tryfona,
editors. Spatio-Temporal Databases – the
CHOROCHRONOS Approach. Springer-Verlag, 2003.

[7] M.F. Mokbel, X. Xiong, and W.G. Aref. Sina:
Scalable incremental processing of continuous queries
in spatio-temporal databases. In Proceedings of ACM
SIGMOD, 2004.

[8] B. Moon, H.V. Jagadish, C. Cloutsos, and J.H. Saltz.
Analysis of the clustering properties of the hilbert
space filling curve. IEEE - TKDE, 13(1), 2001.

[9] Oracle 9i.
www.oracle.com/technology/products/oracle9i.

[10] N. W. Paton. Active Rules in Database Systems.
Springer-Verlag, 1999. New York.

[11] E. Pitoura and G. Samaras. Locating objects in
mobile computing. IEEE-TKDE, 13(4), 2001.

[12] S. Prabhakar, Y. Xia, D. Khalashnikov, W. Aref, and
S. Hambrusch. Query indexing and velocity
constrained indexing: Scalable techniques for
continuous queries on moving objects. IEEE Trans.
Computers, 51(10), 2002.

[13] S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A.
Lopez. Indexing the positions of continuously moving
objects. In Proceedings of ACM SIGMOD, 2000.

[14] A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao.
Modeling and querying moving objects. In Proceedings
of ICDE, 1997.

[15] Y. Tao and D. Papadias. Spatial queries in dynamic
environments. ACM TODS, 28(2), 2003.

[16] G. Trajcevski and P. Scheuermann. Reactive
maintenance of continuous queries. ACM
SIGMOBILE Mobile Computing and Communications
Review, 8, 2004.

[17] G. Trajcevski, P. Scheuermann, O. Wolfson, and
N. Nedungadi. Cat: Consistent answers to continuous
queries using triggers. In Proceedings of EDBT), 2004.

[18] G. Trajcevski, O. Wolfson, K. Hinrichs, and
S. Chamberlain. Managing uncertainty in moving
objects databases. ACM TODS, 29(3), 2004.

[19] G. Trajcevski, O. Wolfson, B. Xu, and P. Nelson.
Real-time traffic updates in moving object databases.
In MDDS (in conjunction with DEXA), 2002.

[20] O. Wolfson, A. P. Sistla, S. Chamberlain, and
Y. Yesha. Updating and querying databases that track
mobile units. Distributed and Parallel Databases, 7(3),
1999.

[21] X. Xing, M.F. Mokbel, W.G. Aref, S.E. Hambrusch,
and S. Prabhakar. Scalable spatio-temporal
continuous query processing for location-aware
services. In Proceedings of SSDBM, 2004.

8

