
OMCAT: Optimal Maintenance of Continuous Queries’
Answers for Trajectories

Hui Ding, Goce Trajcevski∗, Peter Scheuermann†

Department of EECS
Northwestern University

Evanston, IL 60208
hdi117,goce,peters@ece.northwestern.edu

ABSTRACT
We present our prototype system, OMCAT, which optimizes the
reevaluation of a set of pending continuous spatio-temporal queries
on trajectory data, when some of the trajectories are affected by
traffic abnormalities reported. The key observation that motivates
OMCAT is that an abnormality in a given geographical region may
cause changes to the answers of queries pertaining to future por-
tions of affected trajectories. We investigate the sources of context-
switching costs at various levels and propose solutions that uti-
lize the correlation of several context dimensions to orchestrate the
reevaluation of the queries. OMCAT, fully implemented on top of
an existing Object Relational Database Management System – Or-
acle 9i, demonstrates that our techniques can substantially reduce
the response time during query answer update.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—query processing

Keywords
Moving Objects Databases, Continuous Queries, Triggers

1. INTRODUCTION
Moving Objects Databases (MOD) [3] is an essential compo-

nent of any system enabling Location Based Services (LBS) [6], in
which the management of the transient(location,time) information
for a large amount of moving objects is paramount. One of the im-
portant properties of this problem domain is that the majority of the
queries of interest to the users arecontinuous [7], i.e., they pertain
to future time intervals and their answers may have to be frequently
reevaluated due to the dynamics of the entities involved.

∗Research supported by the Northrop Grumman Corp. grant PO
8200082518
†Research partially supported by NSF grant IIS-0325144

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2006, June 27–29, 2006, Chicago, Illinois, USA.
Copyright 2006 ACM 1-59593-256-9/06/0006 ...$5.00.

RQ1

NN-Q

Tr1
Tr2 Tr3

Tr4
Tr5

RQ2

RQ3

Tr3’

Tr2’

Tr1’

X

Y

Time

te

tbtb

te

t = t0

t1

t2

Traffic Abnormality

TAR

Figure 1: Trajectories, Queries and Traffic Abnormalities

The algorithms used to maintain the correctness of the answers
to the continuous queries are tightly associated with the model
adopted for representing the motion of the objects in a given MOD.
Three models that are often used in existing works are:
1. A sequence of (location,time) updatesare periodically trans-
mitted to the MOD by the moving objects [5]. Under this model,
the continuous queries have to be reevaluated rather frequently; as a
consequence, their answer updates will have to be sent to the users,
incurring a huge processing/communication overhead.

2. A sequence of (location,time, velocity) updatesare reported
only when an object deviates more than a predefined threshold from
its planed location, or when the velocity vector changes [7]. This
model implies less frequent reevaluation of the continuous queries
than the first one. However, since updates of the moving objects
may pertain to longer time intervals, the correlation between the
objects’ whereabouts and the properties of the efficient algorithms
that manage the continuous queries is different [4].

3. A trajectory , which is a sequence of three dimensional points
(2D geography + time) like(x1,y1, t1), (x2,y2, t2) . . .(xn,yn, tn) [8],
represents vertices of a polyline. Between two vertices, an object
is assumed to move along a straight line with constant speed, as
illustrated in Figure 1. Using electronic maps augmented with the
information about the distribution of the traffic patterns along the

748

road segments, a trajectory between a given origin and destination
can be constructed using a time-dependent extension of the Dijk-
stra’s algorithm [8]. An advantage of this model is that the MOD
has full knowledge of the more distant future. However, it comes at
a price when certain abnormalities occur. Namely, one of the key
parameters used in constructing the trajectories is the traffic pat-
tern distribution along the road segments. However, when a given
traffic abnormality, e.g., a road work or an accident, changes the
traffic patterns of some road segments used in trajectories’ con-
struction, it may also affect the future portions of all the trajectories
that are along the impacted segment(s) throughout the duration of
that abnormality by a certain percentage of slowdown. Since the
future portions of the affected trajectories may have been part of
the answers to various pending continuous queries, these queries
will have to be reevaluated, once the trajectories are updated.

OMCAT investigates the problem of query maintenance upon
such traffic abnormality under the settings of the trajectory model.
The main aspects of the problems addressed in our system are il-
lustrated in Figure 1. It shows a scenario in which there are five
trajectoriesTr1, . . . ,Tr5 in solid polylines, and the system needs to
manage three range queriesRQ1, RQ2 andRQ3, and one nearest-
neighbor queryNN −Q which is interested in the moving object
trajectory that is closest toTr4 (in thick polyline) betweentb and
te. Assuming that all the queries were posted before the timet1,
when a traffic abnormality occurs att1 in a given region denoted as
TAR and persists untilt2, it will affect all the trajectories passing
through TAR betweent1 andt2. The effect of the abnormality on
the trajectories is that portions of the trajectories inside TAR will
be slowed down and the future portions of these trajectories will be
shifted down in time accordingly.

These effects are depicted with the dashed line segments in each
of the affected trajectories, illustrating their new shapes. Appar-
ently, these modification will affect the answers of the pending con-
tinuous queries. For example:
• Tr1 was originally part of the answer ofRQ3, but the modified
trajectoryTr1′ is no longer part of it. However, it becomes part of
the answer toRQ2, which was not the case before the abnormality;

• Although Tr4, the nearest neighbor query, was not affected by
the abnormality, its answer has changed. Namely, due to the slow
down effect,Tr3′ is no longer the closest trajectory toTr4 between
tb andte but Tr2′ becomes the new answer to the query. Observe
that the originalTr2 was part of the answer toRQ2, which is no
longer the case after the traffic abnormality.

2. OMCAT ARCHITECTURE
The main goal of OMCAT is to optimize the response time needed

for reevaluating the answers to a given set of pending continu-
ous queries, once an abnormality of a particular type has been re-
ported to the MOD. Clearly, bringing the answers of the continu-
ous queries up-to-date is preceded by the work needed to detect and
properly update the trajectories affected by the given abnormality.

Figure 2 shows the architecture of OMCAT. The user interacts
with the system via an interface that is implemented using Ora-
cle MapViewer’s API [2]. It allows the user to submit continuous
queries of three different types:

- Range Query;

Stored
 Procedures

Main Memory

Cache
Table

Moving Object Table

Answers and
Answer Updates

Traffic
Abnormality

Post
Query

DatabaseDist.
Zone

Zone
ID

... Time
Duration

Traffic Abnormality Table

DatabaseQuery
Region

Query
ID

...
Current
Answer

Query Table

Traj.
Shape

... Pending
Query

...

Traj
ID

Database
Query Optimizer

SDO_GEOMETRY type

Linear Referencing
System

Index Engine
Query Operators

Geometry
Engine

Triggers

Context Parser and
Extraction

User Interface

Figure 2: OMCAT Architecture

- k Nearest Neighbor Query (kNN);

- Within Distance Query (spatio-temporal join [5]);

Once a particular query is submitted to the system, it is evaluated
and its initial answer is sent to the user. However, along with that,
a trigger is automatically set up to monitor the modifications of the
trajectories due to abnormalities and appropriately react to them, in
order to ensure that the answer to the query is consistent with the
actual state of the real world.

Our approach is reducing the context-switching cost during query
reevaluation. We note that context-aware issues arise at all levels of
query processing: at the operating system process level, due to the
needs to execute multiple triggers in order to complete the reevalu-
ation; during the reevaluation of a single query, where unnecessary
database table accesses and computation can be avoided by utiliz-
ing the spatial and temporal correlation among the pending queries
and the MOD content; and among the reevaluation of a group of
mixed types of queries, where different stored procedure code mod-
ules may need to be invoked to process reevaluation requests. Our
contributions can be summarized as follows:
• We investigated the impact of the values of various semantic di-
mensions of individual triggers on the penalties of context-switching;

• We utilized the spatial-temporal correlation between the queries
and the (updated) trajectories in order to limit the search space and
to generate an ordering among the triggers’ execution;

• We presented a unified algorithm for efficient reevaluation of
a group of mixed type of pending queries, which further reduces
the volume of computation by combining the sweep-plain approach
with the grid-based spatial join approach.
In addition, OMCAT is the first work that formally presents a com-
plete set of algorithms for the (evaluation and) reevaluation of three
common types of queries on the trajectories of moving objects to
the best of the authors knowledge.

3. DEMO SPECIFICATIONS
Throughout the demonstration, users will be able to test the sys-

tem on a set of 5000 trajectories generated based on the electronic

749

Figure 3: OMCAT User Interface Screenshot

maps of Chicago, extending the set of 1000 used in the DOMINO
project [8].

Figure 3 illustrates the GUI of OMCAT, for the settings in which
there is one range query, one nearest neighbor query and one within-
distance query. The region for the range query is visually repre-
sented by a purple rectangle in the upper left portion. The thicker
purple routes depict the querying trajectories for the nearest neigh-
bor query (upper route) and within distance (lower route) queries,
respectively. The right portion of the interface provides the fields
where the users enter the rest of the parameters for a particular
query, e.g., begin time and end time values. Finally, the red cir-
cle indicates the area of the disturbance/traffic abnormality. Again,
its temporal parameters and its slow down effect on the affected
objects are entered using separate textboxes. More detailed presen-
tation of the features is available at the author’s web page [1].

The demonstration of OMCAT consists of four basic stages:
1. Specification of continuous queries: User can request the sys-
tem to process and monitor several queries. He can select the type
of the query (range, kNN, join) and is prompted to enter the param-
eters of the query, such as begintime, endtime, etc. The user has
the option to use the GUI in order to draw the geographical regions
of interest (range query) or select the querying trajectory (kNN and
join).

2. Answer Generation: Upon completion of the specifications,
the system calculates the answers to the queries and presents them
to the user.

3. Specification of the abnormality: Using the GUI, the user can
select an area in which an abnormality has occurred. Subsequently,
the user is prompted to enter the parameters of the abnormality
such as begintime, endtime, duration and the slow down effect,
in terms of the percentage of the value of the actual traffic patterns
along each segment in the affected region.

4. Update Answer Generation: As shown in Figure 3, the user
has an option to choose whether he would like to generate the up-to-

date answers to the pending queries using our optimization methods
or the naive approach. This allows the users to have a “hands-on”
experience of the advantages offered by our approach.

4. REFERENCES
[1] OMCAT project homepage.

http://www.eecs.northwestern.edu/˜hdi117/omcat.htm.

[2] Oracle 9i.
http://www.oracle.com/technology/products/oracle9i.

[3] Ralf Hartmut G̈uting and Markus Schneider.Moving Object
Databases. Morgan Kaufmann Publishers, CA, 2005.

[4] Glenn S. Iwerks, Hanan Samet, and Ken Smith. Continuous
k-nearest neighbor queries for continuously moving points
with updates. InVLDB, pages 512–523, 2003.

[5] Mohamed F. Mokbel, Xiaopeng Xiong, and Walid G. Aref.
SINA: Scalable incremental processing of continuous queries
in spatio-temporal databases. InSIGMOD Conference, pages
623–634, 2004.

[6] Jochen Schiller and Agǹes Voisard.Location-Based Services.
Morgan Kaufmann Publishers, CA, 2004.

[7] A. Prasad Sistla, Ouri Wolfson, Sam Chamberlain, and Son
Dao. Modeling and querying moving objects. InICDE, pages
422–432, 1997.

[8] Ouri Wolfson, Hu Cao, Hai Lin, Goce Trajcevski, Fengli
Zhang, and Naphtali Rishe. Management of dynamic location
information in domino. InEDBT, pages 769–771, 2002.

750

