
Towards Efficient Maintenance of Continuous MaxRS
Query for Trajectories

Muhammed Mas-ud Hussain1 Goce Trajcevski
∗

1

Kazi Ashik Islam2 Mohammed Eunus Ali2
1Department of Electrical Engineering and Computer Science

Northwestern University, Evanston, IL, 60208
{mmh683, goce@eecs.northwestern.edu }

2 Department of CSE
Bangladesh University of Engineering and Technology

{ikaziashik, eunus@cse.buet.com }

ABSTRACT
We address the problem of efficient maintenance of the an-
swer to a new type of query: Continuous Maximizing Range-
Sum (Co-MaxRS) for moving objects trajectories. The tra-
ditional static/spatial MaxRS problem finds a location for
placing the centroid of a given (axes-parallel) rectangle R so
that the sum of the weights of the point-objects from a given
set O inside the interior of R is maximized. However, mov-
ing objects continuously change their locations over time,
so the MaxRS solution for a particular time instant need
not be a solution at another time instant. In this paper, we
devise the conditions under which a particular MaxRS so-
lution may cease to be valid and a new optimal location for
the query-rectangle R is needed. More specifically, we solve
the problem of maintaining the trajectory of the centroid of
R. In addition, we propose efficient pruning strategies (and
corresponding data structures) to speed-up the process of
maintaining the accuracy of the Co-MaxRS solution. We
prove the correctness of our approach and present exper-
imental evaluations over both real and synthetic datasets,
demonstrating the benefits of the proposed methods.

1. INTRODUCTION
Recent technological advances in miniaturization of

position-aware devices equipped with various sensors, along
with the advances in networking and communications, have
enabled a generation of large quantities of (location, time)
data – O(Exabyte) [16]. This, in turn, promoted various geo-
social applications where the (location, time) information is
enriched with (sensed) values from multiple contexts [30,
31]. At the core of many such applications of high societal

∗Research supported by NSF-III and ONR

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WOODSTOCK ’97 El Paso, Texas USA
c© 2016 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 10.475/123 4

relevance – e.g., tracking in ecology and environmental mon-
itoring, traffic management, online/targeted marketing, etc.
– is the efficient management of mobility data [22].

Researchers in the Spatio-temporal [15] and Moving Ob-
jects Databases (MOD) [9] communities have developed a
plethora of methods for efficient storage and retrieval of
the whereabouts-in-time data, and efficient processing of
various queries of interest. Many of those queries – e.g.,
range, (k) nearest neighbor, reverse nearest-neighbor, sky-
line, etc. – have had their “predecessors” in traditional rela-
tional database settings, as well as in spatial databases [26].
However, due to the motion, their spatio-temporal variants
became continuous (i.e., the answer-sets change over time)
and even persistent (i.e., answers change over time, but also
depend on the history of the motion) [19, 32].

In a similar spirit, this work explores the spatio-temporal
extension of a particular type of a spatial query – the, so
called, Maximizing Range-Sum query (MaxRS), which can
be described as follows:
Q:“Given a collection of weighted spatial point-objects O and
a rectangle R with fixed dimensions, finds the location(s) of
R that maximizes the sum of the weights of the objects in
R’s interior”.

Various aspects of MaxRS (e.g., scalability, approximate
solutions, insertion/removal of points) have been addressed
in spatial settings [5, 7, 11, 21, 24, 27] – however, our main
motivation is based on the observation that there are many
application scenarios for which efficient processing of the
continuous variant of MaxRS is essential. Consider the fol-

Figure 1: MaxRS vs. Co-MaxRS.

lowing query:
Q1: “What should be the trajectory of a drone which ensures
that the number of mobile objects in the Field-of-View of its
camera is always maximal?”.

It is not hard to adapt Q1 to other application settings:
– environmental tracking (e.g., optimizing a range-bounded
continuous monitoring of a herd of animals with highest
density inside the region); – traffic monitoring (e.g., detect-
ing ranges with densest traffic between noon and 6PM); –
video-games (e.g., determining a position of maximal cov-
erage in dynamic scenarios involving change of locations of
players/tanks in World of Tanks game). Pretty much any
domain involving continuous detection of “most interesting”
regions involving mobile entities is likely to benefit from the
efficient processing of variants of Q1 (e.g., mining popular
trajectories patterns [33], sports analytics [25], etc.).

Contrary to the traditional range query which detects the
number of points, or higher dimensionality objects such as
(poly)lines and shapes, related to a given fixed region, the
MaxRS determines the location for placing a given region
so that the sum of the weights (i.e., some objective function
related to location) is maximized. Originally, the MaxRS
problem was tackled by the researchers in computational
geometry [11, 21] – however, motivated by its importance
in LBS-applications – e.g., best location for a new franchise
store with a limited delivery range, most attractive place
for a tourist with a restricted reachability bound – recent
works have proposed scalable efficient solution for MaxRS
in spatial databases [5], including approximate solutions [27]
and scenarios where the weights may change and points may
be added/deleted [7].

However, the existing solutions to MaxRS queries can only
be applied to a specific time instant – whereas Q1 is a Con-
tinuous MaxRS (Co-MaxRS) variant. Its weighted-version
would correspond to prioritizing certain kinds of mobile ob-
jects (e.g., areas with most trucks – by assigning higher
weights to trucks) to be tracked by the drone, or certain
kinds of tanks in the World of Tanks game. The fundamen-
tal difference between MaxRS and Co-MaxRS is illustrated
in Figure 1. Assuming that the 8 objects are static at time t0
and the weights of all the objects are uniform, the placement
of the rectangle R indicated in solid line is the solution, i.e.,
count for optimal R is 3. Other suboptimal placements are
possible too at t0, e.g., covering only o2 and o3 with count
being 2. However, when objects are mobile, the placement
of R at different time instants may need to be changed – as
shown in Figure 1 for t0, t and tmax.

A few recent works have tackled the dynamic variants of
the MaxRS problem [1, 20]. These works consider objects
that may appear or disappear (i.e., insert/delete); however,
the locations of the objects do not change over time. To the
best of our knowledge, the Co-MaxRS problem has not been
addressed in the literature so far and the main contribution
of our work can be summarized as follows:
• We formally define the Co-MaxRS problem and identify
criteria (i.e., critical times) under which a particular MaxRS
solution may no longer be valid, or a new MaxRS solution
emerges. These, in turn, enable algorithmic solution to Co-
MaxRS using procedures which execute at discrete time in-
stants.
• Given the worst-case complexity of the problem (conse-
quently, the algorithmic solution), we propose efficient prun-
ing strategies to reduce the cost of recomputing the Co-

MaxRS solutions at certain critical times. We present an
in-memory data structure and identify properties that en-
able two such strategies: (1) eliminating the recomputation
altogether at corresponding critical time; (2) reducing the
number of objects that need to be considered when recom-
puting the Co-MaxRS solution at given critical times.
•We experimentally evaluate our proposed approaches using
both real and synthetic datasets, and demonstrate that the
pruning strategies yield much better performance than the
worst-case theoretical bounds of the Co-MaxRS algorithm –
e.g., we can eliminate 80-90% of the critical time events and
prune around 70% objects (on average) when recomputing
Co-MaxRS.

In the rest of this paper, Section 2 presents the basic tech-
nical background, and Section 3 formalizes the Co-MaxRS
problem and describes the basic properties and algorithmic
aspects of its solution. Section 4 presents the details of
our pruning strategies: properties, data structures and algo-
rithms, and Section 5 presents the quantitative experimental
observations illustrating the benefits of the proposed prun-
ing. Section 6 positions the work with respect to the related
literature, and Section 7 offers conclusions and directions for
future work.

2. PRELIMINARIES
We now review the approaches for solving static MaxRS

problem and introduce the concept of kinetic data structures
that we subsequently use for solving Co-MaxRS.

2.1 MaxRS for Static Objects
Let C(p,R) denote the region covered by an isothetic rect-

angle R, placed at a particular point p. Formally:

Definition 1. (MaxRS) Given a set O of n spatial points
O = {o1, o2, . . . , on}, where each oi associated with1 a
weight wi , the answer to MaxRS query (AMaxRS(O,R)) re-
trieves a position p for placing the center of R, such that∑
{oi∈(O ∩ C(p,R))} wi is maximal.∑
{oi∈(O ∩ C(p,R))} wi is called the score of R located at

p. If ∀oi ∈ O : wi = 1, we have the count variant, instances
of which at different times are shown in Figure 1. Note that
there may be multiple solutions to the MaxRS problem, and
in the case of ties – one can be chosen randomly, unless other
ranking/preference criteria exist.

Figure 2: MaxRS → rectangle intersection.

1One may also assume that the points in O are bounded
within a rectangular area F.

Consider the example shown in Figure 2 – the count vari-
ant of MaxRS, with a rectangle R of size d1×d2 and five ob-
jects (black-filled circles). An in-memory solution to MaxRS
(cf. [21]) transforms it into a “dual” rectangle intersection
problem by replacing each object in oi ∈ O by a d1×d2 rect-
angle ri, centered at oi. R covers oi if and only if its center
is placed within ri. Thus, the rectangle covering the max-
imum number of objects can be centered anywhere within
the area containing a maximal number of intersecting dual
rectangles (e.g., r3 ∩ r4 ∩ r5 – gray-filled area in Figure 2).

Using this transformation, an in-memory algorithm to
solve the MaxRS problem in O(n logn) time and O(n) space
was devised in [21]. Viewing the top and the bottom edges of
each rectangle as horizontal intervals, an interval tree – i.e.,
a binary tree on the intervals – is constructed, and then a
horizontal line is swept vertically, updating the tree at each
event. The algorithm maintains the count for each interval
currently residing in the tree, where the count of an inter-
val represents the number of overlapping rectangles within
that interval. When the sweep-line meets the bottom (top)
edge of a rectangle, the corresponding interval is inserted to
(deleted from) the interval tree and the count of each interval
is updated accordingly. Considering the scenario in Figure 2
and using [xil, xir] to denote the left and right boundaries of
ri, when the horizontal sweep-line is at position l, there are
9 intervals: [−∞, x1l], [x1l, x2l], [x2l, x1r], [x1r, x2r], [x2r,
x4l], [x4l, x5l], [x5l, x4r], [x4r, x5r], and [x5r, +∞]—with
counts of 0, 1, 2, 1, 0, 1, 2, 1, and 0 respectively. An interval
with the maximum count during the entire sweeping process
is returned as the final solution and, since there can be at
most 2n events (top or bottom horizontal edge of all ri’s)
and each event takes O(logn) processing time, the whole
algorithm takes O(n logn) time to complete.

We note that one may construct a graph RG (rectangle
graph) where vertices correspond to points/objects inO (i.e.,
the centers of the dual rectangles) and an edge exists be-
tween two vertices oi and oj if and only if the corresponding
dual rectangles overlap (i.e., ri ∩ rj 6= ∅). As illustrated
with dotted edges in Figure 2, an area of maximum overlap
of dual rectangles corresponds to a maximum clique in RG.

2.2 Kinetic Data Structures

Figure 3: Kinetic Data Structures paradigm.

Kinetic data structures (KDS) [2] are used to track at-
tributes of interest in a geometric system, where there is
a set of values (e.g., location – x and y coordinates) that
are changing as a function of time in a known manner. To
process queries at a (virtual) current time t, an instance of
the data structure at initial time t0 is stored (i.e., values of
the attributes of interest), which is augmented with a set
of certificates proving its correctness at t0. The next step
is to compute the failure times of each certificates – called
events – indicating that the data structure may no longer be
an accurate representation of the state of the system. The
events are stored in a priority queue sorted by their failure
times. To advance to a time t (= t0 + δ), we have to pop

all the events having failure times tfail ≤ t0 + δ from the
queue in-order, and perform two operations at each event:
(1) modify the data structure so that it is accurate at tfail
(attribute update), and (2) update the related certificates
accordingly (see Figure 3). In this paper, we utilize KDS
to maintain the Co-MaxRS answer-set over time and only
perform certain tasks at the critical times (events) when a
current MaxRS solution may change.

3. BASIC CO-MAXRS
Interval trees were used as in-memory data structure of

the planesweep algorithm in both [21] and the subsequent
work addressing scalability [5]. However, these techniques
cannot be straightforwardly extended to maintain MaxRS
solutions continuously – i.e., one cannot expect to have an
uncountably-infinite amount of interval trees (at each in-
stant of objects’ motion). As it turns out, the answer to
Co-MaxRS can change only at discrete time-instants, which
we address in the sequel.

Throughout this section, without loss of generality, we
assume that each object moves along a single straight line-
segment and all the objects start and finish their motion
in the same time instant. We will lift this assumption and
discuss its impact in Section 4.3.

Continuous MaxRS (Co-MaxRS) is defined as follows:

Definition 2. (Co-MaxRS) Given a set Om of n 2D
moving points Om = {o1, o2, . . . , on}, where each
is associated with a trajectory2 oi = [(xi1, yi1, ti1),
. . . , (xi(k+1), yi(k+1), ti(k+1))] and a weight wi; and a
time-interval T = [t0, tmax], the answer to Co-MaxRS
(ACo-MaxRS(Om, R, T)) is a (time-ordered) sequence of
pairs [((l1obj , [t0, t1)), ((l2obj , [t1, t2)), . . . , ((lkobj , [tk−1, tmax))),

where (liobj , [ti−1, ti)) denotes the set of objects that for any
time instant tj ∈ [ti−1, ti)(⊆ T) determine the possible lo-
cation(s) for R that is a MaxRS at tj .

Figure 4: MaxRS location changes from t1 to t2,
although the objects in the solution are the same.

Note that, instead of maintaining a centroid-location
(equivalently, a region) as a Co-MaxRS solution, we main-
tain a list of objects that are located in the interior of the
optimal rectangle placement. The rationale is three-fold:
(1) Even for small object movements, the optimal location

2Again, the trajectories may be bounded within a rectangu-
lar area F.

(a) (b) (c)

Figure 5: Co-MaxRS answer can only change when two rectangles’ relationship changes from overlap to
disjoint (or, vice-versa). Object locations at: (a) t1 (b) t2 (c) t3.

of the query rectangle can change while objects participat-
ing in the MaxRS solution stay the same; (2) We can easily
determine the trajectory (one of the uncountably-many) of
the centroid of R throughout the time-interval during which
the same set of objects constitutes the solution. An example
is shown in Figure 4. At time t1, objects o1, o2, and o3 fall
in the interior of the MaxRS solution. At t2, although the
same objects constitute the MaxRS solution, the optimal lo-
cation itself has shifted due to the movement of the objects.
Suppose there are s objects in the list ljobj at a particular

time instant tsin[tj−1, tj). Given the s objects from ljobj one
can find the intersection of the s dual rectangles to retrieve
the (boundaries of the possible) location for R at tj in O(s)
time.

We can readily consider an alternative way of represent-
ing the Co-MaxRS solution – namely, as a trajectory of the
(placement of the) centroid of R. Consider any time interval
during which the same set of objects constitutes the solu-
tion – e.g., again (ljobj , [tj−1, tj)). Let {oj1, . . . , ojs} denote

the actual objects from Om defining ljobj . Their respective

dual rectangles, {rj1, . . . , rjs} have an intersection at t = tj−1

– which, by assumption, is an axes-parallel rectangle. Every
point in ∩i=si=1r

j
i can be a centroid of R covering ljobj at tj−1.

Similarly for t = tj – once again we have an intersection of
the s objects yielding an axes-parallel rectangle, except both
its size and location are changed with respect to the one at
t = tj−1. The key observations are that:
(1) Each rji dual rectangle, when moving along a straight

line-segment (to follow the oji) between tj−1 and tj , “swipes”
a volume corresponding to a sheared box/parallelopiped.
(2) At each t ∈ [tj−1, tj) the intersection of the dual rect-
angles is non-empty (otherwise, it would contradict the fact
that the objects in ljobj define the solution) and is a rectangle,
thereby ensuring that the intersection of the parallelopipeds
is continuously non-empty and, again, convex.

Thus, given the AMaxRS(O,R) at t = tj−1 and t = tj ,
we can simply pick a point in the interior of each of the
two (horizontal) rectangles in the (X,Y,Time) space, and
the line-segment connecting them is one of the possible tra-
jectories of the centroid of R as the solution/answer-set
ACo-MaxRS(O,R, T) (of course, for T = [tj−1, ti)).

We now describe how to identify when a recomputation
of the MaxRS may (not) be needed due to the possibility
of a change in the solution. Consider the example in Fig-
ure 5 with 6 objects: {o1, o2, . . . , o6}. Let ri denote the dual
rectangle for an object oi. For simplicity of visualization,
assume that only o2, o5 and o6 are moving: o2 in west, o5
in north direction (orange rectangles and arrows), and o6 in

the Northwest direction. Figure 5a, shows the locations of
objects at t1 and the current MaxRS solution, lobj = {o1, o2,
o3, o4} (blue colored objects in Figure 5a). In this setting,
r2 and r5 do not overlap. Figure 5b shows the objects loca-
tions and their corresponding rectangles at t2 (> t1). Due to
the movement of o2 and o5, the maximum overlapped area
changed at t2 (blue-shaded region). But, as r2 and r5 still do
not overlap, the objects comprising the MaxRS solution are
still the same as t1. Finally, Figure 5c represents the objects
locations at a later time t3, where r2 and r5 are overlapping.
This causes a change in the list of objects making up the
MaxRS solution, and o5 is added to the current solution.
We note that the solution changed only when two disjoint
rectangles began to overlap. If we consider the example in
reverse temporal order, i.e., assuming t3 < t2 < t1, then the
MaxRS solution changed when two overlapping rectangles
became disjoint.
Observation: The solution of Co-MaxRS changes only
when two rectangles change their topological relationship
from disjoint to overlapping (~DO), or from overlapping to

disjoint (~OD). We consider the objects along the boundary
of the query rectangle R as being in its interior, i.e., rect-
angles having partially overlapping sides and/or overlapping
vertices are considered to be overlapping. In the rest of the
paper, if we need to indicate an occurrence of ~DO or ~OD at
a specific time instant t and pertaining to two specific ob-
jects oi and oj we will extend the signature of the notation
by adding time as a parameter and index the objects in the
subscript (e.g., ~DOi,j(t) or ~ODi, j(t)).

Thus, as the objects (resp. dual rectangles) moves, there
are two kinds of changes:
(1) Continuous Deformation: As the location of the rect-
angles change, the overlapping rectangle may change, but
the set of objects determining that overlapping rectangle re-
mains the same.
(2) Topological Change: Due to the movement of the rectan-

gles, a ~DO or ~OD transition occurs for a pair of rectangles.
We note that, while the change of the topological rela-

tionship is necessary for a change in the answer set in the
continuous variant of AMaxRS(Om, R) – it need not be suf-
ficient. As shown in Figure 5, the relationship between r5
and r6 transitioned from disjoint, to overlap, and to dis-
joint again. However, none of those changes affected the
ACo-MaxRS(Om, R, T) between t1 and t3.

In Section 4.3 we will use this observation when investi-
gating the options of pruning certain events corresponding
to changes in topological relationships. At the time being,
we summarize the steps for a brute-force algorithm for cal-
culating the answer to Co-MaxRS:

Algorithm 1 Basic Co-MaxRS

Input: (Om, R, T = [t0, tmax])

1: Calculate all the time instants for all the pairwise topo-
logical changes for the objects in Om

2: Sort the times of topological changes
3: For each such time ttci , execute AMaxRS(O,R)
4: if Objects defining the answer set are the same then
5: Extend the time-interval of the validity of the most

recent entry in ACo-MaxRS (Om, R, T = [t0, tmax])
6: else
7: Close the time-interval of validity of the prior most-

recent entry
8: Add a new element into ACo-MaxRS (Om, R, T =

[t0, tmax]) consisting of the objects defining the
AMaxRS(O,R) at ttci , with the interval [ttci , t

tc
i+1)

9: end if
10: return ACo-MaxRS(Om, R, T)

Clearly, the complexity of Algorithm 1 is O(n3 logn) –
which can be broken into: – O(n2) for determining the
(pairwise) times of topological changes; – O(n2 logn2) for
sorting those times; – executing O(n2) the instantaneous
AMaxRS(O,R) (at O(n logn)). We note that O(n3 logn) is
actually a tight worst-case upper-bound, since the solutions
in AMaxRS(O,R) can be “jumping” from one R-region into
another that is located elsewhere in the area of interest be-
tween any two successive intervals – which are O(n2).

4. PRUNING IN CO-MAXRS
Given the complexity of the näıve solution – which, again,

captures the worst-case possible behavior of moving objects
– we now focus on strategies that could reduce certain com-
putational overheads, based on (possible) “localities”. We
discuss two such strategies aiming to: (1) Reduce the num-
ber of recomputations of MaxRS; and (2) Reduce the total
number of objects considered when recomputing the MaxRS
solution3, and then present the algorithms that exploit those
strategies.

Before proceeding with the details of the pruning, we de-
scribe the data structures used.

Figure 6 depicts the data structures used to maintain
the Co-MaxRS answer-set based on the KDS framework.
Strictly speaking it consists of:
Object List (OL): A list for each object oi ∈ O, stores its
current trajectory Troi (i.e., snapshots of location at t0 and
tmax), weight wi, sum of weights of its neighbors in the rect-
angle graph WN(oi), and whether or not the object is part
of the current MaxRS solution. Note that, oj is neighbor of
oi if ri and rj overlap.
Kinetic Data Structure (KDS): Figure 6 illustrates the
underlying KDS (event queue), and its relation with the
OL. Each event E

tk
i,j is associated with a time tk, where

t0 < tk < tmax. KDS maintains an event queue, where the
events are sorted according to the time-value. Each event
entry E

tk
i,j has pointers to its related objects – two object

id’s, and the type of the event – (~DO or ~OD).
Adjacency Matrix (AdjMatrix): represents the time-
dependent rectangle graph RG, with its rows and columns

3Due to a lack of space, we do not present the proofs of the
Lemmas in this paper, however, they are available at [29].

corresponding to the vertices of RG (i.e., the objects from
Om). For each pair of objects oi and oj , and a particular
(critical) time instant, the AdjMatrixi,j and AdjMatrixj,i set
to 1 or 0 to indicate whether two objects are directly con-
nected with an edge (i.e., their dual rectangles overlap).

4.1 Pruning KDS Events
Recall that the solution to MaxRS problem is equivalent

to retrieving the maximum clique in the rectangle graph RG
(cf. Section 2). For our first kind of pruning methodology,
we leverage on the fact that a KDS event involving two ob-
jects oi and oj – which can be either ~DOij or ~DOij – is
equivalent to adding or deleting an edge only between ri
and rj , and no other objects/rectangles are involved. The

properties that allow us to filter out ~DO and/or ~OD types
of events where recomputing the MaxRS are discussed next.
~DO: Let WN(oi)(t) denote the current sum of the weights of
the neighbors of an object oi at time t, and let scoremax(t) =
score((AMaxRS(O,R)), t) denote the score of the current

MaxRS solution at t. During a ~DO event, the lower bound
of a MaxRS solution is scoremax(t), and upper bound of
the score (i.e., maximum possible score) of an overlapping
region including an object oi is (WN(oi) + wi).

Lemma 1. Consider the event ~DOi,j for two objects oi

and oj, occurring at time ti,j. Let l
(ti,j−δ)
obj (for some small

δ) denote the Co-MaxRS solution just before ti,j. After up-

dating WN(oi) and WN(oj) at ti,j (i.e., because of ~DOi,j),

l
(ti,j−δ)
obj remains a MaxRS if one of the following two in-

equalities holds:
(1) WN(oi)(ti,j) + wi ≤ scoremax(ti,j − δ)
(2) WN(oj)(ti,j) + wj ≤ scoremax(ti,j − δ)

~OD: In this case the intuition is much simpler – the
score/count of an instantaneous MaxRS solution can only

decrease (or, remain same) during an ~OD event, and if it
decreases (i.e., changes), both of the objects involved in the
event must have been in lobj . Thus, we have:

Lemma 2. Consider the event ~ODij for two objects oi

and oj occurring at time ti,j. Let l
(ti,j−δ)
obj (for some small

δ) be the current MaxRS solution before ti,j. If one of the
following two conditions holds:

(1) oi /∈ l
(ti,j−δ)
obj

(2) oj /∈ l
(ti,j−δ)
obj

Figure 6: Data structures used.

then l
(ti,j−δ)
obj remains a MaxRS solution after ~ODij (i.e, af-

ter ti,j).

To utilize Lemma 1 and 2, we maintain for each oi ∈ Om
the value of WN(oi), and whether or not the object is part
of the current MaxRS solution. In Figure 6, two variables
inSolution and WN(oi) are used for this purpose, updated

accordingly during the processing of ~DO and ~OD events.

4.2 Objects Pruning
After filtering out many of the recomputations (Lemma 1

and Lemma 2), it is desirable to reduce the number of
objects required in the recomputation. Towards that, we
the following observations: (1) WN(oi) + wi is a up-
per bound on possible MaxRS scores containing an ob-
ject oi; (2) scoremax, the current MaxRS score, is a lower

bound on possible MaxRS scores after a ~DO event; and (3)
scoremax−min{wi, wj} is a lower bound on possible MaxRS

scores after a qualifying ~ODij event. Let Ei,j denote any

event involving two objects oi and oj (be it ~DOij or ~DOij).
We have:

Lemma 3. After updating WN(oi) and WN(oj) at Eij,
an object ok can be pruned before recomputing MaxRS if one
of the following two conditions holds:

(1) Ei,j is a ~DO event and WN(ok) + wk ≤ scoremax
(2) Ei,j is an ~OD event and WN(ok) +wk ≤ scoremax −

min{wi, wj}

Example 1. Figure 7a demonstrates an example scenario
with 46 objects. For the sake of simplicity, we only con-
sider the counting variant (i.e., (∀oi ∈ O)wi = 1) in this
example. The count of neighbors (i.e., WN(oi)) for each
object is shown as a label, and the current MaxRS solu-
tion is illustrated by a solid rectangle where scoremax (or,
countmax) = 6. Members of lobj are colored purple in Fig-
ure 7. Some of the objects are marked with an id (e.g., o1,
o2, o3, and o4), so that they can be identified clearly in the
text. In this scenario, to process any event, we will first up-
date the appropriate WN(oi) and inSolution values. Then,

suppose a new ~DO event is processed for one of the objects
for which WN(oi) ≤ 5, e.g., between o3 and o4. Then that
event will be pruned and MaxRS answer-set will remain the
same as the maximum possible count of a MaxRS includ-
ing that object will be (5 + 1)=6. Similarly, any ~OD event
involving an object other than the purple ones would be fil-
tered out. Figure 7b illustrates the application of Lemma 3,
based on which all the objects in grey can be pruned during
a ~DO event before recomputing MaxRS. Thus, after apply-
ing Lemma 3, we can prune 26 objects in linear time, i.e.,
going through the set of objects once and checking the re-
spective conditions. After pruning, 20 objects will remain
(cf. Figure 7b) – only 43% of the total objects.

According to Lemma 1, a ~DOij event is not pruned
when both WN(oi) + wi > scoremax and WN(oj) + wj >
scoremax holds. Let us use N(oi) to denote the list of neigh-
bors of any object oi. Additionally, we employ CN(oi, oj) to
represent common neighbors of two objects oi and oj , i.e.,
N(oi)∩N(oj) . In this scenario, there are two possible cases:
Case 1: Both oi, oj /∈ lobj . The observation here is that if

there exists a new MaxRS solution at a ~DOij event, then
both oi and oj must be present in the new solution as only

they are affected by the new ~DO event – all other objects
(and their related attributes) remain the same. Additionally,
for any MaxRS solution including both oi and oj , only the
members of CN(oi, oj) can be in lobj .
Case 2: Either oi ∈ lobj or oj ∈ lobj . Let us assume oi ∈
lobj . Then, if oj overlaps with all objects ok ∈ lobj (an
O(|lobj |) check), then we can directly have a new MaxRS
solution including oj , i.e., lobj = lobj ∪ oj . If this check fails,
we can use the similar processing as case 1. Note that, the
case of both oi, oj ∈ lobj is not possible as it contradicts the

concept of ~DOij event, i.e., oi and oj are mutually disjoint

before ~DOij . Based on the above observations, we have the
following two lemmas:

Lemma 4. For an event ~DOij involving two objects oi
and oj, we can prune all the objects except oi, oj, and
CN(oi, oj) before recomputing MaxRS.

Lemma 5. For an event ~DOij involving two objects oi
and oj where oi ∈ lobj, we can set lobj∪oj as the new MaxRS
solution if oj overlaps with all objects ok ∈ lobj.

To take advantage of Lemma 4, we need to keep track of
neighbors of all the objects in addition to WN(oi), which is
the purpose of the adjacency matrix (AdjMatrix in Figure 6).
We note that one could also maintain a list N(oi) for each
object – however, each approach would incur O(n2) space
overhead in the worst case – but the adjacency matrix has
certain advantages:
• Updating of the matrix information can be done in O(1)

time. For example, at a ~DOi,j event we can directly
set AdjMatrix[i][j] = 1 and AdjMatrix[j][i]=1. Similarly,
AdjMatrix[i][j] and AdjMatrix[j][i] can be set to 0 at an
~ODi,j event.
• We can compute CN(oi, oj) for two objects oi and oj effi-
ciently by doing a bit-wise AND operation over AdjMatrix[i]
and AdjMatrix[j].

Example 2. Suppose there is a new ~DO event between
objects o1 and o3 in the example in Figure 7. The event
will not be pruned because both WN(o1) and WN(o3) >
5. As o1 ∈ lobj , we will first check if o3 overlaps with all
other members of lobj (purple colored objects). As it does
overlap with all the members of lobj , we can directly output
lobj ∪ o3 as the new solution using Lemma 5. On the other

hand, suppose the new ~DO occurs between o2 and o3. Using
Lemma 4, we can prune all the objects except o2, o3, and
N(o2)∩N(o3). This leaves us with only 4 remaining objects
(cf. Figure 8) — 91.3% objects are pruned from the calcu-
lation. Obviously, score of the recomputed MaxRS will be
less than the scoremax we already have (i.e., 6), and thus no
change to the solution of Co-MaxRS will be made. We can
see, Lemma 4 and Lemma 5 greatly optimizes processing of
~DO events.

4.3 KDS Properties and Algorithmic Details
Instead of a single line-segment, moving objects trajec-

tories in practice are often polylines with vertices corre-
sponding to actual location-samples. To cater to this, we
introduce another kind of event, pertaining to an individ-
ual object – line-change event at a given time instant, de-
noted as Elc(oi, tli). Suppose, for a given object oi, we have

(a) (b) (c)

Figure 7: An example showing the objects pruning scheme: (a) Objects locations and WN(oi) values at t (b)

Grey objects can be pruned using Lemma 3 in a ~DO event (c) Remaining objects after pruning at a ~DO event.

Figure 8: Application of Lemma 4 in ~DO events.

k+1 time-samples during the period T as ti1, ti2, . . . , ti(k+1),
forming k line-segments. Note that the frequency of loca-
tion updates may vary for different objects; even for a sin-
gle object, the consecutive time-samples may have different
time-gap. Initially, we insert the second time-samples for
all the objects into the KDS as line-change events (cf. Fig-
ure 6). When processing Elc(oi, tli) we need to compute:

(a) Next ~OD events with the neighbors; and (b) Next ~DO
events with other non-neighboring objects. We also need to
insert a new line-change event at tl(i+1)

for oi into the KDS.

Thus, processing a line-change event takes O(n) time. Note
that a particular trajectory may start (appear) and/or fin-
ish its trip (disappear) at any time t, where t0 < t < tmax
and we can use similar ideas to handle these special cases in
O(n) time.

We proceed with briefly analyzing the properties of our
proposed KDS-based structure (cf. [2]).
(1) Number of certificates altered during an event
(Responsiveness): Recall that we have two kinds of core
events:
~DO Event: At such an event we need to compute the time of
the next ~OD event between the two objects and insert that
to KDS if it falls within the given time-period T . Thus, only
one new event (certificate) is added.
~OD Event: For these events, we just need to process them,
and no new event is inserted into KDS.
In both cases, the number is a small constant – conforming
with the desideratum.
(2) The size of KDS (Compactness): In case of our

adaptation of the KDS, we can have at most O(n2) ~DO

and ~OD events at once. If we consider the additional line-
change events for the polyline moving objects trajectories,
there can be one such event for each object at any partic-
ular time, i.e., O(n) such events. Thus, the size of KDS
at a particular time is at most O(n2). However, as we will
see in Section 5, in practice the size (total events) can be
significantly smaller than this upper-bound – meeting the
desideratum, i.e., O(nε) for some arbitrarily small ε > 0 .
(3) The ratio of internal and external events (Effi-

ciency): In our KDS, the ~DO and ~OD events are exter-
nal events (i.e., possibly causing changes to the Co-MaxRS
answer-set), and the line-change events are internal. Thus,
the ratio between total number of events and external events
is O(n2)+O(n)

O(n2)
, which is relatively small. This is a desired

property of an efficient KDS [2].
(4) Number of certificates associated with an object

(Locality): An object can have n − 1 ~DO and ~OD events
with the other objects, and 1 line-change event at a partic-
ular time instant, i.e., the number of events associated with
an object is O(n), which is an acceptable bound.

In Algorithm 2, we present the detailed method for
maintaining Co-MaxRS for a given time period [t0, tmax].
As mentioned, for each object, in addition to WN and
inSolution variables, we also keep track of the active neigh-
bors in RG via AdjMatrix. After initialization (line 1 and
2), the KDS is populated with all the initial events that fall
within the given time-period (line 3) – a step taking O(n2)
time. Then, we retrieve the current solution, i.e., the list of
objects, and create a new time-interval of its validity, start-
ing at tnewstart in lines 4-6. We update the inSolution values
of related objects whenever we compute a new MaxRS so-
lution, and discard an old one (lines 7, 15, and 16). Lines
8–19 process all the events in the KDS in order of their time-
value, and maintain the Co-MaxRS answer-set throughout.
The top event from the KDS is selected and processed us-
ing the function EventProcess (elaborated in Algorithm 3).
After checking whether a new solution has been returned
from EventProcess, the answer-set is adjusted in the sense
of closing its interval of validity (tnewend) which, along with
the corresponding lobj are appended to ACo-MaxRS(Om, R, T)
(for brevity, the “.Add()” notation is used). A modified
version of the MaxRS algorithm from [21] is used where,
in addition to the score, the list lobj is also returned – cf.
R Location MaxRS in line 5. Note that, the condition check
at line 11 in implementation actually takes constant time,

Algorithm 2 Co-MaxRS (OL, R, t0, tmax)

1: KDS ← An empty priority queue of events
2: ACo-MaxRS ← An empty list of answers
3: Compute next event Enext, ∀oi ∈ OL and push to KDS
4: current ← Snapshot of object locations at t0
5: (locopt, scoremax, lobj)←R Location MaxRS(current)
6: tnewstart ← t0
7: Update inSolution variable for each oi in lobj
8: while KDS not EMPTY do
9: Ei,j ←KDS.Pop()

10: (l′obj , scoremax) ← EventProcess(Ei,j ,KDS, lobj ,
scoremax)

11: if lobj 6= l′obj then
12: tnewend ← ti
13: ACo-MaxRS.Add(lobj , [t

new
start, t

new
end))

14: tnewstart ← ti
15: Update inSolution variable for each oi in lobj
16: Update inSolution variable for each oi in l′obj
17: lobj ← l′obj
18: end if
19: end while
20: tnewend ← tmax
21: ACo-MaxRS.Add(lobj , [t

new
start, t

new
end))

22: return ACo-MaxRS

which we detect via setting a boolean variable during MaxRS
computation.

The processing of a given KDS event Ei,j is shown in Al-
gorithm 3. In line 1, the WN of the relevant objects and
AdjMatrix are updated. Lines 2–7, compute new ~OD events
and update the KDS. Lines 8–13 implement the ideas of
Lemma 1 and Lemma 2, which takes O(1) time. Lines 14–
19 implement the idea of Lemma 5 to process a special kind
of ~DO events. Line 20 introduces a new list OL′, which
will eventually retain only the unpruned objects. Lines
21-24 employ the idea of Lemma 4 for ~DO events. Lines
25–29 implement the ideas of objects pruning (Lemma 3),
which takes O(n) time. Finally, MaxRS is recomputed in
lines 30–31 based on the current snapshot of the remaining
moving objects in O(n logn) time (for brevity, we omitted
handling line-change events in Algorithm 3). Lines 32–34
ensures that only valid computed values are returned, i.e.,
when score′max > scoremax for ~DO events.
Discussion: In the worst-case, Co-MaxRS for n trajecto-
ries with k segments throughout the query time-interval, has
O(kn2) events. In KDS, O(n2) events are added at the be-
ginning, then at each of the O(kn) line change events, O(n)
new events may be created, resulting in O(kn2) events in to-
tal. Observe that between two consecutive event-times ts−1

and ts, there is a Co-MaxRS path of constant complexity
(i.e., the centroid of R moves along a straight line-segment).
As mentioned in Section 3 this follows from the fact that
the Co-MaxRS solution covering a particular list lsobj in the
sequence (ACo-MaxRS(Om, R, T)) for the interval [ts−1, ts], is
the (maximum) intersection of sheared-boxes generated by
the motion of the dual rectangles of the objects in lsobj . Thus,
the worst-case combinatorial complexity of the path of the
centroid of the Co-MaxRS solutions is O(kn2) – with a note
that there may be discontinuities between consecutive loca-
tions of the centroids (i.e., the solution “jumps” from one lo-
cation to another). The overall worst-case complexity when
considering trajectories with multiple segments (i.e., poly-

Algorithm 3 EventProcess (Ei,j , KDS, lobj , scoremax)

1: Update WN(oi), WN(oj), and AdjMatrix accordingly

2: if Ei,j .T ype = ~DO then
3: Compute Enext for objects oi and oj
4: if Enext 6= NULL and Enext.t ∈ [t0, tmax] then
5: KDS.Push(Enext)
6: end if
7: end if
8: if Ei,j .T ype = ~DO and (WN(oi) + wi ≤ scoremax or

WN(oj) + wj ≤ scoremax) then
9: return (lobj , scoremax)

10: end if
11: if Ei,j .T ype = ~OD and (oi.inSolution = false or

oj .inSolution = false) then
12: return (lobj , scoremax)
13: end if
14: if Ei,j .T ype = ~DO and Either oi/oj ∈ lobj then
15: ok ← oj/oi
16: if ok and lobj are mutually overlapping then
17: return (lobj ∪ ok, scoremax + wk)
18: end if
19: end if
20: OL′ ← OL
21: if Ei,j .T ype = ~DO then
22: CN(oi, oj)← Compute-CN (AdjMatrix, oi, oj)
23: OL′ ← CN(oi, oj) ∪ {oi, oj}
24: end if
25: for all ok in OL′ do
26: if (Ei,j .T ype = ~DO and WN(ok) + wk ≤ scoremax)

or (Ei,j .T ype = ~OD and WN(ok)+wk ≤ scoremax−
min(wi, wj)) then

27: Prune ok
28: end if
29: end for
30: current ← Snapshot of objects in OL′ at ti
31: (loc′opt, score

′
max, l

′
obj)←R Location MaxRS(current)

32: if (Ei,j .T ype = ~OD) or (Ei,j .T ype = ~DO and
score′max > scoremax) then

33: return (l′obj , score
′
max)

34: end if
35: return (lobj , scoremax)

line routes) is O(kn4 logn).
We close this section with two notes:

(1) While the worst-case complexity of processing Co-
MaxRS is high, such orders of magnitude are not uncommon
for similar types of problems – i.e., detecting and maintain-
ing flocks of trajectories [8]. However, as our experiments
will demonstrate, the pruning strategies that we proposed
can significantly reduce the running time.
(2) A typical query processing approach would involve fil-
tering prior to applying pruning – for which an appropriate
index is needed, especially when data resides on a secondary
storage. Spatio-temporal indexing techniques abound since
the late 1990s (extensions of R-tree or Quadtree variants,
combined subdivisions in spatial and temporal domains,
etc. [14, 18]). Throughout this work we focused on efficient
in-memory pruning strategies, however, in Section 5 as part
of our experimental observations, we provide a brief illus-
tration about the benefits of using an existing index (TPR∗

tree [28]) for further improving the effects of the pruning.

This, admittedly, is not a novel research or a contribution
of this work, but it serves a two-fold purpose: (a) to demon-
strate that our proposed approaches could further benefit
by employing indexing; (b) to motivate further research for
appropriate index structure.

(a) (b)

Figure 9: (a) Events Pruning (b) Objects Pruning.

5. EXPERIMENTAL OBSERVATIONS
Datasets: We used two real-world and one synthetic
datasets during our experiments. The first real-world
dataset we used is the bicycle GPS (BIKE-dataset) collected
by the researchers from University of Minnesota [10], con-
taining 819 trajectories from 49 different participant bik-
ers, and 128,083 GPS points. The second one is obtained
from [34] (MS-dataset), which contains GPS-tracks from
182 users in a period of over five years collected by re-
searchers at Microsoft with 17,621 trajectories in total, cov-
ering 1,292,951km and over 50,176 hours (with GPS samples
every 1-5 seconds). To demonstrate the scalability of our
approach, we also used a large synthetic dataset (MNTG-
dataset) generated using Minnesota Web-based Traffic Gen-
erator [17]. The generated MNTG-dataset consists of 5000
objects, and 50000 trajectories with 400 points each, where
we set the option that objects are not constrained by the un-
derlying network. For every object in the synthetic dataset,
we generated its weight uniformly in the range from 1 to 50,
while weights in Bike-dataset and MS-dataset (real-world
datasets) were set to 1.

For each of the dataset used in the experiments, we consid-
ered one trajectory per object during a run and we averaged
over them to get representative-observations. The default
values of the number of objects for BIKE, MS, and MNTG
dataset are 49, 169, and 5000 respectively. The query time
is set to the whole time-period (lifetime of trajectories) dur-
ing a particular run for each respective dataset, and the
base value of range area (R) for each of the BIKE, MS, and
MNTG dataset is 500000, 100000, and 400000 m2 respec-
tively.
Implementations: We implemented all the algorithms
in Python 2.7, aided by powerful libraries, e.g., Scipy,
Matplotlib, Numpy, etc. We conducted all the exper-
iments on a machine running OS X El Capitan, and
equipped with Intel Core i7 Quad-Core 3.7 GHz CPU and
16GB memory. We note that all the datasets and the
source code of the implementations are publicly available
at http://www.eecs.northwestern.edu/m̃mh683. In addition
to the Algorithms 1, 2 and 3, we have two additional imple-
mentations: (1) As mentioned at the end of Section 4.3,

we added TPR∗ index, to investigate the further benefits in
terms of pruning with KDS; (2) To demonstrate the bene-
fits of our pruning schemes, we tested them against a trivial
approximate-solution to Co-MaxRS: one that would peri-
odically re-evaluate the query throughout its time-interval
of interest. In other words, MaxRS is re-computed at each
t+ δ.
Performance of Pruning Strategies: Our first observa-
tions are shown in Figure 9a and they demonstrate the ef-
fectiveness of our events pruning strategy over both the real
and synthetic datasets. The most amount of pruning is ob-
tained in MS-dataset, while the other two datasets also show
more than 80% pruning. Note that, the number of actual
recomputation-events are well below the worst-case theoret-
ical upper-bound, e.g., only 103 events are processed for 49
objects (trajectories) running for an hour in Bike-dataset.
Similar results are obtained for the objects pruning scheme,
as demonstrated in Figure 9b – indicating that the pruning
schemes perform nearly equally well in all three datasets.
Impact of Cardinality: Figure 10 illustrates the impact
of the cardinality on the effectiveness of our pruning meth-
ods. In Figure 10a, from the experiment done on the BIKE-
dataset, we can deduce an interesting relation: as the data-
size increases, more ~OD kind of events are pruned, whereas
(cf. Figure 10b), objects pruning slightly decreases for ~OD

as the datasize increases. On the other hand, ~DO events
exhibit completely opposite behavior. This, in a sense, neu-
tralizes the overall impact of the increase in cardinality for
our pruning scheme. Figure 10c demonstrates the effect of
increasing the cardinality of objects on the pruning schemes
for all the dataset – hence, the label on the X-axis indicates
the percentage of all the objects for the respective datasets.
Influence of Range Size: This experiment was designed
to observe the effect of different range sizes, i.e., the area of
R – d1 × d2 over the pruning strategies. As shown in Fig-
ure 12a, increasing range area (the values on X-axis indicate
multiples of the base-size for each dataset) results in fewer
portion of events pruned. This occurs because as the area of
R grows, there are more overlapping dual rectangles among
the moving objects. Similarly, the growing rectangle size
had adverse effects on the objects pruning scheme as well
(cf. Figure 12b). We note, though, that even with quite
large values of R (e.g., 50000 m2) we have more than 60%
of pruning through our proposed methods.
Benefits of indexing: Indexing the trajectories provides a
filtering power which can be used as an additional pruning
benefits (with respect to the Lemmas in Section 4) in terms
of eliminating KDS events. As shown in Figure 11, the run-
ning time is 30% times faster (experiment done on MNTG
Dataset). We re-iterate that, as mentioned in Section 4.3,
this is not a research contribution of the paper but only
serves the purpose to demonstrate that an index is likely to
yield further benefits for our proposed approaches.
Running Time Comparison: We ran the algorithms over
the three datasets and the result is shown in Figure 13. This
is the first experiment in which we also report observations
regarding the periodical processing of the MaxRS – and it
serves the purpose to provide a complementary illustration
of the benefits of our methodologies. Namely, even if one
is willing to accept an error in the result and perform only
periodic snapshot MaxRS, our pruning techniques are still
more efficient, while ensuring correct/complete answer set.
The Base, (Base+O), (Base+E), (Base+E+O), and Peri-

(a) (b) (c)

Figure 10: Impact of cardinality on the pruning schemes: (a) Different events pruning (BIKE-dataset) (b)
Objects pruning (BIKE-dataset) (c) Overall objects and events pruning (all datasets).

Figure 11: Potential impact of index

(a) (b)

Figure 12: (a) Events pruning strategy; (b) Objects
pruning strategy against varying range sizes.

Figure 13: Running-time in different datasets.

odic in Figure 13 denote the base Co-MaxRS, base+objects
pruning, base+events pruning, base+both events and ob-
jects pruning, and periodical processing of MaxRS (δ=5s),
respectively. In case of MNTG-dataset, the average running
time (for a set of trajectories) is shown in minutes, while for

the other two datasets the unit it is shown in seconds. We
omitted the average running time for the base algorithm over
MNTG-dataset in Figure 13 which is more than 10 hours (to
avoid skewing the graph). The base Co-MaxRS is the slow-
est among these algorithms, as it recomputes MaxRS at each
event. The effect of both events and objects pruning schemes
on running time is prominent, although events pruning ex-
hibits a bigger impact individually (preventing unnecessary
recomputations). When both pruning strategies are applied
together, the algorithm speeds-up significantly – almost 6-15
times faster than the base algorithm over all the datasets –
making it the fastest among all the evaluated algorithms.
Periodical Processing: The last observations illustrate
the errors induced by periodical processing of MaxRS
(periodic-MaxRS) to approximate Co-MaxRS. Note that we
exclude performing periodic-MaxRS related experiments on
the large synthetic dataset (MNTG-dataset) as the correct-
ness, rather than scalability, is a concern. In Figure 14,
the impact of (δ) is illustrated both on running time and
correctness. As δ increases the error in the approximation
increases as well. Even for a small δ (e.g., 1s), the respective
error is still around 8-14% (cf. Figure 14a). Complementary
to this, in Figure 14b, we see that as δ decreases, the running
time increases too. For both Bike-dataset and MS-dataset,
for small δ values (≤ 5), average processing time is much
longer than our proposed algorithm (Base+E+O) and yet
it contains errors.

6. RELATED WORKS
The problem of MaxRS was first studied in the Compu-

(a) (b)

Figure 14: Impact of δ on (a) Error (b) Running
Time of periodic-MaxRS.

tational Geometry community, with [11] proposing an in-
memory algorithm to find a maximum clique of intersection
graphs of rectangles in the plane. Subsequently, [21] used
interval tree data structure to locate both (i) the maximum-
and (ii) the minimum-point enclosing rectangle of a given
dimension over a set of points. Although both works pro-
vide theoretically optimal bound, they are not suitable for
large spatial databases, and a scalable external-memory al-
gorithm – optimal in terms of the I/O complexity – was
proposed in [5] (also addressing (1− ε)-approximate MaxRS
and All-MaxRS problems). More recently, the problem of
indexing spatial objects for efficient MaxRS processing was
addressed in [35]. In this work, we used the method of [21]
to recompute MaxRS only at certain KDS events, however,
we proposed pruning strategies to reduce the number of such
invocations. We note that an indexing scheme based on a
static sub-division of the 2D plane (cf. [5, 35]) need not to be
a good approach for spatio-temporal data because the densi-
ties in the spatial partitions will vary over time, and we plan
to investigate the problem of efficient indexing techniques for
Co-MAxRS as part of our future work.

In [23], an algorithm to process MaxRS queries when the
locations of the objects are bounded by an underlying road
network is presented. Complementary to this, in [4] the
solution is proposed for the rotating-MaxRS problem, i.e.,
allowing non axis-parallel rectangles. Recently, [1] proposed
methods to monitor MaxRS queries in spatial data streams –
objects appear or disappear dynamically, but do not change
their locations. Although [1], [4], and [23] deal with inter-
esting variants of the traditional MaxRS problem, they do
not consider the settings of mobile objects.

In this work, we relied on the KDS framework, introduced
and practically evaluated in [2]. The KDS-like data struc-
ture was used to process critical events at which the cur-
rent MaxRS solution may change. To measure the quality
of a KDS, [2] considered performance measures such as the
time-complexity of processing KDS events and computing
certificate failure times, the size of KDS, and bounds on
the maximum number of events associated with an object.
We used the same measures to evaluate the quality of our
approach.
Circular (Co-)MaxRS: A special note is in order for the,
so called, circular MaxRS [3] – which is, the region R is a
disk instead of a rectangle. Arguably, this problem is Θ(n2)
and one of the main reasons is that the combinatorial com-
plexity of the boundary of the intersection of a set of disks
is not constant (unlike axes-parallel rectangles). This, in
turn, would increase the n logn factor in our algorithms to
n2 – and the continuous variant of the circular MaxRS im-
plies maintaining intersections of sheared cylinders instead
of sheared boxes. We also note that this case (counting
variant) bears resemblance to works that have tackled prob-
lems in trajectory clustering [13]. More specifically, [8] intro-
duced the concept of flocks as a group of trajectories who are
moving together within a given disk and for a given time,
and [12] introduced the (less constrained) concept of tra-
jectory convoys. These works, while similar in spirit to a
continuous variant of the circular MaxRS – have not explic-
itly addressed the problem of detecting (and maintaining)
the disk which contains the maximum number of moving
objects, nor have considered weights of the objects. We re-
iterate that the results in [8] have a complexity of some of
the proposed algorithms which is similar in magnitude to

the worst-case complexity of the Co-MaxRS. An approxi-
mate solution to the static variant of the circular MaxRS
was presented in [5] (approximating the disk with the mini-
mum bounding square) and our current Co-MaxRS solution
can be readily applied towards the approximated variant.

7. CONCLUSION AND FUTURE WORKS
We addressed the problem of determining the locations of

a given axes-parallel rectangle R so that the maximum num-
ber of moving objects from a given set of trajectories is inside
R. In contrast to the MaxRS problem first studied by the
computational geometry community [11, 21], the Continu-
ous MaxRS (Co-MaxRS) solution may change over time. To
avoid checking the validity of the answer-set at every clock-
tick, we identified the critical times at which the answer to
Co-MaxRS may need to be re-evaluated, corresponding to –
events occurring when the dual rectangles of the moving ob-
jects change their topological relationship. To speed up the
processing of Co-MaxRS we used the kinetic data structures
(KDS) paradigm and proposed two pruning heuristics: (1)
eliminating events from KDS; and (2) eliminating the ob-
jects not affecting the answer (when re-computation of Co-
MaxRS is needed). While our algorithms mostly focused on
the moving objects (resp. rectangles) defining the answer
set, the possible volume(s) (in terms of 2D space + time)
swept by the Co-MaxRS can be straightforwardly derived.
Our experiments, over both real and synthetic data sets,
showcased that the proposed heuristics enabled significant
speed-ups in terms of the overall computation time from the
upper bound on the time complexity.

There are numerous extensions of our work. One task is to
devise a suitable indexing structure that will minimize the
I/O overheads when trajectories data sets need to reside on a
secondary storage or even on cloud [6], and to investigate the
trade-offs between processing time vs. approximate answer
to Co-MaxRS [5]. While, intuitively, our approaches seem
“transferable”to the case of circular Co-MaxRS, we still need
to have a more thorough investigation of the pruning effects
in the KDS – and a related challenge is to investigate Co-
MaxRS when the rectangles are in general positions (i.e.,
not restricted to be axes-parallel) [4]. In our solution there
may be cases where Co-MaxRS has discontinuities – i.e., the
current MaxRS needs to instantaneously change its location.
Clearly, in practice one may want to have a realistic time-
budget for the MaxRS to “travel” from one such location
to another – which is another challenge to be addressed, in
terms of lost precision. A natural extensions of this setting
are to investigate the k-variant of Co-MaxRS – i.e., the case
of multiple mobile cameras jointly guaranteeing a continuous
maximal coverage, as well as the effective management of
Co-MaxRS for real time location updates.

8. REFERENCES
[1] D. Amagata and T. Hara. Monitoring MaxRS in

spatial data streams. In 19th International Conference
on Extending Database Technology, EDBT, 2016.

[2] J. Basch, L. J. Guibas, and J. Hershberger. Data
structures for mobile data. Journal of Algorithms,
31(1), 1999.

[3] B. M. Chazelle and D.-T. Lee. On a circle placement
problem. Computing, 36(1-2), 1986.

[4] Z. Chen, Y. Liu, R. C.-W. Wong, J. Xiong, X. Cheng,
and P. Chen. Rotating MaxRS queries. Information
Sciences, 305, 2015.

[5] D. W. Choi, C. W. Chung, and Y. Tao. Maximizing
Range Sum in external memory. ACM Trans.
Database Syst., 39(3):21:1–21:44, Oct. 2014.

[6] A. Eldawy and M. F. Mokbel. SpatialHadoop: A
MapReduce framework for spatial data. In 31st IEEE
International Conference on Data Engineering, ICDE,
2015.

[7] K. Feng, G. Cong, S. S. Bhowmick, W. Peng, and
C. Miao. Towards best region search for data
exploration. In ACM SIGMOD International
Conference on Management of Data, 2016.

[8] J. Gudmundsson and M. J. van Kreveld. Computing
longest duration flocks in trajectory data. In ACM
GIS Conference, 2006.

[9] R. H. Güting and M. Schneider. Moving objects
databases. Elsevier, 2005.

[10] F. J. Harvey and K. J. Krizek. Commuter bicyclist
behavior and facility disruption. Technical report,
2007.

[11] H. Imai and T. Asano. Finding the connected
components and a maximum clique of an intersection
graph of rectangles in the plane. Journal of
algorithms, 4(4), 1983.

[12] H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, and H. T.
Shen. Discovery of convoys in trajectory databases.
Proceedings of the VLDB Endowment (PVLDB), 1(1),
2008.

[13] P. Kalnis, N. Mamoulis, and S. Bakiras. On
discovering moving clusters in spatio-temporal data.
2005.

[14] S. Ke, J. Gong, S. Li, Q. Zhu, X. Liu, and Y. Zhang.
A hybrid spatio-temporal data indexing method for
trajectory databases. Sensors, 14(7), 2014.

[15] M. Koubarakis, T. Sellis, A. Frank, S. Grumbach,
R. Güting, C. Jensen, N. Lorentzos, Y. Manolopoulos,
E. Nardelli, B. Pernici, H.-J. Scheck, M. Scholl,
B. Theodoulidis, and N. Tryfona, editors.
Spatio-Temporal Databases – the CHOROCHRONOS
Approach. Springer-Verlag, 2003.

[16] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs,
C. Roxburgh, and A. H. Byers. Big data: The next
frontier for innovation, competition, and productivity,
2011.

[17] M. F. Mokbel, L. Alarabi, J. Bao, A. Eldawy,
A. Magdy, M. Sarwat, E. Waytas, and S. Yackel.
MNTG: An extensible web-based traffic generator. In
Advances in Spatial and Temporal Databases. 2013.

[18] M. F. Mokbel, T. M. Ghanem, and W. G. Aref.
Spatio-temporal access methods. IEEE Data Eng.
Bull., 26(2), 2003.

[19] M. F. Mokbel, X. Xiong, and W. G. Aref. SINA:
Scalable incremental processing of continuous queries
in spatio-temporal databases. In ACM SIGMOD
International Conference on Management of Data,
2004.

[20] Y. Nakayama, D. Amagata, and T. Hara. An efficient
method for identifying maxrs location in mobile ad
hoc networks. In Database and Expert Systems
Applications - 27th International Conference, DEXA,
2016.

[21] S. C. Nandy and B. B. Bhattacharya. A unified
algorithm for finding maximum and minimum object
enclosing rectangles and cuboids. Computers &
Mathematics with Applications, 29(8), 1995.

[22] N. Pelekis and Y. Theodoridis. Mobility Data
Management and Exploration. Springer, 2014.

[23] T.-K. Phan, H. Jung, and U.-M. Kim. An efficient
algorithm for Maximizing Range Sum queries in a road
network. The Scientific World Journal, 2014, 2014.

[24] J. B. Rocha-Junior, A. Vlachou, C. Doulkeridis, and
K. Nørv̊ag. Efficient processing of top-k spatial
preference queries. Proceedings of the VLDB
Endowment (PVLDB), 4(2), 2010.

[25] L. Sha, P. Lucey, Y. Yue, P. Carr, C. Rohlf, and I. A.
Matthews. Chalkboarding: A new spatiotemporal
query paradigm for sports play retrieval. In 21st
International Conference on Intelligent User
Interfaces, IUI, 2016.

[26] S. Shekhar and S. Chawla. Spatial databases: A tour,
volume 2003. Prentice Hall Upper Saddle River, NJ,
2003.

[27] Y. Tao, X. Hu, D. Choi, and C. Chung. Approximate
maxrs in spatial databases. Proceedings of the VLDB
Endowment (PVLDB), 6(13), 2013.

[28] Y. Tao, D. Papadias, and J. Sun. The tpr*-tree: an
optimized spatio-temporal access method for
predictive queries. In International Conference on
Very Large Data Bases (VLDB), 2003.

[29] M. M. ud Hussain, A. Wang, and G. Trajcevski.
Co-maxrs: Continuous maximizing range-sum query.
Technical Report NU-EECS-16-08, Dept. of EECS,
Northwestern University, 2016.

[30] C. R. Vicente, D. Freni, C. Bettini, and C. S. Jensen.
Location-related privacy in geo-social networks. IEEE
Internet Computing, 15(3), 2011.

[31] D. Wu, N. Mamoulis, and J. Shi. Clustering in
geo-social networks. IEEE Data Eng. Bull., 38(2),
2015.

[32] X. Yu, K. Q. Pu, and N. Koudas. Monitoring
k-nearest neighbor queries over moving objects. In
IEEE International Conference on Data Engineering
(ICDE), 2005.

[33] Y. Zheng. Trajectory data mining: An overview. ACM
Transactions on Intelligent Systems and Technology
(TIST), 6(3), 2015.

[34] Y. Zheng, L. Zhang, X. Xie, and W. Y. Ma. Mining
interesting locations and travel sequences from GPS
trajectories. In ACM International Conference on
World Wide Web. ACM, 2009.

[35] X. Zhou, W. Wang, and J. Xu. General purpose
index-based method for efficient maxrs query. In
Database and Expert Systems Applications - 27th
International Conference, DEXA, 2016.

