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ABSTRACT
This work addresses the problem of obtaining the degree of
similarity between trajectories of moving objects. Typically,
a Moving Objects Database (MOD) contains sequences of
(location,time) points describing the motion of individual
objects, however, they also implicitly storethe velocity –
an important attribute describing the dynamics the mo-
tion. Our main goal is to extend the MOD capability with
reasoning about how similar are the trajectories of objects,
possibly moving along geographically different routes. We
use a distance function which balances the lack of temporal-
awareness of the Hausdorff distance with the generality (and
complexity of calculation) of the Fréchet distance. Based on
the observation that in practice the individual segments of
trajectories are assumed to have constant speed, we pro-
vide efficient algorithms for: (1) optimal matching between
trajectories; and (2) approximate matching between trajec-
tories, both under translations and rotations, where the ap-
proximate algorithm guarantees a bounded error with re-
spect to the optimal one.
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1. INTRODUCTION AND MOTIVATION
The management of the transient location-in-time infor-

mation of mobile entities, is a fundamental ingredient for
many applications relying on Location Based Service (LBS)
[25], and is a topic known as Moving Object Databases
(MOD) [19]. This work attempts to increase the MOD ca-
pabilities with providing algorithmic solutions that can be
used to answer queries such as:
– Q1: ”Retrieve all the troops which had similar motion
patterns in the geographic regions R1 and R2 in the last two
months.”
– Q2: Retrieve all the trajectories that had similar motion
patterns while looking for parking in the weekends around
the shopping malls in the Mid-West.”
– Q3: ”Retrieve all the Hurricanes with similar trajecto-
ries that occurred in any US state along the Mexican Gulf
in the last 5 years.”

The commonality of all these queries is that the motion of
interest need not occur in the same geo-locations (e.g., the
hurricanes may occur in Texas and Florida) and, even more
importantly, need not follow similar routes in terms of the
geo-coordinates (e.g., a hurricane moving North and then
changing its direction to North-West may be very similar to
the one that has moved East and changed its direction to
North-East).
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Figure 1: Similarities of Motions
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The main idea behind the similarity of trajectories is the
ability to compare the relative motion of the moving ob-
jects along the consecutive segments of their corresponding
trajectories. Figure 1.a) illustrates three trajectories Tr1,
Tr2 and Tr3, corresponding to the motion plans of three
objects, say, o1, o2 and o3, all of which were moving along a
same 2D route (illustrated as route 1). However, although,
o1 and o2 begin their trips at a same time, their respective
trajectories are very different – o2 has been moving much
slower than o1. We would like to perceive such trajectories
as not similar. On the other hand, although o3 had started
its trip later than o1 (and o2), its trajectory, Tr3 exhibits
the same dynamics (velocity patterns over the correspond-
ing route segments) as Tr1. Clearly, the only difference is
that Tr3 is translated in the temporal domain with respect to
Tr1 and we would like to consider them similar. Figure 1.b)
illustrates some other discrepancies among trajectories that
we would like to consider acceptable for similarity. Namely,
although the route of Tr5 does not exactly match the route
of Tr4 – e.g., several small detours were taken by the respec-
tive object o5, the duration of both trips is approximately
equal and the spatial deviations are not too large (plus we
do need a translation in the temporal dimension). Although
Tr6 that has a completely different 2D route from Tr1, the
corresponding segments are of equal length and are having
equal corresponding angles between themselves. Moreover,
the speed of, say o6, along the route-segments of Tr6 is ex-
actly the same as the one of the corresponding object, say
o4, along the segments of Tr4.

One of the main contributions of this work is precisely
the introduction of the concept of dynamical similarity of
trajectories under the rigid motion transformations, that is,
translations and rotations [5, 17]. Translation is allowed
both in the spatial and temporal dimension, while rotation
is allowed only in the 2D – spatial dimension. We use an
intuitive similarity-distance function that enables us to cap-
ture the relative dynamics of the trajectories, which can
be qualified as a special case of the Fréchet distance [5, 6]
for polygonal curves, and does not suffer from the time-
unawareness of the Hausdorff distance [5, 11]. We present
efficient algorithmic solutions to two aspects of the prob-
lem of similarity between trajectories: (1.) optimization:
finding the rigid transformation (rotation/translation in the
spatial domain, and translation in the temporal domain)
which minimizes the similarity-distance between two given
trajectories, and (2.) approximation: determining an ap-
proximate matching between two trajectories using a faster-
than-optimal algorithm, with a guarantee that its output
is within a fixed error-bound from the optimal similarity-
distance. Additionally, our algorithms can also be used for
determining whether one of the trajectories is similar to a
portion of the other.

The rest of this paper is structured as follows. In Section
2 we recollect the necessary background. Section 3 presents
our main results – the algorithms for determining the op-
timal and approximate similarity matching between trajec-
tories. In Section 4 we present experimental observations
which quantify the benefits of our proposed methods. Sec-
tion 5 positions our work with respect to the related litera-
ture and Section 6 concludes the paper and presents direc-
tions for future work.

2. PRELIMINARY BACKGROUND

We now define the concepts that will be used in the rest
of this paper. Firstly, we present a definition of a trajectory,
which is often used in the MOD literature [19, 27, 28] to
describe the motion of the moving objects, assuming that
the objects are moving in a 2D space with respect to a given
coordinate system:

Definition 1. A trajectory Tr is a function Ft : T → R2

which maps a given (temporal) interval [tb, te] into a one-
dimensional subset of R2. It is represented as a sequence
of 3D points (2D geography + time) (x1, y1, t1), (x2, y2, t2),
. . . , (xn, yn, tn), where tb = t1 and te = tn and t1 ≤ t2 ≤
. . . ≤ tn.

Each point (xi, yi, ti) in the sequence represents the 2D
location (xi, yi) of the object, at the time ti. For every
t ∈ (ti, ti+1), the location of the object is obtained by a lin-
ear interpolation between (xi, yi) and (xi+1, yi+1) with the
ratio (t− ti)/(ti+1 − ti), which is, in between two points the
object is assumed to move along a straight line-segment and
with a constant speed. The 2D projection of Tr is a polyg-
onal chain with vertices (x1, y1), (x2, y2) . . . (xn, yn) and it
is called a route of Tr.
Observe that a trajectory may represent both the past and
the future motion, i.e. the motion plan of a given object (c.f.
[19]). Typically, for future trajectories, the user provides the
starting location, starting time and the destination (plus,
possibly, a set of to-be-visited) points, and the MOD server
uses these, along with the distribution of the speed-patterns
on the road segments as inputs to a dynamic extension of the
Dijkstra’s algorithm [13, 27], to generate the shortest travel-
time trajectory. As an example of the usage of this model,
aside from the commercial-fleet vehicles (e.g., FedEx), the
monthly requests for shortest travel-time individual future-
trajectories posed to MapQuest is 46.4 million, Yahoo!Maps
– 20 million, and Google Maps – 19.1 million [23].

We also need to recollect some definitions from the Com-
putational Geometry (CG) literature [5, 6] regarding the
distance(s) between curves. In what follows, we consider 2D
planar curves, given as continuous mappings Ci : [ai, bi] →
R2 (i.e., via parametrization), where ai < bi(∈ R). Natu-
rally, for our purposes, the domain of Ci will correspond to
the temporal dimension.

Definition 2. Let C1 : [a1, b1] → R2 and C2 : [a2, b2] →
R2 denote two curves. Let ‖ · ‖ denote the L2 norm and let
P1 (resp. P2) denote a point on C1 (resp. C2). The Haus-
dorff distance from between C1 and C2 is defined as:

δH(C1, C2) := max(δ̃H(C1, C2), δ̃H(C2, C1)), where

δ̃H(C1, C2) = sup
P1∈C1

inf
P2∈C2

‖P1 − P2‖

(resp. δ̃H(C2, C1) = sup
P2∈C2

inf
P1∈C1

‖P1 − P2‖)

and δ̃H(C1, C2) (resp. δ̃H(C2, C1)) denotes the directed Haus-
dorff distance from C1 to C2 (resp. from C2 to C1).

The Hausdorff distance between two curves simply looks
for the smallest ε such that C1 is completely contained in
the ε-neighborhood of C2 (i.e., C1 is completely contained in
the Minkowski Sum [12] of C2 and a disk with radius ε) and
vice versa. Although it is arguably a very natural distance
measure between curves and/or compact sets, the Hausdorff
distance is too ”static”, in the sense that it neither consid-
ers any direction nor any dynamics of the motion along the
curves. A classical example of the inadequacy of the Haus-
dorff distance, often used in the CG literature [5, 6, 17] is the
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Figure 2: Hausdorff vs. Fréchet distance

”man walking the dog”. Figure 2 illustrates the correspond-
ing routes of the man (M-route) and the dog (D-route), as
well as their trajectories M-trajectory and D-trajectory. Ob-
serve that, ignoring the temporal aspect of their motions,
the D-route and the M-route are within Hausdorff distance
of e, as exemplified by the points A and B in the X − Y
plane. However, their actual (temporally-aware) distance
corresponds to the minimal length of the leash that the man
needs to hold. The 3D part of Figure 2 illustrates the dis-
crepancy between the distances among the points along the
routes, and their corresponding counterparts along trajecto-
ries: when the dog is at the point A, which is at time t, the
man is actually at M(t), and their distance is much greater
then e (the man is at the geo-location B at the time t1 > t).
Now we have the following:

Definition 3. Let C1 : [a1, b1] → R2 and C2 : [a2, b2] →
R2 denote two curves, and let ‖·‖ denote the L2 norm. The
Fréchet distance of C1 and C2, denoted by δF (C1, C2) is de-
fined as: δF (C1, C2) := inf

α,β
max

t∈[0,1]
‖C1(α(t)) − C2(β(t))‖

where α (resp. β) ranges over all the possible continuous and
monotonically increasing functions [0, 1] → [a1, b1] (resp.
[0, 1] → [a2, b2]).

The Fréchet distance is more general than the Hausdorff
one, in the sense that it allows for a variety of possible
motion-patterns along the given route-segments, as formal-
ized by the functions α and β in Definition 3. As an il-
lustration, observe that on the portion of the D-trajectory,
the dog may be moving non-uniformly (i.e., accelerating)
along a route segment. Recall, however, that this is pre-
cluded in the Definition 1 for trajectories in MOD settings.
It can be verified (c.f. [2]) that for any two curves C1

and C2 it holds that δH(C1, C2) ≤ δF (C1, C2). Observe
that in Definition 3, the requirement is that both α and
β are increasing functions. If this is relaxed, then the dis-
tance function is called weak Fréchet distance, denoted by
δ̃F (C1, C2), which intuitively corresponds to the ability of
both the man and the dog moving backwards along the
routes and: δH(C1, C2) ≤ δ̃F (C1, C2) ≤ δF (C1, C2) [2].

3. DYNAMICS-AWARE SIMILARITY
Our main goal is to obtain and efficiently calculate a

distance-measure which captures a relativized space+time
difference of two given trajectories, for the purpose of mea-
suring the similarity of their corresponding motions. Firstly,
we present the necessary setup and introduce the distance
function used in this work. Subsequently, we focus on the
case where the trajectories have equal temporal durations
and we analyze in details the optimization of matching two
trajectories under translations and rotations in the spatial
domain. We address separately the problem of optimal
and approximate matchings. Lastly, we demonstrate how
our techniques can be used for comparing the similarity-
based containment of trajectories with different temporal-
durations. Due to space limitations, we only give brief jus-
tification of our claims instead of formal proofs.

3.1 Similarity Distance of Trajectories
Let Tr1 = [(x11, y11, t11), (x12, y12, t12), . . . , (x1n, y1n, t1n)]

and Tr2 = [(x21, y21, t21), (x22, y22, t22), . . . (x2m, y2m, t2m)]
denote two trajectories with n and m segments, respectively.
When measuring the distance between the two objects whose
motions are represented by the Tr1 and Tr2, we would like
to know its values at given time-points. The intuitive rea-
son is that one cannot say ”the distance between o1 and o2

is d, when o1 is at location L1(x1, y1) and o2 is at location
L2(x2, y2), except, o1 was at L1 at time t1, o2 was at L2

at time t2, and t1 and t2 are far apart”. This observation
was actually used as a basis for introducing the, so called,
Eucledean time-Uniform distance function in [11], a variant
of which is given by the following:

Definition 4. Given two trajectories Tr1 and Tr2, the
Eucledean time-Uniform distance function
Eud : (t, T r1, T r2) → R is defined as follows:
Eud(t, T r1, T r2) = ‖P (t) − Q(t)‖ when t ∈ ([t11, t1n] ∩
[t21, t2m]) and it is undefined otherwise. P (t) (resp. Q(t))
is the 2D point corresponding to the spatial locations on the
trajectory Tr1 (resp. Tr2) at time t.

The Eucledean time-Uniform Distance of two trajectories
Tr1 and Tr2 is defined as

TEud(Tr1, T r2) = max
t

Eud(t, T r1, T r2)

In other words, the TEud distance between trajectories max-
imizes the value of

√

(P.x − Q.x)2 + (P.y − Q.y)2, taken at
same time-instances over their common temporal interval.

When two trajectories correspond to trips of equal tempo-
ral duration, (t1n − t11 = t2m − t21), we can always ”trans-
form” one of them by translating it in the temporal domain.
Hence, without loss of generality, we will assume in what
follows that the two trajectories Tr1 and Tr2 pertain to
same temporal intervals, i.e., t11 = t21 and t1n = t2n. For
the purpose of calculating TEud(Tr1, T r2) we rely on the
following:

Lemma 1. Given two trajectory segments over the same
temporal interval: [P1P2] = [(x11, y11, t1), (x12, y12, t2)] and
[Q1Q2] = [(x21, y21, t1), (x22, y22, t2)], the maximal value of
Eud(t, T r1, T r2) is obtained at one of the corresponding end-
points, i.e., either TEud(Tr1, T r2) = ‖P1Q1‖ or
TEud(Tr1, TR2) = ‖P2Q2‖.

The proof is based on the analysis of dEud(t)
dt

and d2Eud(t)

dt2
.

Recalling Definition 3 (Section 2), one may observe that
the TEud distance function is actually a special case of the
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Fréchet distance when α and β are restricted to the natural
(linear) mapping [0, 1] → [t11, t1n]. Now, one of the main
questions of this work can be formulated as follows: when
two trajectories Tr1 and Tr2 are ranging over the same tem-
poral interval, what is the minimal value of TEud(Tr1, T r′2),
where TR′

2 is obtained by applying only translation and ro-
tation to Tr2? Formally:

Definition 5. Given two trajectories Tr1 and Tr2, their
Rigid Transformations Similarity Distance RTSD(Tr1, T r2)
is defined as RTSD(Tr1, T r2) = (TEud(Tr1, Ψ ◦ Φ(Tr2))),
where Ψ ◦ Φ is a composition of translations (Ψ) and rota-
tions (Φ) in a horizontal plane, applied to the route of Tr2.
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t13=t27
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route_1 route_2

Q5
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t25

Figure 3: Artificial Vertices of Trajectories

3.1.1 Optimal Similarity Matching
In order to calculate the optimal RTSD(Tr1, T r2) we

need to determine the particular Ψopt and Φopt that min-
imize the TEud(Tr1, Ψopt ◦ Φopt(Tr2)), for which we pro-
ceed as follows. First, in each of Tr1 and Tr2 we intro-
duce extra artificial vertices, so that they both have the
same number of points. Essentially, if a given vertex of
Tr1, say (x1ki

, y1ki
, t1ki

) does not have a matching vertex
on Tr2 at the same time-instance t1ki

, we introduce an ar-
tificial one (xa

2ki
, ya

2,ki
, t1ki

), and similarly for the vertices
of Tr2. This is illustrated in Figure 3 where, originally,
Tr1 has three vertices and Tr2 has seven, indicated with
”◦”, however, after introducing the artificial ones, indicated
with ”x”, each of them has eight vertices. For instance,
Q5 at t25 is a genuine vertex of Tr2 and its correspond-
ing artificial vertex on Tr1 is Pa5 at that time. Accord-
ing to Definition 1, the spatial coordinates of each artificial
vertex (xa

ki
, ya

ki
) are obtained by a linear interpolation be-

tween the two original consecutive vertices (xi, yi, ti) and
(x(i+1), y(i+1), t(i+1)), for which tki

∈ (ti, t(i+1)). Hence, we
obtain two augmented trajectories Tra

1 and Tra
2 with exactly

the same number of points (O(m + n)), pairwise match-
ing in the temporal dimension. Now, as a generalization of
Lemma 1, we know that RTSD(Tr1, T r2) will be obtained
at one of the temporally-corresponding pairs of vertices in
Tra

1 and Tra
2 . As a consequence, the problem of calculating

RTSD(Tr1, T r2) is now reduced to calculating the corre-
sponding L2 distances between two point-sets correspond-
ing to the (2D projections of the augmented trajectories)

vertices along the routes. Moreover, if we view the two sets
of 2D points P = {p1, p2, . . . pu} and Q = {q1, q2, . . . , qu},
we have the restriction that the mapping g : P → Q is
fixed, in the sense that g(pj) = qj(j ∈ {1, 2, . . . u}) where
u = O(m+n). Now we are interested in a composition Ψ◦Φ
such that the largest distance between pj and Ψ ◦ Φ(qj) is
minimized over all j.

However, this particular problem, the optimal matching
of two point-sets with a fixed mapping between them, was
addressed in [22]. To explain the solution, observe firstly
that applying a rotation ρ around the coordinate-center with
an angle θ to the point qj(xqj , yqj) will transform it to:
ρθ(qj) = (xqj cos θ − yqj sin θ, xqj sin θ + yqj cos θ). Subse-
quently, translating it by a vector ~τ = (xτ , yτ ), brings it to
the point τ (ρθ(qj)) = ((xqj cos θ−yqj sin θ)+xτ , (xqj sin θ+
yqj cos θ) + yτ ) (c.f. [22]). Hence, our original problem of
obtaining the RTSD(Tr1, T r2) is reduced to finding θ and ~τ
such that max

j
‖pj − τ (ρθ(qj)‖) is minimized. Equivalently,

we are seeking: min
θ,τ

max
j

fj(θ, xτ , yτ ) = min
θ,τ

max
j

[(xpj − ((xqj cos θ − yqj sin θ) + xτ ))2 + (ypj − ((xqj sin θ +
yqj cos θ) + yτ ))2].

For a fixed value of θ, say θ′, we are essentially look-
ing at min

xτ ,yτ

max
j

fj(θ
′, xτ , yτ ), and the problem is now re-

duced to the one of minimum enclosing circle [24]. As θ
”moves” between 0 and 2π, the problem of calculating the
RTSD(Tr1, T r2) becomes the one of finding the minimum
enclosing circle for ”moving points” ρθ(qj), subject to hav-
ing a pair of points ρθ(qs) and ρθ(ql) on its boundary. The
problem of the minimum enclosing circle can be reduced
to finding the minimum value on the envelope of a fam-
ily of functions fj(θ

′, xτ , yτ ). Its relationship with the dy-
namic furthest Voronoi diagram [8] of the points (xqj cos θ−
yqj sin θ) + xτ , (xqj sin θ + yqj cos θ) + yτ is presented in de-
tails in [22]. Essentially, the algorithm fixes a pair of indices
s and l and solves the constrained problem of finding the
θ which yields the minimum enclosing circle having ρθ(qj),
subject to having a pair of points ρθ(qs) and ρθ(ql) on its
boundary. For a fixed pair l and s (c.f. Lemma 4.1 in
[22]) the complexity of obtaining the maximum diagram of
u functions of the kind fj(θ

′, xτ , yτ ) (1 ≤ j ≤ u, s 6= j 6= l) is
O(λ7(u) log u). Repeating the search for the minimum en-
closing circle for all the possible pairs s and l on its boundary
(and picking the smallest one among them) yields a complex-
ity of O(u2λ7(u) log u). In the preceding, the λ7(u) denotes
the maximum length of the (u, 7) Davenport-Schinzel (DS)
sequence, where the length of any (u, a) DS sequence for

a > 3(a ≤ u) is λa(u) = uα(u)O(α(u)a−3) (c.f. [26], where
even sharper bounds are presented).α(u) denotes the ex-
tremely slow-growing inverse Ackermann function1. Hence,
as a direct consequence of Theorem 4.1. in [22], the problem
of calculating the optimal RTSD(Tr1, T r2) can be solved in
O((m + n)2λ7(m + n) log(m + n)),

where λ7(m + n) = (m + n)α(m + n)O(α(m+n)4).

3.1.2 Approximate Similarity of Trajectories
Often, instead of actually finding the optimal matching

(minimizing RTSD) between two trajectories, one is inter-
ested in an approximate matching, which can be obtained
by a faster algorithm. However, it is desirable to have

1We note that λ1(n) = n; λ2(n) = 2n − 1; and λ3(n) =
O(n log n) [26].
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a bound on the error of the obtained approximation, in
the following sense. Let εopt = RTSD(Tr1, T r2), denote
the distance obtained by finding the optimal transforma-
tion Ψopt ◦ Φopt(Tr2). For a given approximate transfor-
mation ΨA ◦ ΦA(Tr2) – again, a composition of translation
and rotation applied to Tr2, we say that it has a loss factor
d if εA = Eud(Tr1, ΨA ◦ ΦA(Tr2)) satisfies the inequality
εA ≤ d ·εopt [17]. Equivalently, an approximation with error
bound εA is said to have a quality of ”c”, if it is within the
bound of (1 + c)εopt [2, 6].

Definition 6. Let Tr = [(x1, y1, t1), . . . , (xk, yk, tk)] de-
note an arbitrary (actual or augmented) trajectory with k
points. The backbone of Tr is the line through the points
(x1, y1, t1) and (xk, yk, tk). The backbone trajectory of Tr,
denoted BTr, is defined as follows:
– BTr begins at (x1, y1, t1) and ends at (xk, yk, tk).
– for each point Pi = (xi, yi, ti) ∈ Tr, BTr has an anchor-
point APi = (xa

i , ya
i , ta

i ), given by the intersection of the
backbone with the horizontal plane through Pi, i.e., ta

i = ti

and (xa
i , ya

i ) is obtained by a linear interpolation between
(x1, y1) and (xk, yk) at ti. We call the segment APiPi an
anchor.

Let Tr1 = [P1, . . . , Pk] and Tr2 = [Q1, . . . , Qk] denote two
trajectories with the same number of points and spanning
over identical time-intervals, i.e., tP1

= tQ1
and tPk

= tQk
.

Let BTr1 = [AP1, AP2, . . . , APk] and BTr2 = [AQ1, . . . , AQk]
denote their respective backbone trajectories. We have:

Lemma 2. Let Ψ and Φ denote a translation and rota-
tion. If TEud(Tr1, Ψ ◦ Φ(Tr2)) ≤ ε, then TEud(BTr1, Ψ ◦
Φ(BTr2)) ≤ ε.

Lemma 2 is a consequence of Definition 6 and the fact that
the rotation and translation are rigid transformations, i.e.,
not only that they preserve the ratios, but also the lengths
and angles. Since the first and the last anchor points coin-
cide with the first and the last points on the actual trajec-
tories, they are bound to be within distance ε after Ψ ◦Φ is
applied to Tr2, and the rest of the anchor points are linear
combinations of the two end-points.

For a given backbone trajectory BTr = [AP1, . . . , APk],
we identify the direction from AP1 towards APk as a positive
one which, in turn, defines the positive orientation along
the X −Y projection (route) of BTr, denoted by BTrX−Y .
With respect to the positive orientation, the 2D projection

of a given anchor APiPi
X−Y

can be either on the left-hand
side (LHS) or to the right-hand side (RHS) of the BTrX−Y

and, for the special case when an anchor is collinear with
BTrX−Y , w.l.o.g we assume that it is on the RHS.

The concepts that we introduced so far are illustrated in
Figure 4. Part a.) shows 2D projections of two trajecto-
ries which, after augmentation, i.e., introduction of artificial
vertices, have 11 points each and, as one extreme case, all
the points on each trajectory are on the RHS of their corre-
sponding backbone-trajectories. Part b.), on the other hand,
shows the 2D projections of (augmented) trajectories with
9 points each and, as another extreme case, they are com-
pletely on the opposite side of their backbone-trajectories.
Before we proceed with the description of the algorithm for
approximate matching between trajectories, we need the fol-
lowing:

Definition 7. Given two trajectories, Tr1 = [P1, . . . , Pk]
and Tr2 = [Q1, . . . , Qk], their i-th anchor discrepancy is de-
fined as:
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Figure 4: Approximate Matching of Trajectories

‖APiPi−AQiQi‖, if P X−Y
i and QX−Y

i are on the same side
of the corresponding BTrX−Y

1 and BTrX−Y
2 .

‖APiPi + AQiQi‖, if Pi and Qi are on the opposite sides of
the corresponding BTr1 and BTr2.

As an illustration, in Figure 4a.), the maximum anchor dis-
crepancy is AQa6Qa6 − APa6Pa6. On the other hand, the
maximum anchor discrepancy in Figure 4b.) is AQa3Qa3 +
APa3Pa3. Actually, the goal of our heuristic (approximate
matching algorithm) is to find a transformation, which is a
composition of translation Ψa that will contribute to mini-
mizing the anchor discrepancy between the two trajectories;
and a rotation Φa that will minimize the rotation-distance
between the points on Tr1 and Ψa(Tr2). Assuming that the
input trajectories are already augmented so that they have
equal number of points, and that the temporal translation
has already been applied so that their time-intervals coin-
cide, the algorithm MMAD (MinMax Anchor Dscrepancy)
for approximate similarity matching between two trajecto-
ries, is specified as follows:

Algorithm MMAD
Input: two trajectories Tr1 and Tr2

Output: translation Ψa and rotation Φa

1. For each pair of anchors APaiPai and AQaiQai

2. Let Translation(i): Ψi = (((APai.x+Pai.x)/2−(AQai.x+
Qai.x)/2), ((APai.y +Pai.y)/2− (AQai.x+Qai.y)/2)) //trans-
late Tra

2 so that the mid-points of the i-th anchors coincide
3. For each Ψi

3.1 Find the corresponding pair of points for which
‖Pj − Ψi(Qj)‖ is maximal

3.2 Let rotation angle: θ
(i)
j = the angle which makes

the i-th anchor midpoints, Pj and Ψi(Qj) collinear.

4. Return the pair (Ψi, Θ
(i)
j ) for which

TEud(Tr1, Ψi ◦ Θ
(i)
j (Tr2)) is minimal

Clearly, the time-complexity of the Algorithm MMAD is
O(m + n)2, with an additional space requirement of O(m +
n). Let εMMAD = TEud(Tr1, ΨA ◦ ΦA(Tr2)). We have the
following:

Lemma 3. Algorithm MMAD generates an approximate
matching with the loss-factor of 4, i.e., εMMAD ≤ 4εopt

As a consequence of Lemma 2, we have that the midpoints
of each corresponding anchors are at the distance ≤ εopt

when Tr2 is transformed by Ψopt ◦Φopt. Hence, making the
midpoints of the anchors with the maximal discrepancy co-
incide in the Algorithm MMAD due to ΨMMAD will perturb
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the rest of the points with respect to the optimal transfor-
mation by an extra ≤ εopt. Due to the rotation ΦMMAD

we have another loss of ≤ 2εopt. Considering that the extra
”initial” distance ≤ εopt, we obtain the factor of 4.

3.2 Temporal Discrepancy of Trajectories
In the temporal dimension, the main source of a discrep-

ancy between two trajectories is the difference of the dura-
tion of the corresponding objects’ trips: δTD(Tr1, T r2) =
|(t1n − t11)− (t2m − t21)|. Without loss of generality, assume
that (t1n − t11) ≥ (t2m − t21) (i.e., Tr1 has a longer tem-
poral duration than Tr2. Now, a variant of the problem of
dynamics similarity of the objects’ motions can be restated
as: what is the portion of Tr1 that is most similar to Tr2?
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a.) Discrepancy between begin times (t11-t21) and

end-times (t17-t25)
b.) "Temporal sliding" of trajectories

Figure 5: Temporal Distance Between Trajectories

Figure (5.a) illustrates the discrepancy between the begin-
times and the end-times of two trajectories. Again, we ob-
serve that the ”absolute” measures of the difference of the
corresponding begin-points (|t11 − t21|) is not crucial for de-
tecting their similarities, because a translation in the tempo-
ral domain can bring, say, Tr2 into Tr′2 such that t′21 = t11.
To be able to reason about the similarity between Tr2 and a
portion of Tr1, we need to consider all the possible transla-
tions in the temporal domain. As an example of two extreme
cases:
(1) The begin-times of two trajectories coincide – we shift
the begin-point of Tr2 into t11. Hence, Tr′2 = [(x21, y21,, (t21+
(t11 − t21))), . . . , (x2m, y2m, (t2m + (t11 − t21)))];
(2) The end-times of two trajectories coincide – we shift the
end-point of Tr2 into t1n. Hence, Tr2” = [(x21, y21,, (t21 +
(t1n − t2m))), . . . , (x2m, y2m, (t2m + (t1n − t2m)))]. Figure
(5.b) illustrates the concept of ”possible translations” of
Tr2 (”sliding”) in the temporal dimension, and correspond-

ing distances between points (e.g., P ′

21P11; P25”P17, etc.).
Let τtv

(Tr2) denote a temporal translation of Tr2 for (one-
dimensional ”vector”) tv such that: t21 + tv ≥ t11 and
t2m + tv ≤ t1n. For each translation of τtv

in-between (and
including) the two extreme cases, we are interested in the
maximal Eud between a point on τtv

(Tr2) and a correspond-
ing point on Tr1 which has a same time-value. Clearly, there
are infinitely many values for tv, however, as a consequence
of Lemma 1, we only need to look at the discrete set of tem-
poral translations τtv

which map a time-value of a vertex

from Tr2 into a time-value of vertex of Tr1.

Definition 8. Let Tr1 and Tr2 denote two trajectories,
where the temporal duration of Tr2 is ≤ than the temporal
duration of Tr1. Their Temporal-Containment Similarity
Distance TCSD is defined as

TCSD(Tr1, T r2) = min
tv

RTSD(Tr1, τtv
(Tr2))

Based on the results in Section 3.1, and observing that due
to Lemma 1 there is a total of O(mn) temporal translations
(tv) of interest, we have that:
(1.) The optimal TCSD(Tr1, T r2) can be obtained in
O(mn(m + n)2λ7(m + n) log(m + n));
(2.) An approximated TCSDA(Tr1, T r2) with a loss-factor
of 4 can be obtained in O(mn(m + n)2)

4. EXPERIMENTAL EVALUATION
Our experiments were conducted on a PC with Pentium

IV 3.0 GHz CPU, 1 Gigabytes of DDR2 memory and the
Windows XP platform. We used both artificial and real
data-sets. The artificial data set is generated using the
network-based traffic generator [10] using the road network
of Oldenburg. The trajectories in this data sets are tempo-
rally aligned and are of the same length. The realistic data
set consists of 5000 trajectories of objects moving on the
road segments of Cook County, Illinois. The length of these
trajectories varies from 2 to 60 miles, and the average speed
of the moving objects ranged between 10mph and 60mph.
Additionally, we generated a ”perturbed” set of trajecto-
ries as follows. For each trajectory in the original dataset,
we randomly selected a value of ε and individual trajectory
points were displaced by a randomly chosen value from the
interval [0.1ε, ε], and in a random X − Y direction.

Our first group of experiments focus on the quality of Al-
gorithm MMAD. We compared the values εapprox obtained
as an output of Algorithm MMAD with the values of εopt.
More specifically, for each perturbed trajectory, we applied
a randomly determined translation and rotation to obtain
its variant of the perturbed trajectory. We then fed both the
original trajectory and this variant into Algorithm MMAD
to generate the approximate translation and rotation, and
calculate the approximate distance. We measured the per-
centage of trajectories that yield an approximate distance
within a given factor of εopt. The results are shown in the
following table:

εapprox/εopt 1.5 2.0 2.5 3.0 3.5
Trajectories 92.7% 98.5% 99.2% 99.68% 100%

As can be seen, for more than 95% of the trajectories used
in the experiments, Algorithm MMAD had a loss factor ≤ 2,
a loss factor ≤ 2.5 in more than 99% cases.

Our next group of experiments studied the selectivity of
the TEud distance function for trajectories that have the
same or similar routes. We picked a random trajectory
Trpick from the Cook County data set and retrieved all the
trajectories from the data set that have routes within a spa-
tial (2-D Euclidian) distance of εS. For a filtering speed-up,
the trajectories are indexed using an R-tree and we used the
Linear Referencing System (LRS) of Oracle 9i [25] to mea-
sure the TEud distance during the refinement stage. Subse-
quently, from that subset, we obtained the trajectories whose
dynamics are similar to Trpick and are within RTSD value
of ≤ εS, applying the proper translation/shifting in the tem-
poral domain. For trajectories whose temporal duration are
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not the same, we measured the TCSD best-fit among all the
possible translations of the shorter-duration trajectory into
the one with a longer duration. In the experiments, we var-
ied the value of εS from 0.5 to 2.5 miles and we averaged
the results over 200 different choices of Trpick.
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Figure 6: Trajectory Similarity vs. Route Similarity

As illustrated in Figure 6, the number of false-negatives
can be quite large when the speed of the motion is not prop-
erly considered in the temporal dimension, and it increases
in a linear manner with the value of εS. This illustrates the
importance of our distance measure when considering the
spatio-temporal similarities among moving object trajecto-
ries, as opposed to the pure spatial proximity of the moving
objects’ routes [9, 14].

 0

 20

 40

 60

 80

 100

 120

 0  0.5  1  1.5  2  2.5

N
um

be
r 

of
 T

ra
je

ct
or

ie
s

Similarity Distance (miles)

RTSD/TCSD
Hausdorff(Steiner Point)

 0

 20

 40

 60

 80

 100

 120

 0  0.5  1  1.5  2  2.5

N
um

be
r 

of
 T

ra
je

ct
or

ie
s

Similarity Distance (miles)

RTSD/TCSD
Hausdorff(Steiner Point)

Figure 7: Dynamics-Aware vs. Steiner-point

Our last group of experiments measured the quality of
our proposed techniques when, additionally, rigid transfor-
mations (translations + rotations) were applied in the spa-
tial domain. A popular approach for matching 2-D polyg-
onal shapes with respect to the Hausdorff distance is the
one based on a reference point [3], relying on the Steiner
point of compact 2-D sets. The work of [6] demonstrated
that any point on a polygonal chain has a loss factor of
2 for the general Fréchet distance under translations only,
however, there is no analogue of it for rotations. In the
case of the 2-D routes of trajectories, we used the Steiner
point calculated for the convex hull of the 2D projections
of the points from the original trajectory and the anchor
points of their corresponding backbones. As for rotation,
we aligned every possible pair of respective points, and used
the angle that would minimize the Hausdorff distance be-
tween the corresponding routes. Again, we randomly chose

a trajectory Trpick, and found all the trajectories that are
within εS distance to it. However, in this setting, we aim at
finding similar trajectories by first allowing a pair of trans-
lation/rotation to minimize the distance. We used the tra-
jectories from the Cook County data set, and varied the εS

between 0.5 and 2.5 miles over 200 different choices of Trpick

and observed the average selectivity. As shown in Figure 7,
Steiner-point based routes-matching still introduces a large
number of false negatives by up to 60%, since it fails to con-
sider the speed-value, reflected in the temporal-dimension of
the trajectories’ points.

5. RELATED WORK
The problems of matching geometric shapes and point-

sets are of interest for various applications areas: computer
vision, pattern recognition, time-series-analysis, molecular
biology, speech recognition and image processing [5, 17].
A survey of approaches for various geometric transforma-
tions and morphings including: (1.) rigid transformations
(translations + rotations); (2.) homotheties (translations +
scaling); (3.) general affine transformations that can occur
in projections is presented in [5]. Initially, most of the ef-
forts were focused on transformations that would minimize
the Hausdorff distance between the two sets [3, 21, 17] for
both cases of optimal and approximate matching. In partic-
ular, [3] introduced the concept of a reference point, which
is the Steiner point for compact 2D polygons, and proposed
an approximate matching algorithm with a loss factor of
1+4/π. However (c.f. Section 2), for many applications, the
Hausdorff distance is not an appropriate distance-measure,
and efforts were geared towards the more dynamics-flexible
and much harder to compute, Fréchet distance [6]. Specif-
ically, [6] demonstrates that under Fréchet distance, a ref-
erence point of loss-factor 2 exists for matching polygonal
curves under translations. The variations of the traditional
Fréchet distance investigated in [4] pertain to the specific
class of the κ-straight curves, in which the length of any
arc is at most κ times their Euclidian distance. In such
cases, Hausdorff-based algorithms can be used to approx-
imate the Fréchet one. On the other hand, [7] considers
κ-bounded and backbone curves, and introduces efficient ap-
proximation and pseudo-output-sensitive exact algorithms
that calculate the discrete-Fréchet distance. A general dis-
cussion on various distance-measures for point sets and their
computations is presented in [16]. Our work builds upon all
these results, but its distinct nature is in the introduction
of an intuitive distance-function for moving objects trajecto-
ries, which takes into consideration the practical assumption
in MOD – the objects are moving with the constant speed
along individual segment. As we demonstrated, the TEud

a special case of the general Fréchet distance which enables
minimization algorithms for point-sets fitting [22, 17] to be
applied to efficiently obtain the trajectories’ similarity under
rigid transformations.

Recent efforts from the MOD and GIS communities have
targeted the problems of similarity of spatial and spatio-
temporal mobility patterns [9, 20, 14, 28, 29]. In particular,
[14] proposed a Finite State Automaton based algorithm
which, given a zone-based partition of the spatial domain,
reduces the problems of routes and trajectories matching
to the problem of recognizing regular expressions. A some-
what similar basis (discretizing the 2D space) was used in
[9, 20] in order to address the processing of various spatio-
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temporal pattern queries, where the trajectories were rep-
resented as strings and the query patterns were detected
based on string-matchings. Although the works have ad-
dressed larger categories of queries than we do, e.g., subsec-
tions of trajectories matching whereas we consider at most
a containment of a shorter-trip into the longer-trip trajec-
tory, our work uses a more intuitive distance-measure and
does not require a discretization of the spatial dimension.
More recent extensions [28, 29] proposed similarity mea-
sures based on the Longest Common Subsequence (LCSS)
and addressed the problem of indexing large datasets for
the purpose of the efficient evaluation of the similarity-based
spatio-temporal queries. We have not addressed the problem
of indexing in this work, however, we proposed a different
distance function and we took into consideration the rota-
tion in the spatial dimension. Recent results have connected
the DTW with finding short-paths in combinatorial mani-
folds and relating it to the way light travels in media with
different coefficients of refraction [15]. In this context, our
approach enables an even further reduction of the number
of elements in the dynamic-programming based matrix for
calculating the paths in the manifolds. Similarity search for
trajectories using data reduction (SVD, DFT, wavelets) is
presented in [1], however the assumption is that the trajec-
tories are already rotation-aligned.

6. CONCLUSIONS AND FUTURE WORK
We addressed the problem of matching moving objects

trajectories, where rigid transformations, i.e., translation in
spatial and temporal domain, as well as rotation in the spa-
tial domain, can be applied in order to detect the similar-
ity of their motion. We used an intuitive distance function
TEud and we demonstrated that it is a special case of the
Fréchet distance. Taking this into consideration along with
the fact that in typical MOD settings the trajectories are
assumed to have constant speed along individual trajectory-
segments, we proposed both optimal and approximate algo-
rithms for determining the translations and rotations that
will minimize the respective RTSD/TCSD similarity dis-
tances of two trajectories. There are several immediate ex-
tensions of our work. Firstly, we plan to adapt our results
to the, so called, decision problem, which is, given two tra-
jectories, and a constant ε does there exist transformation
that will yield a similarity distance ≤ ε? An important issue
is the actual similarity-based query processing for massive
trajectories’ datasets, which ultimately demands an efficient
indexing structures [28, 29]. Another avenue that we are
planning to pursue is exploring the map-available data when
the objects are constrained to move on road networks [18]
and see whether some pre-processing can be done that will
speed up the calculations of the similarity distances among
trajectories, especially for real-time tracking data [30].
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