
Efficient Similarity Join of Large Sets of Moving Object Trajectories

Hui Ding, Goce Trajcevski∗and Peter Scheuermann†

Dept. of EECS, Northwestern University
2145 Sheridan Road

Evanston, IL 60208, U.S.A.

Abstract

We address the problem of performing efficient similarity join
for large sets of moving objects trajectories. Unlike previous ap-
proaches which use a dedicated index in a transformed space, our
premise is that in many applications of location-based services,
the trajectories are already indexed in their native space, in order
to facilitate the processing of common spatio-temporal queries,
e.g., range, nearest neighbor etc. We introduce a novel distance
measure adapted from the classic Fréchet distance, which can be
naturally extended to support lower/upper bounding using the un-
derlying indices of moving object databases in the native space.
This, in turn, enables efficient implementation of various trajectory
similarity joins. We report on extensive experiments demonstrating
that our methodology provides performance speed-up of trajectory
similarity join by more than 50% on average, while maintaining
effectiveness comparable to the well-known approaches for iden-
tifying trajectory similarity based on time-series analysis.

1 Introduction
The advances in Global Positioning Systems, wireless

communication systems and miniaturization of computing
devices have brought an emergence of various applications
in Location-Based Services (LBS). As a result, there is an
increasing need for efficient management of vast amounts
of location-in-time information for moving objects. An im-
portant operation on spatio-temporal trajectories, which is
fundamental to many data mining applications, is the simi-
larity join [5], [15]. Given a user defined similarity measure,
a similarity join identifies all pairs of objects that satisfy
the join predicate in which the condition is specified by the
measure. Efficient similarity joins are especially desirable
for spatio-temporal trajectories, because the distance calcu-
lation between trajectories is generally very expensive due
to the intrinsic characteristics of the data.

∗Research supported by the Northrop Grumman Corp., contract:
P.O.8200082518

†Research supported by the NSF grant IIS-0325144/003

Previous research efforts on efficient similarity search
in time series data sets mainly follow the GEMINI frame-
work [9], [12], [17], [24]: given a similarity measure on the
time series, each trajectory is transformed into a point in a
high-dimensional metric space and an index is constructed
in the transformed space using the defined measure (or the
lower-bounding measure if one is proposed). These trans-
formed space approaches have been proved efficient for a
large number of different similarity measures in a variety of
time series application domains.

When it comes to moving object trajectories which con-
stitute a special category of time series data, we observe
that one can perform the similarity join more efficiently
using a different approach. The transformed space ap-
proaches [9], [12], [17], [24] incur extra overheads by build-
ing dedicated index structures and applying trajectory trans-
formations. However, one can exploit the fact that trajecto-
ries are often already indexed in their native space, in or-
der to facilitate processing of the common spatio-temporal
queries such as range, nearest neighbor, etc. [7], [18], [20].
Existing spatio-temporal database prototypes have limited
support for trajectory similarity join. Typically, joins are
implemented as nested loop joins or sorted-merge joins,
which require a large amount of expensive distance compu-
tation [14], [28]. The main focus of this work is to provide
efficient and scalable similarity joins of spatio-temporal tra-
jectories.

Our main contributions can be summarized as follows:
• We introduce a novel distance measure based on the
Fréchet distance [1], which is highly effective in identifying
similar trajectories.

• We propose lower and upper bounding approximations
of the exact distance measure, which are straightforwardly
applicable to the spatio-temporal indices and can prune a
significant portion of the search space.

• We present an efficient trajectory similarity join in the
native space, which combines the distance calculations with
incremental accesses to the spatio-temporal indices.

• We conduct extensive experimental evaluations to show
the efficiency and effectiveness of our proposed techniques.

15th International Symposium on Temporal Representation and Reasoning

1530-1311/08 $25.00 © 2008 IEEE
DOI 10.1109/TIME.2008.25

79

15th International Symposium on Temporal Representation and Reasoning

1530-1311/08 $25.00 © 2008 IEEE
DOI 10.1109/TIME.2008.25

79



The rest of this paper is organized as follows. Section 2
provides the necessary background. Section 3 formally
defines our distance metric and the approximation bounds.
Section 4 elaborates on our index-based trajectory join
framework. Section 5 presents our experimental results.
Section 7 reviews related work and concludes the paper.

2 Preliminary

In this section, we introduce the concept of spatio-
temporal trajectories, and discuss the existing similarity
measures and the indexing of trajectories using R-tree.

2.1 Trajectories and Similarity Measures

We assume that objects move in a two-dimensional
space, and that a trajectory Tr is a sequence of points
p1, p2, ..., pi, ..., pn, where each point pi represents the lo-
cation of the moving object at time ti, and is of the form
(xi,yi,ti), for t1 < t2 < ... < ti < ... < tn. For a given tra-
jectory, its number of points is called the point length (p-
length) of the trajectory. The time interval between t1 and tn
is called the duration of the trajectory, denoted by ΔTr. The
portion of the trajectory between two points pi and p j (in-
clusive) is called a segment and is denoted as si j . A segment
between two consecutive points is called a line segment. If
the sampling rates of trajectories are different, resulting in
trajectories with positions sampled at different time stamps.
we could simply perform a re-sampling and insert artificial
locations by applying linear interpolation.

Several distance measures for trajectories have been
proposed in the literature. The Lp-norms [12] are the
most common similarity measures. For example, given
two trajectories Tri and Tr j of the same p-length, one
can define the similarity measure based on the Eu-
clidean distances between the corresponding points as:

L2(Tri,Tr j) =
√

∑k∈[1,n] dist(pi
k, p j

k), where dist(pi
k, p j

k) =

(pi
k.x− p j

k.x)
2 + (pi

k.y− p j
k)

2. While L2 can be calcu-
lated in time linear to the length of the trajectories, it is
sensitive to noise and lacks support for local time shift-
ing, i.e., trajectories with similar motion patterns that are
out of phase. The Dynamic Time Warping (DTW) dis-
tance [17] overcomes the above problem by allowing tra-
jectories to be stretched along the temporal dimension, and
is recursively defined as: DTW (Tri,Tr j) = dist(pi

1, p j
1)

+min(DTW (Rest(Tri),Rest(Tr j)), DTW (Rest(Tri),Tr j),
DTW (Tri, Rest(Tr j))), where Rest(Tri) = pi

2, ..., pi
n. To

reduce the impact of the quadratic complexity of DTW on
large data sets, a lower-bounding function together with a
dedicated indexing structure was used for efficient prun-
ing [17]. Similar to DTW, other distance measures have also
been proposed, e.g., the Edit Distance on Real Sequence
(EDR) [9] and the distance based on Longest Common Sub-
sequence (LCSS) [24]. The commonality is that they all fol-
low the transformed space approach, and are not designed

to utilize the spatio-temporal indices available in the native
space. Recently,Pelekis et al. [19] identified several differ-
ent similarity distance for trajectories, and argued that each
of them is more appropriate than the others in different set-
tings.

2.2 R-tree Based Indexing of Trajectories

The R-tree and its variants have been widely used for
indexing arbitrary dimensional data [18]. An R-tree is a B+-
tree like access method, where each R-tree node contains
an array of (key, pointer) entries where key is a hyper-
rectangle that minimally bounds the data objects in the
subtree pointed at by pointer. In a leaf node, the pointer is
an object identifier, while in a non-leaf node it is a pointer
to a child node on the next lower level.

When indexing spatio-temporal trajectories with the
transformed space approach, each trajectory is first trans-
formed into a single point in a high-dimensional (metric)
space and a high-dimensional indexing structure is used to
index these points. Under this GEMINI framework [12], a
high-dimensional R-tree is but one optional index structure.

However, spatio-temporal trajectories can also be in-
dexed in their native space. Several such implementations
have been developed in the moving object database liter-
ature [7], [18], [20] for processing various spatio-temporal
queries. Directly indexing the entire trajectories may in-
troduce large dead space and decrease the discriminating
power of the index, hence the general idea is to split a long
trajectory into a number of segments, and index the seg-
ments [18]. Each leaf node in the R-tree contains a num-
ber of 3-dimensional minimum bounding hyper-rectangles
(MBR) that enclose the segments generated from splitting,
together with unique identifiers that match each segment to
its corresponding trajectory. The segments of the trajecto-
ries do not have to be of the same length, and a particu-
lar leaf node may contain segments from different trajecto-
ries. The problem of optimally splitting the trajectories to
support efficient data mining has recently been investigated
in [3] and is beyond the scope of this paper.

3 Spatio-Temporal Distance of Trajectories
In this Section, we introduce our new distance measure

based on the classical Fréchet distance [1]. We observe
that the commonly used similarity measures may not be
appropriate for trajectories of moving objects and have a
questionable applicability to sptio-temporal indices in the
native space. To exemplify this, we paraphrase the popular
man walking dog example [1] in Figure 1. If the Hausdorff
distance [2] is used, one can assert that the motion of
the man and the dog are always within a distance of ε.
However, this measure pertains only to the routes of the
man and the dog, completely ignoring the dynamics of their
representative motions [22]. As illustrated in Figure 1, the
locations of the man and the dog at some time instance

8080



can be much larger than ε. Popularly, this means that
the minimum length of leash is the fine measure of their
distance.

A more general distance function is the Fréchet distance,
defined for two continuous curves f : [a1,b1] and g : [a2,b2]
as: δF( f ,g) = infα,β maxt∈[0,1] ‖ f (α(t))− g(β(t))‖, where
α (β) ranges over all the possible continuous and monotoni-
cally increasing functions [0,1]→ [a1,b1] ([0,1]→ [a2,b2]).
Spatio-temporal trajectories in real settings consist of series
of coordinate points at discrete time stamps, and the loca-
tion of a moving object between these points is obtained
via interpolation when needed. Hence it suffices to define a
discrete version of the Fréchet distance as follows [11]:

man-trajectory

dog-trajectory

(b)

e

Dog at ti

Man at ti

Figure 1: Illustration of Fréchet Distance

Let Tr1 = (p1
1, . . . , p1

n) and Tr2 = (p2
1, . . . , p2

n) be two
trajectories. A coupling C between Tr1 and Tr2 is a se-
quence {(p1

a1
, p2

b1
), (p1

a2
, p2

b2
), . . ., (p1

ak
, p2

bk
)} of distinct

pairs such that a1 = 1,b1 = 1,ak = n,bk = n and for all
ai and bi we have ai+1 = ai or ai+1 = ai + 1, bi+1 = bi

or bi+1 = bi + 1, i.e., the matching is monotonically non-
decreasing. The length ‖C‖ of the coupling C is the maxi-
mum link of all the pairs in the coupling C, where a link is
defined as the Euclidean distance between the two points
in the pair. That is, ‖C‖ = maxi=1,...,k dist(p1

ai
, p2

bi
). Fi-

nally, the discrete Fréchet distance between two trajecto-
ries Tr1 and Tr2 is defined as δdF(Tr1,Tr2) := min{‖C‖ :
C is a coupling of Tr1 and Tr2}. An important observation
is that exploring all the possible couplings is exhaustive and
costly. By considering all pairs of (p1

ai
, p2

bi
) without pay-

ing attention to their temporal distances may distort the real
spatio-temporal similarity of moving objects. Motivated
by this, we further constrain the definition of the discrete
Fréchet distance by considering only pairs of points whose
temporal distances are bounded by a given window thresh-
old. The w-constrained discrete Fréchet distance (wDF) is
defined as follows:

DEFINITION 3.1. Given two trajectories Tr1 and
Tr2, their w-constrained discrete Fréchet distance
δwDF(Tr1,Tr2) := min{‖Cw‖ : Cw is a w-constrained
coupling of Tr1 and Tr2, s.t. ∀(p1

ai
, p2

bi
) ∈ Cw ⇒

‖p1
ai
.t − p2

bi
.t‖ ≤ w}, where w is a parameter that deter-

mines the limit of the temporal matching window.

The importance of the temporal dimension is empha-
sized by the matching window. An idea similar to ours
(temporal matching window constraint) has also been used
for other similarity measures [25], where a window size of
5%− 20% of the entire trajectory duration ΔTr is reported
sufficient for most application in terms of finding similar
trajectories. Further stretching the temporal matching win-
dow not only result in longer execution time of the distance
function, but may deteriorate the accuracy of the distance
measure due to over-matching. δwDF has the following
properties:

(1) δwDF(Tr1,Tr1) = 0, (2) δwDF(Tr1,Tr2) =
δwDF(Tr2,Tr1) and (3) δwDF(Tr1,Tr2)≤ δwDF(Tr1,Tr3)+
δwDF(Tr3,Tr2). Hence, we have:

PROPOSITION 3.1. δwDF defines a pseudo-metric on the
set of spatio-temporal trajectories.

Due to space limit, the proofs of the claims are omitted
from this paper and are presented in [10].

The wDF distance can be computed using dynamic
programming and has a complexity of O( w

ΔTr n2). However,
unlike DTW and EDR, wDF is a pseudo-metric and can
utilize the triangular inequality for pruning during similarity
search [8]. More importantly, wDF has led us to the
derivation of two approximation distances that provide even
greater pruning power, which we discuss next.

3.1 Efficiency and Approximation of wDF

For long trajectories, the brute force computation of wDF
can be costly. We propose two efficient approximations that
can bound the exact wDF distance and are much faster to
compute: one that guarantees a lower-bound and one that
guarantees an upper-bound for the exact wDF distance, re-
spectively. The proposed approximations make use of a
coarser representation of the spatio-temporal trajectories,
obtained through splitting a given trajectory into segments
and representing them by the sequence of MBRs that en-
close the corresponding segments.

Tr1

Tr2

MBR1

MBR2

MBR3

MinDist

M
ax

Di
st

X

Time

�������	�
��������	�
���������
 �������
��������������	�
� � � ��
�������	�
�

W 

Figure 2: Bounding the exact wDF distance with MBRs
Consider two trajectories Tr1 and Tr2, each ap-

proximated by a sequence of MBRs, e.g., M1 =
{MBR1

1, . . . ,MBR1
t }, M2 = {MBR2

1, . . . ,MBR2
s}, the lower-

bound coupling CL
w between M1 and M2 is defined as

a monotonically non-decreasing matching between the

8181



pairs of MBRs from each sequence. In particular, the
link of a pair in the lower-bound coupling CL

w is de-
fined as the MinDist between the two composing MBRs,
i.e., the minimum spatial distance between any two
points from the respective MBR (c.f. Figure 2 (a)).
The length ‖CL

w‖ of the lower-bound coupling CL
w is

max{MinDist(MBR1
ui
,MBR2

vi
)} where u1 = v1 = 1, uk = t

and vk = s. The w-constraining condition is specified over
the time intervals of MBRs. Assuming that MBR1

i and
MBR2

j enclose segment (p1
i1
, ..., p1

ik
) and (p2

j1
, ..., p2

jm) re-
spectively, they will be considered as a possible pair in a w-
constrained coupling only if ∃p1

ia , p2
jb

s.t. ‖p1
ai
.t− p2

bi
.t‖ ≤

w. As an example, consider the scenario depicted in Fig-
ure 2 (b), due to the limit of the warping window size w, ev-
ery MBR can only be matched with its corresponding MBR
on the other trajectory, and the two MBRs next to it, e.g.,
the first MBR of Tr2 can only be matched with the first two
MBRs of Tr1, although its MinDist to the third MBR of Tr1

is much smaller. Formally:
DEFINITION 3.2. Given two sequences of MBRs M1 and
M2 for trajectories Tr1 and Tr2 respectively, the lower-
bound distance of Tr1 and Tr2 is: LBDδwDF

(M1,M2) :=
min{‖CL

w‖: CL
w is a w−constrained lower-bound coupling

of M1 and M2}.
Similarly, we define an upper-bound coupling CU

w on the
two sequences of MBRs M1 and M2, where the link of a
pair is defined as the MaxDist between the two composing
MBRs, provided that the temporal w-constraint holds:
DEFINITION 3.3. Given two sequences of MBRs M1 and
M2 for trajectories Tr1 and Tr2 respectively, the upper-
bound distance of Tr1 and Tr2 is: UBDδwDF (M1,M2) :=
min{‖CU

w ‖: where CU
w is a w−constrained upper-bound

coupling of M1 and M2}.
The construction of LBDδwDF between two trajectories

from their MBRs is illustrated in Figure 2 (b), and the
relationship of these two distance bounds and the exact
distance is given by the following:
THEOREM 3.1. Given two trajectories Tr1 and Tr2,
and the corresponding sequences of MBRs, M1 and M2,
that approximate them, for any matching window w the
following holds: LBDδwDF

(M1,M2) ≤ δwDF(Tr1,Tr2) ≤
UBDδwDF

(M1,M2).
We note that Theorem 3.1 applies to arbitrary trajectory

splitting strategies, and the problem of optimally splitting
the trajectories is beyond the scope of this paper [3]. For
simplicity, we assume in the rest of this paper that the tra-
jectories are uniformly split into segments of equal length
l. From their definitions, LBDδwDF

and UBDδwDF
can be

computed using the same dynamic programming algorithm
for computing wDF, except that the MinDists/MaxDists be-
tween MBRs are used instead of Euclidean distance be-
tween points. However, the amount of distance computa-
tion involved can be greatly reduced because of the coarser

representation. This can be illustrated by using the warping
matrix concept [21] to describe the relevant coupling be-
tween two trajectories. The values in the cells of the warp-
ing matrix denote the distances between the corresponding
matching MBRs/points. Figure 3 (b) shows the warping
matrix between the MBRs of the two trajectories Tr1 and
Tr2, and Figure 3 (c) shows the warping matrix between the
actual points of the two trajectories. Intuitively, calculat-
ing LBDδwDF

(UBDδwDF
) or wDF is the process of finding a

path [21] from the lower-left corner to the upper-right cor-
ner that minimizes the maximum value over all cells on the
path. The amount of computation for LBDδwDF

(UBDδwDF
)

is significantly less because of the reduced matrix size. In-
stead of computing the exact δwDF distance each time, we
compute the LBDδwDF and UBDδwDF with only O( w

ΔTr
n2

l2 )
time, and exclude unqualified candidates, substantially re-
ducing the number of the wDF distance calculations. In the
example of Figure 3 (b), we computed a path (shown in
large grey cells) for the LBDδwDF

(UBDδwDF
), then in Fig-

ure 3 (c), we only need to consider the matrix cells that
are covered by the grey path, and eventually obtained our
warping path (shown in small black cells). The exact δwDF

distance is then the maximum value of the black cells. Ap-
parently the search space has been significantly reduced.
Theorem 3.1 ensures that the MBR-based pruning will not
introduce any false negatives.

X X X X X X
X
X
X
X
X

X X X X
X X X
X X
X X

X X
X X X

X X X X
X X X X X

X X X X X X
1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10
Tr1

Tr2

Tr1

Tr2

X X X X X X
X
X
X
X
X

X X X X
X X X
X X
X X

X X
X X X

X X X X
X X X X X

X X X X X X

(a) (b) (c)
1 30

1

30

1.5

1.2
1.3

3.5

2.1
0.7

1.8

5.4 2.1
1.8 0.8

1.2
1.6

1.5

1.8

0.9

2.1

2.6

2.6

MApprox MExact

Figure 3: Warping matrices for calculating LBDδwDF

/UBDδwDF
and wDF: X cells are automatically excluded by

the temporal matching window, grey cells are potentially
useful and black cells are on final path

Moreover, we can do even better with the approximation
distances by further limiting the search space, using an idea
similar to early abandoning [27]. Consider the warping
matrix MApprox in Figure 3 (b) for calculating LBDδwDF

between Tr1 and Tr2. Initially, it only consists of “x”
cells and white cells and all the white cells are assigned
a value of ∞. We access MinDists between the MBRs in
ascending order, and update the values of the corresponding
cells, e.g., cell(1,2)=0.7, cell(8,9) = 0.8, cell(3,4) = 0.9,
...(grey cells). After each update, we invoke the dynamic
programming algorithm and try to find a path for computing
the LBDδwDF

. At first there is no such path available, and the
algorithm will quickly return ∞. After updating a cell (i, j),
if we obtain the first path connecting the two corners in the
matrix, then this is the optimal path (since any path formed

8282



later will use a cell updated after cell (i, j) and will have
a larger MinDist value than cell (i, j)). Consequently, the
LBDδwDF

distance is equal to the MinDist value of cell (i, j).
At this point the distance calculation has been completed
and the rest of the cells can be pruned. In the example of
Figure 3 (b), the critical cell after which we could find the
path is cell(6,6) and as a result, LBDδwDF (Tr1,Tr2) equals
3.5. Note that cells such as (7,4) are never considered at
any time since its value is greater than 3.5. This important
observation is formalized as follows:

THEOREM 3.2. When calculating LBDδwDF
(UBDδwDF

)
between two trajectories Tr1 and Tr2, if the pairwise dis-
tances between the MBRs are incrementally accessed in as-
cending order of their MinDists (resp. MaxDists), the num-
ber of MinDists (resp. MaxDists) calculation and accesses
is minimum.

Theorem 3.2 requires that the MinDists/MaxDists are
sorted in ascending order, which may incur an extra over-
head. However, the key observation is that such an ordering
can be naturally obtained by maintaining a priority queue
while accessing the MBRs in the R-tree [15]. The worst
case complexity is still bounded by O(m2), where m is the
number of MBRs in each trajectory. However, we observed
in our experiments that in practice significant speed up can
be achieved, since not all m2 cells of the warping matrix
need to be evaluated. In addition, although both LBDδwDF

and UBDδwDF
can be calculated using Theorem 3.2, in prac-

tice we only invoke dynamic programming once to calcu-
late LBDδwDF

. Instead of calculating the exact UBDδwDF
,

we use the path for LBDδwDF
to calculate an upper-bound

on UBDδwDF , which in practice approximates the actual
UBDδwDF

distance very well. More specifically, we straight-
forwardly compute the corresponding MaxDist values, us-
ing precisely the pairs of matching MBRs from the LBDδwDF

coupling. We then use the maximum of these MaxDists to
bound the UBDδwDF

from above. By definition of UBDδwDF
,

this bound is guaranteed to be greater than or equal to the
value of UBDδwDF

.

4 Index-Based Trajectory Join Under wDF
In this section, we present our framework for spatio-

temporal similarity join of trajectories under the wDF dis-
tance measure. Assuming that each trajectory is uniformly
split into segments that are indexed by a 3-dimensional R-
tree, we describe the nearest neighbor join algorithm, and
present several important variants.

4.1 Nearest Neighbor Join

Given two sets of spatio-temporal trajectories, the near-
est neighbor join retrieves for each trajectory from the first
set its most similar trajectory from the second set, using
wDF as the similarity measure.

The inputs to the algorithm are the two trajectory sets
S1 and S2, indexed by disk-based R-trees R1 and R2, re-

spectively. The algorithm accesses both trees in a man-
ner similar to the incremental distance join [15]: descend-
ing from their roots simultaneously, and concurrently as-
signing the segments from the second set to the closest
trajectory from the first set. An important data struc-
ture used in the algorithm is a priority queue of the form
(elem1,elem2,mindist). The first item in each triple is from
R1 and the second one from R2. Each item can be either a
node of the R-tree, or a leaf node entry, i.e., the MBR of a
particular segment. The third item in a triple is the MinDist
between the first two items, and the dequeue operation will
always remove the triple with the smallest MinDist. In ad-
dition to the priority queue, the algorithm uses two other
data structures. The first is the warping matrix directory
(WMD) that maintains an entry for each trajectory from S1,
storing a list of incomplete LBDδwDF

and UBDδwDF
warp-

ing matrices between that trajectory and a trajectory from
S2. Each entry in WMD also maintains an upper bound dis-
tance, which is the maximum possible distance allowed to
become an answer candidate. In addition, each entry has
a flag that indicates whether the nearest neighbor for this
particular trajectory has been found. The second structure
is the candidates table (CT) that stores for each trajectory
from S1 its candidate answers in a sorted list, in ascending
order of the LBDδwDF

.
The join process is illustrated in Algorithm 1. After

initializing the relevant data structures, the main body of
the algorithm is a while loop that continuously processes
the next triple dequeued:
• When both elements in the triple are MBRs of trajectory
segments (line 4-17), it first checks whether the correspond-
ing entry from WMD is complete and if so, simply discards
the triple from further consideration. Otherwise, it performs
early abandoning by checking whether the LBDδwDF is less
than the upper bound distance (line 7). This check uses the
fact that LBDδwDF

is greater than the MinDist between the
two MBRs. Then the relevant warping matrices in the cor-
responding WMD entry are updated and the algorithm ex-
amines whether the update generates a complete path in the
LBDδwDF

warping matrix. If so, the LBDδwDF
and UBDδwDF

distances are calculated. LBDδwDF
is used to insert a new

entry into the candidates table, and UBDδwDF is used to up-
date the upper bound distance of the entry. Finally, if the
MinDist is greater than the entry’s upper bound distance,
this WMD entry is flagged complete since the correspond-
ing LBDδwDF

will be greater than the upper bound distance,
and the relevant warping matrices are discarded.

• When only the first element in the triple is the MBR of
a segment (line 18-22), the algorithm checks whether the
corresponding entry in WMD is flagged complete, and if so
the triple is discarded since it (and any new triple formed
by further descending the R-tree) may not produce a better
answer than the existing candidate. Otherwise the second

8383



Algorithm 1 Index-Based Trajectory Join

Input: R-tree R1, R2; Trajectory set S1, S2; temporal matching window w
/* filtering stage */

1: priority queue Q.ENQUEUE(R1.root,R2.root,0)
2: while ! Q.ISEMPTY do
3: (e1,e2,mindist) ⇐ Q.DEQUEUE
4: if both e1 and e2 are segment MBRs then
5: Tr1 ⇐ trajectory of e1, Tr2 ⇐ trajectory of e2
6: if WMD[Tr1] flagged incomplete then
7: if MinDist(e1,e2) ≤ E.upper bound dist then
8: insert MinDist, MaxDist of e1, e2 into WMD[Tr1]
9: if a path exists for the MinDist warping matrix between

Tr1 and Tr2 then
10: compute LBDδwDF

and an upper bound of UBDδwDF

between Tr1, Tr2

11: if UBDδwDF
< E.upper bound dist then

12: E.upper bound dist ⇐ UBDδwDF

13: insert Tr2 and LBDδwDF
into CT [Tr1]

14: else
15: set flag of W MD[Tr1] as complete
16: else if WMD[Tr1] flagged complete then
17: discard the pair (e1,e2)
18: else if e1 is segment MBR then
19: if WMD[Tr1] flagged complete then
20: discard the triple (e1,e2,mindist)
21: else
22: expandElement(e1,e2,Q)
23: else if e2 is segment MBR then
24: expandElement(e2,e1,Q)
25: else if both e1 and e2 are node then
26: expandBalancedElement(e1,e2,Q)

/* refinement stage */
27: for every entry Tri in CT do
28: compute δwDF (Tri,Tr j) for each candidate Tr j until the nearest

neighbor is found

node is expanded by calling the function expandElement.
ExpandElement expands one of the input nodes by pairing
each one of its children with the other input element if they
are temporally within w, and inserts the resulting triples into
the priority queue Q.

• When only the second element in the triple is the MBR
of a segment (line 23-24), the first node is expanded by
calling expandElement, with elem1 and elem2 exchanged.

• When a pair of nodes is processed (line 25-26), the
algorithm chooses to expand one of the nodes by calling
expandBalancedElement which tries to keep the balance
of the depth when descending the two trees. The node to
expand is the one with a shallower depth or with a larger
area if both nodes are at the same depth [15].

After the while loop terminates, the refinement step is
performed on the CT using the triangular inequality of
wDF for pruning (line 27-28). For every entry of the
candidates table, we examine the candidate trajectories in
ascending order of their LBDδwDF and calculate the exact
wDF distance, until either all the candidate trajectories have
been examined, or the next LBDδwDF

is greater than the

largest computed wDF distance value.

4.2 Variants of the Similarity Join

Algorithm 1 for nearest neighbor join requires minor
modifications to calculate other similarity joins among tra-
jectories in our framework.
• k-nearest neighbor join (kNN join) [5]: A kNN join
finds for each trajectory from S1 its k nearest neighbors
from S2 in terms of the wDF distance. For each trajectory
from S1, after the first k candidates are added to the can-
didate table, the minimum of their UBDδwDF

is used as the
upper bound. We continue to add new candidates as long
as their LBDδwDF

distances are smaller than the current up-
per bound, and update the upper bound with the new tighter
UBDδwDF

if necessary. This only requires that line 11-12 in
Algorithm 1 are changed to maintain the upper bound dist
with the minimum of the k candidates’ UBDδwDF s. In the
refinement stage, we calculate the exact wDF distance for
every candidate and select the k trajectories with the small-
est distance values. Again, we could use the triangular in-
equality of wDF to prune some of the distance computation.

• Range Join [5], [17]: A range join finds for each tra-
jectory from S1 all the trajectories from S2 that are within
a given wDF distance of it. For this extension, we simply
need to fix the upper bound dist to the range query thresh-
old in line 7 of Algorithm 1 and remove line 11-12 for up-
dating the upper bound dist, i.e., we retrieve for each tra-
jectory in S1 all the candidates whose LBDδwDF

is less than
the given distance threshold during the filtering stage, and
refine the answers using the exact wDF distance.

We also note that our framework can straightforwardly
support the time interval join [4], where the kNN or range
predicate is defined using only some portions (segments)
of trajectories within a specified time interval of interest.
In this case we retrieve only the index nodes and leaf
node entries that intersect with the given time interval from
the same index structure. This can be easily handled by
changing line 3 of Algorithm 1 to check whether the two
elements from the triple are temporally intersecting with
the querying interval. If so we continue with the normal
processing procedure, otherwise we simply discard the
triple.

5 Experimental Results
In this section, we empirically evaluate the efficiency and

effectiveness of our proposed techniques.
We have implemented our similarity join framework in

Java. All our experiments are executed on a PC with
a Pentium IV 3.0 GHz CPU and 1 GB of memory. To
evaluate the efficiency of the proposed algorithms, we
use the network-based traffic generator [6] and produce
moving object trajectories based on the road networks of
Oldenburg (OB) and San Francisco (SF). To obtain some
quantitative observations about the potential use of our

8484



framework for data mining applications, we use the wDF
distance for classification in data sets provided by the UCR
Time Series Collection [16]. We index the trajectories with
a 3-dimensional R-tree and uniformly split each trajectory
into segments. The resulting segments are then inserted into
the R-tree, where each data entry in the leaf node contains
one segment. The page size is set to 4KB, and an LRU
buffer with 1000 pages is used. Unless stated otherwise, the
w window size is set to 15% of the entire trajectory duration.

5.1 Efficiency of Similarity Join

Although our results are independent of the trajectory
splitting strategy adopted, before evaluating the perfor-
mance of our similarity join framework, we need to deter-
mine the trajectory splitting size for our data sets in order
to remove its impact from further experiments. Increasing
the number of splits implies tighter bounds but may also
increase the costs for calculating them, whereas decreas-
ing the number of splits deteriorates filtering effectiveness.
We perform a nearest neighbor join for trajectories gener-
ated from the road networks of OB and SF, with 400 and
1000 points respectively. We generate 200 trajectories us-
ing the road networks and use this set as the first set for
the join algorithm, we then add small perturbations to each
trajectory, i.e., slightly offset the location of each point in
the trajectory, and use the perturbed set as the second set of
trajectories for the join algorithm. We vary the number of
points contained in each segment from 5 to 200 and the re-
sults are shown in Figure 4 (a). Based on the results, we fix
the number of points in each segment to 20 in the following
experiments.

 0

 20

 40

 60

 80

 100

 120

 0  50  100  150  200

To
ta

l R
un

ni
ng

 T
im

e 
(s

ec
)

Number of Points per Segment

(a) Impact of Segment Size

p-length = 400
p-length = 1000

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  500  1000  1500  2000

P
er

ce
nt

ag
e 

of
 $

w
$D

F 
C

al
cu

la
tio

n 
P

er
fo

rm
ed

Total Number of Trajectories

(b) Tightness of Bounds

p-length = 400
p-length = 1000

Figure 4: Impact of Segment Size and Tightness of Bounds
With the uniform split model, we then evaluate the tight-

ness of the two distance bounds LBDδwDF
and UBDδwDF

.
We use the road networks of OB and SF to generate varying
number of trajectories, and randomly pick one trajectory to
perform a nearest neighbor query on the data set, using the
two distance bounds for pruning. We record the total num-
ber of times the exact wDF distance is calculated, and divide
this number by the total number of trajectories in the data
set. The result ratio is shown in Figure 4 (b). Using our
approximate distance bounds, we only need to perform less
than 2% of the wDF distance calculation.

Next we evaluate the efficiency and the scalability of our
trajectory join algorithm. Due to the limited space, we fo-
cus on the nearest neighbor join only. The next two sets
of experiments compare the efficiency of three different ap-
proaches: (1) our framework using the wDF distance, (2)
the metric-based join [26] (essentially a sequential scan over
the entire data set but uses the triangular inequality for prun-
ing as much as possible) with wDF as the distance metric
and (3) similarity join on DTW distance with lower-bound
indexing [17], as a representative of the transformed space
approach. For the DTW based approach, we implement
the join as a batch of similarity search queries where each
query is a trajectory from the first data set that is used to
search for its nearest neighbor in the second data set. We
use the same parameters, e.g., the number of points in each
segment/piece-wise approximation, the R-tree parameters
and splitting strategy, etc. in both our framework and the
DTW implementation. We also take into account the time it
takes for approach (1) and (3) to build the index structure.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  500  1000  1500  2000

To
ta

l R
un

ni
ng

 T
im

e 
(k

 s
ec

)

Number of Trajectories

(a) Oldenburg Data Set

Metric based Join
DTW based Join
wDF based Join

 0

 2

 4

 6

 8

 10

 12

 0  500  1000  1500  2000
Number of Trajectories

(b) San Francisco Data Set

Metric based Join
DTW based Join
wDF based Join

 0

 2

 4

 6

 8

 10

 12

 0  500  1000  1500  2000
Number of Trajectories

(b) San Francisco Data Set

Metric based Join
DTW based Join
wDF based Join

Figure 5: Scaling with Number of Trajectories

Our first set of experiments reports the total running time
of the nearest neighbor join as a function of the number of
trajectories. Figure 5 compares the performance of the three
approaches on trajectories generated from road networks
of OB and SF, respectively. Each OB trajectory contains
400 points and each SF trajectory contains 1000 points.
We observe that our join framework clearly outperforms
the metric-based join, yielding a speed-up of up to 10
times. Furthermore, our approach scales well to large
trajectory sets since the running time grows linearly with
respect to the number of trajectories, whereas the running
time for metric-based join grows quadratically. This is
because with our index-based join, the number of exact
distance calculation grows only linearly with the number of
trajectories, the rest of the distance calculation are pruned.
On the other hand, metric-based join does not have this
property. While the DTW based approach also outperforms
the metric space based approach by a large factor, it is
on average more than 2 times slower than our approach.
This discrepancy becomes even larger on the SF data set.
The main reason is that when the number of points in
each trajectory increases, the dimensionality of the index

8585



structure used to index the trajectories in the transformed
space, i.e., the index of the DTW distance, also grows. This
will reduce the selectivity of the index and admit more false
positives that will need to be eliminated with the expensive
DTW distance calculation. Increasing the number of points
per segment/piece-wise approximation can not solve the
problem, as it will yield a wider bounding envelop used by
DTW and loosen the lower-bounds [17]. Working in the
native space, our approach does not have this problem of
dimensionality. When the number of points per trajectory
increases, it only increases the total number of segments and
the size of the R-tree structure. However, the extra accesses
to the indices are paid off by the reduction of false positives
because of the lower/upper-bounds.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  200  400  600  800  1000

To
ta

l R
un

ni
ng

 T
im

e 
(k

 s
ec

)

Number of Points per Trajectory

(a) 400 Trajectories

Metric based Join
DTW based Join
 wDF based Join

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  200  400  600  800  1000
Number of Points per Trajectory

(b) 1000 Trajectories

Metric-based Join
DTW based Join
wDF based Join

Figure 6: Scaling with Trajectory Length

Our next set of experiments investigates the similarity
join performance with respect to the number of points per
trajectory. We fix the number of trajectories in OB and SF
to 400 and 1000 respectively and increase the number of
points in each trajectory. From Figure 6, we can observe
that our approach scales very well with the number of points
per trajectory, and consistently delivers a speedup of more
than 2 with respect to the DTW based approach. The
speedup increases as the number of points per trajectory
grows from 200 to 1000.

5.2 Effectiveness of wDF

In order to evaluate the effectiveness of our proposed
similarity measure, we use a one-nearest neighbor classifi-
cation algorithm as suggested by Keogh et al. on 20 differ-
ent data sets [16]. These data sets cover various application
domains, e.g., robotics, industry, botany etc. For each group
of data, a training set and a testing set are provided together
with the correct cluster labels. We compare the classifica-
tion error ratio of wDF against that of L2-norm and DTW
from [16], as shown in Table 1.

The classification error ratio of wDF is obtained by
finding the optimal warping window size for the purpose
of this comparison (and so does DTW), and the percentages
in parentheses indicate the ratio of matching window size w
to the trajectory duration. We perform an exhaustive search
using all possible matching window sizes, and report the
one that yield the minimum classification error ratio. We

Data set L2-norm DTW wDF (w)
Synthetic Ctrl. 0.12 0.017 0.02 (13%)

Gun-Point 0.087 0.087 0.027 (0.7%)
CBF 0.148 0.004 0.027 (14.8%)

Face(all) 0.286 0.192 0.142 (2.3%)
OSU Leaf 0.483 0.384 0.421 (3%)

Swedish Leaf 0.213 0.157 0.182 (4.7%)
50 Words 0.369 0.242 0.301 (4.4%)

Trace 0.24 0.01 0 (4.4%)
Two Patterns 0.09 0.0015 0.0045 (14.5%)

Wafer 0.005 0.005 0.0045 (13.2%)
Face(Four) 0.216 0.114 0.307 (2.3%)
Lightning-2 0.246 0.131 0.229 (2.8%)
Lightning-7 0.425 0.288 0.329 (3.8%)

ECG 0.12 0.12 0.13 (1%)
Adiac 0.389 0.391 0.381 (6.25%)
Yoga 0.17 0.155 0.143 (2.1%)
Fish 0.217 0.16 0.181 (1.7%)
Beef 0.467 0.467 0.467 (2.3%)

Coffee 0.25 0.179 0.0714 (2.8%)
OliveOil 0.133 0.167 0.167 (0.5%)

Table 1: Effectiveness of wDF Distance

observe that the classification error rates yielded by wDF
are clearly superior to L2-norm, and is comparable with
DTW (wDF wins in 7 data sets, ties in 2 data sets and
loses the rest). This is because while wDF can handle local
time shifting, it is more sensitive to noise than DTW. We
note that using a uniform window size of 15% yields only
slightly different results [10].

6 Related Work

The problem of turbo-charging data mining process
by similarity join has been investigated in [5] for low-
dimensional data. In this work, we focus on joining spatio-
temporal trajectories and the main goal is to utilize the in-
dex structure to prune a large number of expensive distance
calculation which dominates the join process. A trajec-
tory join using the Lp-norms and a specialized index struc-
ture was presented in [4]. However, the approach can not
be straightforwardly extended to support different spatio-
temporal similarity join.

In [25] the indexing of LCSS and DTW using MBRs
of trajectory segments is explored. However, the proposed
lower-bound distance are calculated in conjunction with
a query sequence, which makes the efficient extension
to similarity join questionable. The issue of what is a
semantically appropriate distance measure for trajectory
similarity is addressed in [19]. [13] considers similarity
search for trajectories using spatio-temporal indices and
proposes a novel distance measure, however the work does
not address the similarity join of trajectories. We note
that the constructing MBRs over time series data for lower
bounding has been explored for other similarity measures

8686



along with the idea of early abandoning [17], [23], [27]. In
this respect, we applied our wDF distance and combine
similarity joins and spatio-temporal indices in the native
space of moving object trajectories [7], [18], [20]

7 Concluding Remarks & Future Work
In this paper, we introduced a new similarity measure

wDF for location-related time series data, based on Fréchet
distance [1]. In order to compute the distance efficiently,
we proposed two approximations for effective upper/lower-
bounding. We then combined these approximations with
spatio-temporal indices in the native space for pruning, and
presented a similarity join framework under our distance
measure that supports a number of different similarity join
variants. Our experimental results have demonstrated the
efficiency and scalability of our proposed technique in
the context of moving object trajectories, and verified the
effectiveness of our distance measure.

One immediate extension of this paper is to improve
the robustness of our distance measure against outliers
in the data. Since wDF is sensitive to noise, one can
alleviate this problem by apply some filtering technique
similar to EDR and LCSS [9], [24] when determining wDF.
We have considered using a median filter to protect the
warping matrix from noise. Our preliminary experiments
indicate that the median filter substantially improves the
effectiveness of wDF for classification purposes. However,
there are two important issues that we need to address:
(1) choosing the optimal filter size, or properly adjusting
it (for adaptive algorithms); (2) median filters need not
yield metric distance, which may slow down the refinement
step of Algorithm 1. We will focus on these issues in the
future work. Another interesting avenue of future work is to
extend our approach towards more general types of motion
and richer representations of the trajectory models.

References

[1] H. Alt and M. Godau. Computing the fréchet distance
between two polygonal curves. Int. J. Comput. Geometry
Appl., 5, 1995.

[2] H. Alt and L. J. Guibas. ”discrete geometric shapes: Match-
ing, interpolation, and approximation”. Handbook of Com-
putational Geometry, 1999.

[3] A. Anagnostopoulos, M. Vlachos, M. Hadjieleftheriou, E. J.
Keogh, and P. S. Yu. Global distance-based segmentation of
trajectories. In KDD, 2006.

[4] P. Bakalov, M. Hadjieleftheriou, E. J. Keogh, and V. J. Tso-
tras. Efficient trajectory joins using symbolic representa-
tions. In Mobile Data Management, 2005.

[5] C. Böhm and F. Krebs. The k-nearest neighbour join: Turbo
charging the kdd process. Knowl. Inf. Syst., 2004.

[6] T. Brinkhoff. A framework for generating network-based
moving objects. GeoInformatica, 6(2), 2002.

[7] V. P. Chakka, A. Everspaugh, and J. M. Patel. Indexing large
trajectory data sets with SETI. In CIDR, 2003.

[8] L. Chen and R. T. Ng. On the marriage of lp-norms and edit
distance. In VLDB, 2004.

[9] L. Chen, M. T. Özsu, and V. Oria. Robust and fast similarity
search for moving object trajectories. In SIGMOD Confer-
ence, 2005.

[10] H. Ding, G. Trajcevski, and P. Scheuermann. Efficient
similarity join of spatio-temporal trajectories. In Techni-
cal Report NWU-EECS-08-01, Northwestern University,
http://www.eecs.northwestern.edu/ hdi117/publications.html,
2007.

[11] T. Eiter and H. Mannila. Computing discrete fréchet dis-
tance. In Technical Report CD-TR 94/64, Technische Uni-
versitat Wien, 1994.

[12] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast
subsequence matching in time-series databases. In SIGMOD
Conference, 1994.

[13] E. Frentzos, K. Gratsias, and Y. Theodoridis. Index-based
most similar trajectory search. In ICDE, 2007.

[14] R. H. Güting, V. T. de Almeida, D. Ansorge, T. Behr,
Z. Ding, T. Höse, F. Hoffmann, M. Spiekermann, and
U. Telle. ”secondo: An extensible dbms platform for re-
search prototyping and teaching”. In ICDE, 2005.

[15] G. R. Hjaltason and H. Samet. Incremental distance join
algorithms for spatial databases. In SIGMOD Conference,
1998.

[16] E. Keogh, X. Xi, L. Wei, and C. Ratanamahatana. The
UCR Time Series dataset. In http://www.cs.ucr.edu/ ea-
monn/time series data/, 2006.

[17] E. J. Keogh and C. A. Ratanamahatana. Exact indexing of
dynamic time warping. Knowl. Inf. Syst., 7(3), 2005.

[18] Y. Manolopoulos, A. Nanopoulos, A. Papadopoulos, and
Y. Theodoridis, editors. R-trees: Theory and Applications.
Springer-Verlag, 2006.

[19] N. Pelekis, I. Kopanakis, G. Marketos, I. Ntoutsi, G. L. An-
drienko, and Y. Theodoridis. Similarity search in trajectory
databases. In TIME, 2007.

[20] D. Pfoser, C. S. Jensen, and Y. Theodoridis. Novel ap-
proaches in query processing for moving object trajectories.
In VLDB, 2000.

[21] Y. Sakurai, M. Yoshikawa, and C. Faloutsos. ”ftw: fast
similarity search under the time warping distance.”. In
PODS, 2005.

[22] G. Trajcevski, H. Ding, P. Scheuermann, R. Tamassia, and
D. Vaccaro. Dynamics-aware similarity of moving objects
trajectories. In GIS, 2007.

[23] M. Vlachos, D. Gunopulos, and G. Das. Rotation invariant
distance measures for trajectories. In KDD, 2004.

[24] M. Vlachos, D. Gunopulos, and G. Kollios. Discovering
similar multidimensional trajectories. In ICDE, 2002.

[25] M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, and E. J.
Keogh. Indexing multidimensional time-series. VLDB J.,
15(1), 2006.

[26] J. T.-L. Wang and D. Shasha. Query processing for distance
metrics. In VLDB, pages 602–613. Morgan Kaufmann, 1990.

[27] L. Wei, E. J. Keogh, H. V. Herle, and A. Mafra-Neto. Atomic
wedgie: Efficient query filtering for streaming times series.
In ICDM, 2005.

[28] O. Wolfson, A. P. Sistla, B. Xu, J. Zhou, and S. Chamber-
lain. Domino: Databases for moving objects tracking. In
SIGMOD Conference, 1999.

8787


