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Abstract. This work introduces methodologies for extending the mod-
elling and querying capabilities of Trajectories Data Warehouses (TDW)
in the context of semantic trajectories. Specifically, we incorporate the
notion of Semantic Relatedness (SR) as part of the formal model of a
TDW, which enables capturing the similarity between different annota-
tions describing Points of Interest (POI), locations and activities used
in specifying semantic trajectories. We formally define the functional-
ity capturing the relatedness between different terms used as descriptors
in semantic trajectories and present the Semantic Relatedness in Tra-

jectories Data Warehouse (SR-TDW) model. We also present the newly
enabled (categories of) queries in the SR-TDWmodel and illustrate them
with specific examples. Our experimental observations demonstrate the
benefits of the proposed approaches in terms of enriched answer-sets of
the common OLAP-based queries and illustrate the sensitivity in terms
of the relatedness measure.

1 Introduction and Motivation

The omnipresence of computing and sensing devices, and advances in networking
and communications enabled the generation of huge volumes of location-in-time
data – O(Peta-Bytes) per year – from the GPS of smart phone users, with up to
400-fold increase if cell-tower locations are included [14]. Efficient storage and
retrieval of such information is essential for various applications – e.g., naviga-
tion, traffic management, disaster mitigation, etc. It is estimated that by 2020,
more than 70% of mobile phones will have GPS capability, up from 20% in 2010
(similar trends apply to cars equipped with dashboard GPS devices) and smart
routing [11] using data produced by such devices is expected to be around $500
billion.

The field of Moving Objects Databases (MOD) [12] has traditionally tackled
the problem of storing and querying moving data produced by entities carrying
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location-aware devices. Recent research has extended moving objects analysis
with an OLAP (Online Analytical Processing) kind of functionality for aggre-
gating application-demanded knowledge, enabling decision-support tasks related
to mobile data. Data Warehousing (DW) models and tools [25] have been aug-
mented with capabilities for processing complex queries in Spatial OLAP (SO-
LAP) and Spatio-Temporal (ST-OLAP) settings [13, 17, 24].

The sequence of spatiotemporal positions of a moving object, having a cer-
tain start and end, is called the object’s raw trajectory. These trajectories are
useful for querying MOD data (e.g., “When is the next train to London ex-
pected to arrive?”). Mobility analysis, however, often does not require the full
raw trajectory, and replacing raw data by certain places of interest (or street
and crossing names) may suffice. For this, we need to identify places of interest
(POIs) where an object stopped for a certain amount of time – or, the other way
around, i.e, a POI may be discovered through the analysis of the time spent at a
certain position. Thus, trajectories can be segmented into a sequence of episodes
characterized as a sequence of stops at POIs, and moves occurring between two
stops. This sequence, having a given start and end, is called a semantic trajec-
tory. Episodes can be further annotated with contextual information, leading
to the notion of semantically-annotated trajectories [6,18]. Figure 1 shows three
semantically-annotated trajectories, ST1, ST2, and ST3, along with some POIs
(restaurants, fast food places, etc), where the trajectories stopped. The trajec-
tory lines link the different kinds of POIs (e.g., street corners, restaurants, etc.).

ST
1

ST
2

ST
3

Fig. 1. Chicagoland trajectories

Trajectory Data Warehouses (TDWs) [8]
and Semantic Trajectory Data Warehouse
(STDW) [3, 20, 26] are aimed at aggregat-
ing and analyzing trajectory data, e.g., using
OLAP and data mining techniques, as exem-
plified with the query Q 1 below to a TDW
containing ST1, ST2, and ST3 in Figure 1:

Q 1: Daily number of trajectories in the first
week of June, that started in the Loop, first
stopped at a restaurant, and then at a coffee
house, both within 2 miles from West Loop.

Typical proposals that extend trajectories
with annotations [5] and account for spatial
data [26], would return ST1 as the only trajec-
tory satisfying both the semantic and spatial
conditions in Q 1, returning “1” as a result
of the COUNT aggregate function. However, a
careful observation of Figure 1 reveals that:
(1) ST2 may also be an acceptable answer,

since it did stop at a fast-food place, followed by a stop at Starbucks; (2) Simi-
larly ST3 stopped first at a fast-food place, and then at a pastry, and thus it may
also be an acceptable answer. Both ST2 and ST3 could satisfy Q 1 depending
on the application and/or user requirements, which must state to what extent
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we can consider a fast-food place analogous to a restaurant, a pastry similar
to a coffee-shop, and so on. For example, we may consider that ST3 is “closer”
to ST2 than ST1 or viceversa, depending on the similarity model adopted. To
account for this problem, in this paper we extend TDWs and STDWs with the
notion of semantic relatedness [2, 7], which enables retrieving concepts of inter-
est and computing aggregates with a predefined correlation value instead of a
strict term matching. We call this novel model SR-TDW (Semantic Relatedness
in Trajectory Data Warehouses). In our example, given a threshold Θ, if the
similarity measure for the attributes correlated to the ones in ST1 in both ST2

and ST3, is ≥ Θ, we would obtain “3” as an outcome of the COUNT value.

Essentially, semantic relatedness quantifies the knowledge of “how close” are
two terms used in the annotation of the respective attributes of the participat-
ing trajectories, examples of which abound. Consider for instance a collection of
trajectories segmented according to “stop” and “move” episodes. Each “move”
episode could be annotated with its associated mean of transportation: the trans-
portation mode of one episode may be a “car”, whereas an episode in the same
or in another trajectory may be “vehicle”. Both are, intuitively, more related to
each other than the term “bicycle”. Similarly, the tags used in activities descrip-
tion (cf. [6]) may vary from “restaurant”, through “fast-food”, to “eatery”, and
all are semantically closer to each other than the term “bar”. Note that, even
though the notion of relatedness may comprise the concept of generalization (like
in the car-vehicle case), it is clearly more general, e.g., there is no generalization
between the concepts of restaurant and bar, although both may be considered
as an specialization of the concept of “food house”. The above example can be
straightforwardly extended to various domains and, to the best of our knowledge,
TDWs have not fully exploited the concept of semantic relatedness, an issue at
the core of our motivation, for which our main contributions are:

— We present the SR-TDW model, which augments the TDW models both by
capturing extended information about semantic annotations of trajectories, and
the relatedness among different (classes of) terms.

— We introduce novel queries/operators which incorporate the value of the
semantic relatedness when determining the candidates for an answer-set.

— We present experimental observations evaluating the benefits of the novel SR-
TDW model when applied on a dataset of semantic trajectories from Chicago,
illustrating the impact of the proposed approach and the different measures for
semantic relatedness on the answer-sets.

In the remainder of this paper, Section 2 introduces the basic terminology and
background about the formalisms used. Section 3 introduces the main modelling
results – the notion of semantic relatedness and how it is incorporated in the SR-
TDW model. In Section 4 we present examples of queries and aggregation with
semantic relatedness. Section 5 presents our experimental observations, Section 6
compares our work with relevant literature, and Section 7 concludes the paper
and outlines directions for future work.
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2 Preliminaries

We now introduce the basics of Semantic Trajectories (ST) and TDWs.

2.1 Semantically Enriched Trajectories

Semantic (synonymously, Symbolic or Enriched) Trajectories [3, 6, 18] em-
bed contextual and/or situational knowledge into location-in-time data. In
a MOD [12] a trajectory is modelled as a structure of the form Tri =
[oID, (xi1, yi1, ti1), . . . , (xik, yik, tik)], where xij and yij (1 ≤ j ≤ k) are the
coordinates of the location (lij = (xij , yij)) of the object with a unique identifier
oID, obtained at time instant tij . In-between two consecutive updates, objects
are assumed to move in accordance with some kind of an interpolation. STs
attempt also to describe the kinds of activities associated with a particular lo-
cation and time – e.g., “stop”, “move”, “walk”, “eat”, etc. Formally (cf. [6,18]),
a semantic trajectory STi is a sequence of so-called, semantic episodes sei,m as
follows:
STi = [sei1, sei2, sei3, . . . seim], where the j-th semantic episode of the i-th se-
mantic trajectory is a tuple of the form:
seij = (daij , spij , x

in
ij , y

in
ij , t

in
ij , x

out
ij , youtij , toutij , tagListij) where:

– daij = defining annotation; typically expressing an activity (verb) such as
stop or move.

– spij = semantic location/position of the activity, like a POI (e.g., a museum,
restaurant, zoo), home, work, etc.

– tinij and toutij = entry/exit times of a semantic position.

– xin
ij , y

in
ij , x

out
ij , youtij = entry/exit coordinates of a semantic position.

– tagListij = any additional semantic information, like transportation mode,
additional activity description (e.g., eat), etc.

As an example, assume that there is a coordinate center (0,0) located at the
bottom-left corner in Figure 1 and the axes are 100 units in length each. Then,
the semantic trajectories ST1 and ST2 in Figure 1 can be specified as:

ST1 = [(drive, Adams St, 50, 10, 10:45, 10, 10, 11:00, drive, car, VW Passat)
(stop, “Roditis”, 10, 10, 11:00, 10, 10, 11:45, restaurant, eat, salad),
(walk, parking lot, 10, 10, 11:45, 11, 10, 11:50, car, VW Passat),
(drive, Randolph St, 11, 10, 11:55, 25, 10, 12:00, car),
(stop, traffic light, 25, 10, 12:00, 25, 10, 12:03, car),
...
(stop,“Starbucks”, 25, 40, 12:25, 25, 40, 1:30, restaurant, eat, dessert, coffee) ]

ST2 = [(move, Dearborn St, 60, 60, 11:30, 60, 40, 11:45, walk),

(stop, “Arbys” , 60, 40, 11:45, 60, 40, 12:30, fast-food, eat, beef),

(move, Dearborn St, 60, 40, 12:30, 60, 35, 13:00, walk),

(move, Chicago Ave, 50, 35, 13:00, 25, 35, 13:25, ride, bus 14),

(stop, “Starbucks”, 25, 35, 13:25, 25, 35, 13:50, coffee, desert),

...

(move, Jackson St, 10, 20, 14:15, 50, 20, 14:40, ride, bus 151) ]



5

While there is a match between the third and the second stop activities in ST1

and ST2, respectively (i.e., both involve “Starbucks”), the first stop activity of
ST2 involves “fast-food”. However, stopping at “Arby’s” (ST2) is, in some sense,
semantically related to stopping by at the “Roditis” restaurant (ST1).

2.2 Warehousing Trajectory Data

Many works have tackled the problem of using OLAP techniques for explo-
ration of spatial data. This has been called SOLAP (for Spatial OLAP) [1].
The basic idea of the solutions proposed is to add spatial data type support to
conventional DW dimensions and measures, yielding the concept of Spatial DW.
When spatial objects vary across time, we are in the field of spatiotemporal data
warehousing (STDW) [24]. Trajectory Data Warehouses (TDW) [17, 24] are a
particular case of STDW, where trajectories (raw or semantic ones) are part of
the DW, either as dimensions or measures. Typically, trajectories are facts which
are segmented into episodes according to associated dimensions, which can be
traditional (i.e., containing alphanumerical data) or spatial [20,21,25]. Another,
simpler approach, consists in dividing the space into a 2- or 3-dimensional grid
(i.e., the dimensions are the x,y,z spatial coordinates). We may also have addi-
tional dimensions representing the moving objects’ profile, the time dimension,
etc. The measures in this approach are a collection of pre-aggregated values of
the trajectories. For example, a measure could be the number of trajectories in
a cell of the grid in a certain time interval. That means, trajectories themselves
are lost. Details can be found in [21, 25]. Finally, some recent work also make
use of the emerging semantic trajectories paradigm, to model so-called semantic
TDWs [8, 26].

In this paper we consider semantic episodes as the basic building blocks for
the SR-TDW model, equivalently, a trajectory segment. Each such fact-episode
is linked to the spatial and temporal hierarchies, and to other dimensions such
as POIs and their geo-coordinates along with other semantic-based information.
Due to space limitations, we assume the reader is familiar with the notion of
traditional OLAP and DWs, so we omit details in this sense.

3 Semantic Relatedness and Trajectories Warehousing

We now introduce the concept of semantic relatedness, apply it to symbolic
trajectories, and define the SR-TDW model.

3.1 Semantic Relatedness

The notion of semantic relatedness quantifies the “semantic proximity” of two
concepts or entities not only via similarity between objects, but also incorporat-
ing other features, like their “popularity” or how often those two entities appear
together or are referenced by users [7, 19]. As discussed in [2, 19] there are var-
ious measures and evaluation techniques for semantic relatedness and multiple
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connections (even multiple hierarchies) can exist between entities – e.g., com-
mon contexts and synonyms, like (car, automobile); hypernymy relationships,
e.g., (car, vehicle) (that means, an isA or subcategory relationship); meronymy
(is-part-of) relationship, like in (finger, hand); or other functional association
not based on lexical relationships, like in (penguin, Antartica) [10].

Restaurant Bar

Steak house Chinese foodThai Italian

Magnum

Rosebud
Siam pasta

Thai Sookdee
Joy YeeLao Sze

Tuscany

Francesca

Fast food

Checkers BurgKing

RedHead

Mothers

Level

1

1

1
1

1

1

1

0.6

1
1

1

1

1
1

0.3

0.6

0.7

1

1

1

1

Fig. 2. Semantic relatedness between terms

Broadly speaking, the calculation of semantic relatedness is based on a graph
in which nodes correspond to terms, and edges represent (strengths of) seman-
tic connections. There are different approaches for assigning weights and tar-
geting a different group of semantic connections [2, 4, 19]. For example, the
approach in [7] makes five passes over the existing connections, where the
first pass inserts the core nodes, which are nouns extracted from WordNet
(http://wordnet.princeton.edu/wordnet/). Nouns are then connected to their
sense, and the probability of the transition from one node to the other is the pop-
ularity of that sense. Weight is then given to synonymy, hyponymy/hypernymy
relationships, and to words appearing in similar contexts (based on the number
of occurrences of a particular meaning in a given context). For a completed graph
and a given edge (n1, n2) between nodes n1 and n2, let Pt denote a non-cyclic
path from node “A” to node “C”. The relatedness between “A” and “C” is cal-
culated as: R(C|A) =

∑
Pt

PPt
(C|A) – sum of all the acyclic paths Pt from node

A to node C, each one representing the likelihood of the relatedness between A
and C based on a given context.

The value of a particular path-similarity between two nodes is calculated
as the product of the weights of all edges along the path that connects them
PPt

(C|A) =
∏

(n1,n2)
P (n2, n1), with edge-weight 0 < P (n2, n1) ≤ 1. As the

edges are multiplied along the path, the similarity value gradually decreases,
which is the desired behaviour: as the number of edges separating the two nodes
increases, the similarity value decreases.
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These concepts are illustrated in Figure 2 where, for example, the relatedness
between Thai Soodkee and Siam Pasta is 1; the relatedness between Siam Pasta
and Joy Yee is 1 + 0.6 = 1.6; and the relatedness between Rosebud and Checkers
is (0.6 + 0.3∗0.7 + 0.6∗0.6) = 1.16.

In this paper we use the notion of relatedness in the semantic trajectory
setting, to augment the traditional geo-spatial and activity-based attributes such
as POIs, walk, etc., with an explicit representation of their relatedness. This
semantic enhancement, which, to the best of our knowledge has not been fully
exploited in TDW setting, has an impact over the query results, allowing to
obtain answers which, otherwise, would remain hidden. We provide a generic
framework for comparing specific POIs, as well as other contextual relatedness
linking the nouns (e.g., in da’s and sp’s from a particular semantic trajectory)
with both nouns and verbs from the tagList (cf. Section 2.1).

3.2 Extending Trajectories Data Warehouses with Semantic

Relatedness

Fig. 3. TDW with Semantic Relatedness

We now proceed with extending STDW with the notion of semantic related-
ness, yielding the SR-TDW model. As we outlined in Section 1, when it comes to
implementing the advanced capabilities for analytical solutions based on trajec-
tory warehousing, there are two foundational approaches: (a) the “raster-like”
one [17] where the 2D geographic space is decomposed into cells of a grid, and,
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for each trajectory, only aggregated data within a cell are kept (e.g., the maxi-
mum speed of the trajectory in the cell, or the distance traversed in the cell); and
(b) the “vector-like” one [20, 25], where trajectory segments are represented as
geometric types. Extended models incorporate the concept of continuous fields
(cf. [21]), which we do not consider in this work. In this paper we follow the
“vector-like” trajectory data warehouse model, and we extend its traditional
functionalities beyond the currently available geo-spatial properties. More specif-
ically, we augment the use of semantics by incorporating the concept of semantic
relatedness as a new fact-table which, essentially, stores instances of the pred-
icate Relatedness(A, B, α), where A and B denote two terms, and α is the
numerical value of their relatedness.

Note: The ETL (Extract, Transform, Load) process is an important component
of a DW – and, in particular the SR-TDW [29]. However, that issue is beyond
the scope of this paper. Thus, in the sequel we assume that the values of the
parameters in each episode and relatedness triplet, as well as the dimension tables
are populated correctly into the SR-TDW, from the respective ST database along
with the other GIS-based facts pertaining to a given geographical region.

We assume that motion is represented as a finite set of points which are
semantically annotated [3, 6, 18] (cf. Section 2.1). Each trajectory consists of
sequential episodes defined with actions that are:

– taking place at a given geo-location with a timestamp related to a POI; or

– have a duration and are taking place in-between two geo-locations;

Our SR-TDW model is illustrated in Figure 3. We can see that it is based
on a constellation schema, where there are two fact tables – one pertaining
to semantic episodes and one to relatedness – sharing dimension tables, which
we explain next. Trajectory episodes (stored in the fact table factEpisode) are
defined by dimensions dimPOIs, dimActivity, dimDateTime, and dimTrajectory.
Thus, a tuple in factEpisode corresponds to a certain trajectory episode occurring
in a time interval, between two (possibly coinciding) POIs, and with a certain
activity occurring throughout that interval. Measures in factEpisode (not shown
in the figure) may, for instance, quantify some activity within each episode, or
be precomputed from the associated trajectory (e.g., the length and/or velocity
within the episode). A more detailed discussion on this issue can be found in [25].
Note that, in addition to being linked with each of its episodes in the fact table,
dimTrajectory has attributes recording its start and end times.

Dimension dimActivity is connected to factEpisode, although it is also a part
of the hierarchy extending the dimension dimTerm. Similarly for dimension dim-

POIs. The rationale is that in a semantic trajectory one needs a coupling between
the da (defining annotation) specifying the main activity and sp (semantic posi-
tion) – which can range between nouns and verbs – essentially being respective
specializations of dimTerm consisting of Part of Speech (POS). This provides a
two-fold genericity in the design of the SR-TDW in the following sense: (1) For
different couplings between nouns and verbs (e.g., (noun, noun), (noun, verb),
(verb, noun)) one can lookup the value of their relatedness from the factRelat-

edness fact table; and (2) Such lookup is enabled among broader POS types,
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e.g., adverbs, adjectives, etc. which, in turn, enables one to also incorporate
the various additional descriptors of a given ST – namely, the ones available in
the tagList (cf. Section 2.1). We note that the “ISA” kind of relationship is not
introduced from the perspective of the (values in the) respective entries from fac-

tRelatedness, but from a standpoint of the warehouse design. The factRelatedness
fact table contains triplets of the form (Term1ID, Term2ID, Relatedness) which,
as mentioned, list the values of the coefficients of relatedness for POS’ couplings.
This enables comparisons of similarities between items such as “restaurant” and
“eat”, as well as specific instances – e.g., “Magnum” and “eat”. It also enables
retrieving the relatedness between terms such as “move” and “bicycle”, or a pair-
wise relatedness between “stop”, “eat” and “salad”. We assume the availability
of the typical aggregate operators (COUNT, MAX, etc.) for relatedness.

POIs are also organized into a geographic hierarchy, and are described by
two level attributes indicating the POI’s name and type (types follow the ones
in Figure 2) – proceeding further with dimGeoLocation and dimZone. Dimensions
dimGeoLocation and dimZone are assumed to have the corresponding geometric
attributes (i.e., L_Geometry and Z_Geometry) capturing the respective geometric
features such as coordinates, polygonal boundary of a zone, etc., along with the
traditional operators for evaluating spatial predicates (e.g., INTERSECT, UNION,
etc) [1,25]. LocationID is a unique key of a given geo-location such as an address
within a city. Note that dimension dimZone is not further normalized towards
the city and state hierarchy, although in certain practical scenario that may be
the case. Lastly, as shown in Figure 3, the temporal and time period dimensions
allow supporting timestamps and temporal intervals.

4 Querying Trajectory Warehouses with Semantic

Relatedness

We now illustrate the novel categories of queries enabled by the SR-TDW model,
with extensions pertaining to Relatedness(A, B, α) predicate, the values of which
are readily available from the corresponding fact table. We begin with the variant
of Q 1 from Section 1, incorporating the notion of semantic relatedness:
Q’ 1: Daily number of trajectories throughout the first week of June, that started
in the Loop, first stopped in a location having a semantic relatedness value ≥ 0.75
with a restaurant, and then stopped in a location having a semantic relatedness
value ≥ 75% with a coffee house, both within 2 miles from West Loop.
Given the schema in Section 3.2, the corresponding SQL query statement is:

WITH AtORNearWestLoop(POI_ID, TermID) AS WITH StartAtLoopWJ(TrajID) AS
(SELECT POI_ID, TermID (SELECT TrajID

FROM dimPOIs, dimZone, FROM dimTrajectory Tr, dimGeoLocation L1,
dimGeoLocation L1 dimDateTime DatT, dimZone Z1

WHERE L1.LocationID = dimPOIs.LocationID WHERE Tr.StartDateTimeID = DatT.DateTimeID

AND dimZone.ZoneName = ’West Loop’ Tr.TrajStartLocationID = L1.Location_ID AND
AND (L1.ZoneID = dimZone.ZoneID OR L1.Zone_ID = Z1.Zone_ID AND Z1.Name = ’Loop’ AND

DISTANCE(L1.L_Geometry, dimZone.Z_Geometry) < 2)) DatT.Date BETWEEN ‘2014/06/01’ AND ‘2014/06/07’

WITH AtWestLoopRest(TrajID, TimeID) AS WITH AtWestLoopCoffee(TrajID, TimeID) AS
(SELECT TrajID, EpisodeID, POI_ID (SELECT TrajID, EpisodeID, POI_ID
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FROM StartATLoopWJ SLTr, AtORNearWestLoop WL1 FROM StartATLoopWJ SLTr, AtORNearWestLoop WL2

factEpisode FE1, dimPOIs, dimTerm DT1, dimTerm DT1 factEpisode FE2, dimPOIs, dimTerm DT1, dimTermDT2
dimDateTime DatT, factRelatedness FR1 dimDateTime DatT, factRelatedness FR2

WHERE SLTr.TrajID = FE1.TrajID WHERE SLTr.TrajID = FE2.TrajID
AND FE1.StartPOI_ID = FE1.EndPOI_ID AND FE2.StartPOI_ID = FE2.EndPOI_ID

AND FE1.StartPOI_ID = WL1.POI_ID AND FE2.StartPOI_ID = WL2.POI_ID

AND FE1.TimeID = DatT.Time_ID AND FE2.TimeID = DatT.Time_ID
AND WL1.POI_ID = dimPOIs.POI_ID AND WL2.POI_ID = dimPOIs.POI_ID

AND ((dimPOIs.TermID = DT1.TermID AND ((dimPOIs.TermID = DT1.TermID
AND DT1.name = ’restaurant’) AND DT2.name = ’coffee house’)
OR OR

(dimPOIs.TermID = DT2.TermID dimPOIs.TermID = DT2.TermID
AND DT1.TermID = FR1.Term1ID AND DT1.TermID = FR2.Term1ID

AND DT2.TermID = FR1.Term2ID AND DT2.TermID = FR2.Term2ID
AND FR1.Relatedness > 0.75))) AND FR2.Relatedness > 0.75)))

SELECT DatT1.Date, COUNT(*)
FROM StartAtLoopWJ SLTr, AtWestLoopRest WLR, AtWestLoopCoffee WLC,

dimDateTime DatT1, dimDateTime DatT2
WHERE SLTr.TrajID = WLR.TrajID AND SLTr.TrajID = WLC.TrajID

AND WLR.TimeID = DatT1.TimeID
AND WLC.TimeID = DatT2.TimeID

AND DatT1.Date = DatT2.Date
AND DatT1.Time < DatT2.Time

GROUP BY DatT1.Date

The first pair of WITH clauses select the POIs inside or within 2 miles from
West Loop and the trajectories which started in the Loop during the first week
of June in 2014, respectively. The crux of processing Q’ 1 is in the next pair
of WITH clauses, which retrieve all the places at or near West Loop, having
semantic relatedness > 75% with the term “restaurant” as well as the term
“coffee house”. Clearly, this is an overhead which involves accessing extra tables
to generate the respective POIs. However, this provides an enrichment to the
answer-set, as opposed to having only “restaurant” and “coffee house”. The main
SQL query references the previous two tables and ensures the sequence of the
visit by the candidate-trajectories.

Examples of other categories of queries enabled by the semantic relatedness
embedded in SR-TDW follow. Due to a lack of space, instead of presenting their
full SQL-based syntax, we describe their main features and discuss approaches
for processing them in the context of SR-TDW.
Q 2: Weekly average semantic relatedness of any two downtown locations visited
by the same trajectory within 1 hour from each other, throughout the month of
January 2015.

This query exemplifies an analytics-motivated scenario where one may be
interested in quantifying the relatedness among the places that a particular in-
dividual would visit sequentially within 1 hour (e.g., from theater to a restaurant;
from ATM to a bar; etc.). In some sense, queries like Q 2 may be used as another
kind of context for exploring a strength of semantic proximity between terms –
e.g., the ”semantic strength” of the relationship between ATM and bar may be
detected to be greater than the average, in the sense of sequentiality of visits
within temporal bounds. In addition, one may reason about the variations in the
relatedness values based on the temporal hierarchy.
To process Q 2, we first need to identify the pairs (fE1, fE2) of factEpisode’s,
such that: (1) they belong to a same trajectory (fE1.TrajID = fE2.TrajID);
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(2) the two instances of the factEpisode’s are of a type “stop” at POIs; the
location of the POIs are within the “downtown” zone; and the value of the
Time attribute of the respective EndDateTimeID of the first stop-episode is no
earlier than 1 hour from the Time of the respective StartDateTimeID of the
second stop-episode. Note that, depending on the dataset (i.e., if there are many
”historic trajectories”), one would probably first eliminate all the episodes that
are not from the month of January. Subsequently, this temporary result can be
projected upon the respective StartPOI_ID attributes4 for each of the fE1 and
fE2, join the result of this projection with the corresponding pairs of values in
the factRelatedness table (via respective matching values POI_ID in dimPOIs and
TermID in dimTerm). The value of the AVG(...) aggregate is then applied to the
Relatedness column of this temporary table, grouped by the Week.

Q 3: Average duration of the trajectories who have visited sequentially at least
two POIs within the same geographic zone, and with semantic relatedness greater
than the maximum relatedness between a restaurant and any other POI in that
zone.

Q 3 aims at detecting an average trip of the trajectories for the individuals
who tend to visit semantically “close” POIs which are also located within same
spatial boundaries (at the level of zone in this case). As an additional condition
– e.g., for the purpose of targeted online advertising, the semantic proximity of
the POIs is required to be greater than the highest one between a restaurant in
that zone and any other POI.

To calculate the answer-set for Q 3, the main observation is that we first need
to obtain the average of all the tuples from the factRelatedness table, for which
one of the TermID1 or TermID2 is bound to “restaurant”, denote it MAX-RestSR.
In addition, we select the TrajID, duration, and the semantic episodes having
a “stop” at some POIs, filtering out the ones with ≤ 1 such episodes. We can
execute a Θ-join over the last temporary table, retaining only those pairs of
tuples for a given TrajID for which the stops at POIs are consecutive (i.e., there
does not exist any other factEpisode with a stop-kind of POI at a time that is
in-between the ones for the pair with itself) and their locations are in the same
zone. Finally, we filter out all the tuples for which the pair of POIs has semantic
relatedness < MAX-RestSR, and report the average duration of the rest of them.

Q 4: Number of triplets of locations, each being visited by more than 1000 tra-
jectories throughout the month of March 2015, and having at least one pairwise-
relatedness value smaller than the average relatedness involving any coffee house.

The peculiarity of Q 4 stems from the fact that it retrieves triplets of
locations, whereas table factRelatedness has only pairs of terms, along with
the corresponding semantic relatedness value. To find the POIs visited by
> 1000 trajectories throughout March 2015, we firstly select the trajectories
for which the respective Date of TrajBeginDateTimeID key is no later than
’2014/03/31’, or the respective Date of TrajEndDateTimeID key is not earlier
than ’2014/03/01’. Using the remaining TrajID values we can join factEpisode

and dimPOIs, and then group them by POI_ID, Traj_ID, with a subsequent con-

4 Since each episode is of a “stop” type, the StartPOI ID and EndPOI ID coincide.
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dition of HAVING COUNT(*) >= 1000. Retaining the time values in this tempo-
rary result, we can construct the triplets of such POIs enforcing that each triplet
is sorted by the StartDateTimeID of the corresponding semantic episode. This
will alleviate the problem of a permutation of the same triplet occurring multiple
times – which can not be eliminated via simple SELECT DISTINCT.... Then, for
each pair of a given triplet, we need to check whether it satisfies the condition
of having the relatedness value smaller than the average relatedness for all the
pairs from factRelatedness having one of the terms being ’coffee house’.

(a) Trajectories

(b) Zones

Fig. 4. Data generation

The issue of efficiency of processing is beyond the
scope of this work. We note however that, depending
on the actual instance of the SR-TDW, an alternative
plausible strategy would be to generate the triplets of
TermIDs from factRelatedness for which at least one
pair has relatedness smaller than the average related-
ness for all the pairs having one of the terms being
’coffee house’. This can be joined with the triplets
of POIs visited by > 100 trajectories – however, the
join condition should account for the possibility of a
permutation in the representations.

We close this section with a reminder that, while
the features of the SR-TDW model were illustrated
using scenarios involving eateries and coffee places
from Chicagoland, the applicability is more general
(cf. [29]).

5 Experimental Evaluation

We now present the details of our experimental eval-
uation, firstly discussing the dataset and queries, fol-
lowed by the quantitative observations.

We generated collections having 500, 1000, 2000,
3000 and 4000 trajectories using Chicago roadnet-
work, and for each cardinality of trajectories, we fur-
ther generated sets with drive times of 400, 1000,
1000, 4000, 8000 and 10000 seconds. The routes of
the trajectories are within a rectangular boundary
5 · 10 miles2 around the downtown area, using the
MNTG (Minnesota Traffic Network Generator) tool, publicly available at
http://mntg.cs.umn.edu/tg/index.php [15]. As mentioned, the ETL phase is be-
yond the scope of this paper, however, for the purpose of conducting the ex-
periments – given that the maps used in MNTG are based on the Open Street
Map (OMS – http://www.openstreetmap.org), we used sources based on OMS
(http://poidirectory.com/poifiles/united states/) to introduce actual POIs from
the underlying map – including restaurants, coffee houses, fast food places, bars
and theaters.
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Measures: Leacock and Chodorow Resnik Wu and Palmer

Intervals of Values 0—3.6889 0—12 0—1

(The Gage, Cadillac Palace) 2.0794 3.9425 0.7778
(Starbucks, Bank of America Theatre) 2.0926 5.3823 0.8421

(Quartino, Urban Counter) 1.204 0.6144 0.3529
(Urban Counter, Starbucks) 1.1239 0.6444 0.3529
(coffehouse, restaurant) 2.9957 8.3 0.9474

(Starbucks, The Purple Pig) 2.9957 8.3 0.9474
Table 1. Semantic Measures

Since MNTG allows a generation of trajectories for at most 1000 time-
units (time-unit = 2 sec.), we repeated the process and appended the out-
comes, in order to have the datasets of duration described above. Also, the
trajectories generated via MNTG do not have stop-points, therefore, we ran-
domly picked trajectories passing on a road-segment along a given POI and ”in-
duced” a stay between 5–180 minutes, respectively shifting the time-stamps in
the subsequent points, yielding up to 3000 trajectories. We repeated the above
procedure in order to generate a week-worth of trajectories data, varying the
timings and the POIs. Lastly, we relied on the map of Chicagoland neighbor-
hoods (http://en.wikipedia.org/wiki/Community areas in Chicago) to generate
the boundaries of the respective zones. Figure 4 illustrates the data sources’
settings used in our experiments. The corresponding semantic trajectories were
inserted as UDTs in Microsoft SQL Server 2012, which enables direct manipula-
tion of (latitude, longitude) values in the ST_Geography – an added convenience
when translating the trajectories and POIs data.

Fig. 5. SR and Answer-sets

In total, there are 10,000 pairs
of terms in the factRelatedness ta-
ble and – to provide an extra de-
gree of context – we used three dif-
ferent sources for the values stored
in the “Relatedness” attribute of
the factRelatedness table (cf. Fig-
ure 3), based on three different
measures: Leacock & Chodorow
(LC); Resnik (Res); and Wu &
Palmer (WP) [4,19]. As recognized
in the literature, different mea-
sures have different numeric val-
ues and distributions, and we il-
lustrate these effects with sample-
values shown in Table 1. As can be
seen, the largest range of values is
associated with the Resnik mea-

sure, whereas the smallest range is associated with Wu & Palmer. Looking at the
last two rows, we see that in all the measures, the values for the pair (coffehouse,
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restaurant) coincide with the ones for (Starbucks, The Purple Pig) – which illus-
trates how we added actual POIs to the concepts available at WordNet: namely,
for each POI from Chicagoland, we obtained its type and then added it as a new
“link” to the term matching its type, and with a weight of 1.5 However, there
is another interesting observation – namely, the distribution of similarity values
among pairs of terms exhibits variations among measures.

Our first set of experimental observations illustrates the dependency of the
size of the answer-set on the size of the trajectories data, averaged over 3 different
values of the semantic relatedness Θ for each of the three measures. Specifically,
we used Θ ∈ {50%, 75%, 90%} of the interval of values in each of the three mea-
sures from 1 in Q’ 1 from Section 4 and averaged the size of the output. What
is apparent from Figure 5 is that, as expected, regardless of the measure, the dif-
ference between the size of the answer-sets with relatedness and without one, is
increasing proportionally with the number of trajectories. Table 2 shows actual
samples of values of the COUNT aggregate distributed per day of week for two
values of Θ (50% and 75%) obtained as part of our experiments. The quadruples
in each cell show the values when LC, Res, WP and Base (No Relatedness) values
are the ones for 1000 trajectories.

Day: Mon. Tue. Wed. Thu. Fri.

Θ = 50% [49,20,49,5] [83,69,83,5] [42,17,43,1,] [54,21,52,5] [23,10,23,2]
Θ = 75% [20,5,37,5] [69,5,81,5] [17,1,35,1,] [25,5,51,5] [10,2,15,2]

Table 2. Examples of COUNT values

Two observations from Table 2 reveal the impact of the relatedness: (1) As
expected, the smaller the threshold value, the larger the increase of the size of
the answer-sets; (2) Unlike LC and WP, the Res measure has a sharp decline in
the increase of the dataset with the increase of Θ. The reason for it is that the
most of the values in Res are distributed close to the middle of the range, in a
much denser manner than the ones in LC and WP. This, in turn, has a practical
consequence that one needs to be cautious when selecting a particular measure
– a context-based topic which we plan to investigate in the future.

The second part of our experimental observations is aimed at illustrating
another perspective of the impact of Θ values for different measures. Figure 6
shows the extreme discrepancies in the sizes of the answer-sets for each measure.
Thus, for instance, at Θ = 50%, the largest answer-set for the LC measure was
109 on the 2nd day of the week, at which day the Base variant of the query had a
value of 5 for the count of the trajectories – hence, the discrepancy of 104. Again
we observe that Res has a sharp decline with the increase of Θ, followed by LC,
whereas WP retains the capability of generating substantially larger answer-sets
even with Θ = 90%.

5 We note that all of our: datasets and scripts used for conversion; scripts for uploading
the tables; the database instance(s), queries and the scripts for executing them – are
publicly available (http://www.eecs.northwestern.edu/˜goce/research)
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Fig. 6. Θ and Extreme Discrepancies

Our last set of experiments mea-
sured the computational overheads in-
duced by allowing semantic related-
ness as part of the queries processing.
As expected – and illustrated in Ta-
ble 3 – incorporating the relatedness
does affect the overall time to com-
plete processing a particular query
processing. However, it is a trade-off
that one has to consider as part of the
business policies related to a particu-
lar query. Once again we show the av-
eraged values of the execution times
for the different ranges of the param-
eter Θ (∈ {50%, 75%, 90%}) and we
observe that the execution overheads

increase with the size of the input trajectories data. Given the intended use of
the analytics enabled with the SR-TDW, a careful selection of Θ might strike
a balance between the richness of the answer-set and the time-efficiency of the
execution.

Dataset Size: 500 1000 2000 3000

With Semantic Similarity 108 204 390 820
Without Semantic Similarity 49 99 182 296

Table 3. Execution Times (seconds)

6 Related Work

A cohesive collection of works tackling various aspects of mobility data was
presented in [21]. The paradigm of semantic trajectories [6, 18] generated novel
challenges addressed by the database community. In [23], the traditional settings
of Nearest-Neighbor query for spatial data were augmented by allowing keywords
associated with the locations. A modified distance function – extending the Eu-
clidian spatial one – was introduced in order to incorporate the matching between
the list of keywords associated with location data, along with a novel indexing
structure (IR2 tree) to speed up query processing. Further, Chen et al. [5] pro-
posed to evaluate the distance (respectively, similarity) between two sequences
of visited locations, not only based on geographic distances but also in terms of
(minimum) matching of the keywords associated with such locations. The process
of combining the raw (location, time) data with segmentation and annotation
was addressed in [29], where a platform for semantic enrichment of trajectories
was presented. While capitalizing on the definitions of semantic trajectories, our
work differs in two main aspects: (1) instead of a set-based matching and/or
containment between collections of terms, we consider the semantic relatedness
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among the annotations/descriptors; (2) we focus on the role and impact of the
semantic relatedness in the context of aggregation in SR-TDWs.

Traditional Data Warehouses [25] have demonstrated their applicability with
transaction-level data and computing its various aggregates. However, recent ex-
pansion of user-needs for data with contexts beyond the standard dimensions –
specifically: location/geography, time and semantic description of the activities
– have brought various novelties to the DW models. A taxonomy of different spa-
tial, temporal and spatio-temporal DWs is presented in [24] and, building upon
those formalisms, several works have addressed problems related to our proposal.
A framework for modeling Trajectory Data Warehouse (TDW) was presented
in [13] providing key insight about OLAP operations for moving objects. Re-
lated problems were investigated in [9] from the perspective of formalizing the
process of the design and querying a TDW, and [17] addressing the computa-
tion of aggregate functions in TDW. We leveraged upon the TDW model and
OLAP operations tackled in these works, augmenting the scope of applicability
of these approaches by seamlessly incorporating the notion of semantic relat-
edness both in the modelling and the querying aspects of TDWs. The work by
Parent et al. [18], which incorporates fundamental definitions for the notion
of semantic trajectories, was enriched by Wagner et al. [26] via a data model
capturing the Why, Who, When, Where, What and How (5W1H) aspects, fo-
cusing around a central fact connected to dimensions that source the semantic
information on the transaction level. The addition of ontologies to the data mod-
els [16] enabled semantically meaningful hierarchies. As a next step in the evolu-
tion of the semantic/symbolic data representation, [6] pays particular attention
to adding semantic tags, annotations and definitions in the representation for
trajectories/moving objects. With a great level of detail [3] represented a geo-
spatial semantic data model which encapsulates most of the semantic annotation,
tags, actions and definitions previously mentioned. The work enabled answering
questions related to the trajectory behaviour, goal and transportation means.
Extending the semantics behind the trajectories, [8] implemented movement
segment hierarchies, distinguishing concepts from instances or objects. While
introducing ontologies to represent the semantics of the movement segments
and their categories, the work does not go beyond these concepts to represent
the semantics of the trajectories and their activities. Additional works stem-
ming from the semantic representation of trajectories [22, 27, 29] advanced the
semantic trajectories approach with ontologies, cross-scale analysis and a seman-
tic computing platform, respectively. All these approaches introduce a certain
level of semantics-based description to augment the raw spatio-temporal data –
however, none of them addresses the inferences of semantic meaning enabled by
the approaches and measures that we used in this work [2, 4].

7 Concluding Remarks and Future Work

We addressed the problem of augmenting trajectories data warehouses with the
concept of semantic relatedness and increasing their similarity-awareness when
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answering users’ queries. We presented the corresponding constellation schema
and described novel queries enabled by the SR-TDW model. Our experiments
demonstrated that the proposed methodologies yield richer answer-sets, which
vary based on the measure used. As part of our future work, we are planning
to devise efficient approaches for similarity among semantic trajectories combin-
ing both semantic relatedness and dynamics of motion in the distance functions
(cf. [5,23]). We will also tackle problems related to incorporating moving shapes
(e.g., landslide, hurricanes, oil-spills) and different spatio-temporal patterns (e.g.,
flocks, clusters) [8] in the framework of SR-TDW, along with extending the for-
malisms and platform in [28,29] with semantic relatedness. Among our primary
objectives is to address efficiency-related tasks, both from the perspective of
the design of warehouse schemata (e.g., different constellation-models [20]) and
queries optimization and, as part of that process, to deeper investigate the impact
of the relatedness measures as well as augmenting the types of measures used [7].
Lastly, we will try to increase the impact of the relatedness by both broadening
the terms sources [2] as well as increasing the efficiency by application-based
narrowing of the context [3].
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