
Chapter 3

Uncertainty in Spatial Trajectories

Goce Trajcevski

Abstract This chapter presents a systematic overview of the various issues and so-
lutions related to the notion of uncertainty in the settings of moving objects tra-
jectories. The sources of uncertainty in this context are plentiful: from the mere
fact that the positioning devices are inherently imprecise, to the pragmatic aspect
that, although the objects are moving continuously, location-based servers can only
be updated in discrete times. Hence come the problems related to modelling and
representing the uncertainty in Moving Objects Databases (MOD) and, as a con-
sequence, problems of efficient algorithms for processing various spatio-temporal
queries of interest. Given the ever-presence of uncertainty since the dawn of philos-
ophy through modern day nano-level science, after a brief introduction, we present
a historic overview of the role of uncertainty in parts of the evolution of the human
thought in general, and Computer Science (CS) and databases in particular, which
are relevant to this chapter. The focus of this chapter, however, will be on the impact
that capturing the uncertainty in the syntax of the popular spatio-temporal queries
has on their semantics and processing algorithms. We also consider the impact of
different models in different settings – e.g., free motion; road-network constrained
motion – and discuss the main issues related to exploiting such semantic dimen-
sion(s) for efficient query processing.

3.1 Introduction

Historically, the impact of the imperfect knowledge on the reasoning and belief has
been a topic that has attracted a lot of research interest among both philosophers
and logicians [41, 63, 44, 123]. With the advent of the computing technologies,
as various domains of Computer Science (CS) have emerged, the importance of
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capturing the uncertain/probabilistic nature of the data has been recognized in many
of them:

• Artificial Intelligence which, in a sense popularized the Possible-Worlds seman-
tics [6, 40, 158].

• Knowledge Representation and Reasoning along with Logic Programming and
Deductive Databases [1, 7, 98, 173].

• Incorporating it on top of the traditional database technology [16].
to list but a few.
Due to the novel application domains along with advancements in database tech-

nology, a lot of recent research has been undertaken, addressing problems in mod-
elling and efficient querying of imprecise/uncertain data [2, 20, 111, 125, 133, 134].
In the past two decades, the advances in sensing and communication/networking

technologies, along with the miniaturizations of computing devices and develop-
ment of variety of embedded systems have spurred the recognition of the importance
of Location Based Services (LBS) [126] in a plethora of applications. Frommilitary,
through structural and environmental monitoring, disaster/rescue management and
remediation, to tourist information-providing systems – the efficient management of
large amount of (location, time) data pertaining to mobile entities over (large) pe-
riods of time is a paramount. After several works and development of some ad-hoc
solutions [89], the field of Moving Objects Databases (MOD) [56, 163] emerged
in the late 1990’s as an enabling technology for the LBS-related applications, pro-
viding formal foundations and bringing about development of prototype system-
s [51, 69].
Contrary to the typical assumptions in:

1. Spatial databases [19, 76, 130, 142], where the data items may have dimension-
ality and extent, but are (relatively) static over time;

2. Temporal databases [35, 72, 132], where the main objective is capturing the
time-varying nature of the data in various application domains; and

3. Time-series [79, 78, 116, 177], where the values of the data samples over time
often pertain to a single dimension,

in MOD-settings, the objects are assumed to move, either freely in the 2D (or even
3D) space [90, 52, 131], or constrained by a road network [38, 50, 28, 154]. The
main features of spatio-temporal data sets:

1. The discrete data samples are expected to represent a continuous motion over
the given space, thereby necessitating some type of an interpolation; and

2. The typical queries of interest (e.g., whereabouts-in-time, range, (k)nearest-
neighbor, reverse nearest-neighbor, skyline) are continuous – which is, their
answers need to be re-evaluated in time, or even persistent (cf. [131]) – which
is, in addition to re-evaluating the answers over time, one may need to take into
consideration the entire history of the motion;

have influenced a large body of works addressing issues related to modelling/ repre-
sentation, indexing and querying such data [9, 14, 24, 80, 37, 99, 109, 59, 112, 71,
93, 60, 97, 105, 164, 102, 119, 106, 140, 139, 141, 155, 169, 172]
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In practice, the location data at different time-instants is obtained by some po-
sitioning devices like, for example, a GPS-enabled device on-board a moving ob-
jects, which eventually transmits the location to a MOD server(s). However, GPS
receivers only approximate the actual position of the respective sensor or object due
to physical limitations and measurement errors of the sensing hardware [27].
The position data may be obtained by some other (collaborating) tracking-

devices e.g., roadside sensors [26]. Even more so in application settings like intrusion-
detection and environmental monitoring, where the tracking of the moving object of
interest is based on collaborative trilateration and continuous hand-off among the
participating sensors [39, 137, 62, 110, 136, 176, 179, 180]. In addition to the inter-
polation in-between consecutive location samplings, the imprecision of the devices
involved, both GPS-based as well as sensor-based, is yet another source of uncer-
tainty. But another example of location imprecision is the investigation of trajecto-
ries of various particles in physical and chemical processes [121].
Motivated by these observations, many researchers have focused on addressing

the problem of uncertainty management in MOD settings [5, 21, 31, 30, 67, 66, 83,
85, 86, 91, 94, 108, 113, 115, 114, 143, 149, 145, 159, 160], also considering the
impact of the restriction of the motions to road networks [5, 31, 30, 45, 84, 83, 178].
While it is often the case to assume that the possible locations of a given object
at a particular time-instant is obeying a uniform distribution within certain bounds,
recent works have addressed the impact of the different pdfs [21, 67, 159].
An important observation when it comes to incorporating uncertainty into the

processing of spatio-temporal queries is that, in order to relieve the user from fac-
toring it out from the answers, it needs to be incorporated in the very syntax of the
given query [18, 88, 103, 115, 149, 145, 148, 171]. Although many of the existing
works have focused on uncertain point-objects with (mostly) linear motion with con-
stant speed in-between updates, some recent results have addressed the uncertainty
aspects of points/lines with extent [157], and even uncertain fields [43, 170]. Such
models are necessary to capture, for example, the trajectory of the ”eye” of a given
hurricane [152] – however, in addition to the ”eye” being uncertain, the (moving)
spatial zone affected by that hurricane is also uncertain.
This chapter gives an overview of the research results in the field of managing and

querying uncertain trajectories data, in a manner that will strike a balance between
the breadth and the depth of the different topics presented in the existing literature.
The intended goal is to present a body of materials in a manner that will be suit-
able for both non-specialists to get introduced to the field, and specialists to get a
coherent presentation that could help influence the selection of research directions.
In the rest of this chapter, in section 3.2.3, we will overview the historic evolu-

tion of the incorporation and treatment of uncertainty in the philosophy and logic1,
as well as certain CS-areas related to AI and databases, along with time-geography
and geometry. Subsequently, Section 3.3.2 will address the role and impact of un-
certainty in spatial databases and temporal databases, paving a way for the crux
of the material of this chapter which will follow in Sections 3.4 and 3.5. After a

1 It is well beyond the scope of this chapter to discuss the importance and the treatment of uncer-
tainty in all the different scientific fields like, for instance, physics, chemistry, etc.
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brief formal overview of the notion of trajectories and spatio-temporal queries2,
we will focus on a thorough analysis of the issues related to incorporating the un-
certainty into the trajectories’ data model, queries-syntax, and the corresponding
processing algorithms. Specifically, Section 3.4 will present uncertainty models for
free-space motion as well as models of uncertainty for motion restricted to road net-
work. Subsequently, in Section 3.5, we consider the issues that uncertainty brings
in the query processing, and we present examples of different (type of query, un-
certainty model) couplings. Section 3.6 concludes this chapter and gives a brief
overview of the role of trajectories uncertainty in a broader context and application
settings.

3.2 Uncertainty Throughout the History

We now discuss the evolution of the treatment of the uncertainty along different
aspects of the evolution of the human thought. Firstly, we will review the uncertainty
of the knowledge/belief and how philosophers and logicians throughout the history
have addressed its formalization(s). Subsequently, we follow up with discussing
the role and treatment of the uncertainty in the fields of Artificial Intelligence and
Databases. The last part of the section touches upon the fields of time-geography
and inexact geometries.

3.2.1 Philosophy and Logic

As part of the philosophy focusing on principles of valid reasoning, inference and
demonstration, logic has had its presence in many of the ancient civilizations –
Babylon, Egypt, China and India – clearly demonstrated in some inference rules
related to geometric and astronomical calculations. However, the philosophical for-
m of logic that is likely the most influential one for the Western and Islamic cultures,
bringing about a symbolic and purely formal axiomatic treatment – is the one de-
veloped in ancient Greece, as first formalized by Aristotle. Even the earliest works,
however, observed that some aspects of formalizing the thought required the con-
cepts of knowledge and/or belief, leading to the so called epistemic logic [13] which
focuses on their systematic properties. The syntax of epistemic logic extends the
propositional logic with the unary operator Ka (or Ba) applied to the traditional
propositions. Thus, BaP denotes ”the agent a Believes P”, where P is any proposi-
tion, and its meaning/semantics is: in all possible worlds compatible with what the
agent a believes, it is the case that P [64].
Although the epistemic logic has found numerous applications in fields like CS

(AI, Databases) and economics, it was the modal logic [17, 42] that provided a

2 Addressed in greater detail in Chapter 2.
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perspective for incorporating the uncertainty into a systematic framework, enabling
a qualification of the truth/falsity. Intuitively, a modality is any word or phrase that
can be applied to a given statement S which, in a sense, creates a new statement that
makes an assertion about the mode of truth of S – when, where or how S is true (or
about the circumstances under which S may be true) [42]. For a given proposition
P, the two main operators of the modal logic are:

1. �: denoting necessity – e.g., �P ≡ it is necessary that P.
2. �: denoting possibility – e.g., �P ≡ it is possible that P.

Several approaches have been undertaken towards axiomatization of the modal
logic, however, it was not until the work of Kripke [81] that the semantics and
model-theoretic aspects were fully considered. Given that a particular semantics is
as good as its entailment relation (within a given model) can ”mimick” the conse-
quence relation in terms of syntactic derivability, the main novelty of the, so called,
Kripke structures (or frames) is that they provided a foundation for connecting a par-
ticular modal logic to a corresponding class of frames, thereby enabling reasoning
about its (in)completeness. As a specific example, instead of evaluating a composite
formula based solely on the true/false value of its primitive constituents, one may
consider the behavior of the composite formula when the truth values of the con-
stituents are changing gradually from false to true according to some ”scenario”
(cf. [29]). A thorough treatment of the topic is well beyond the scope of this chapter
– however, the main influence of this line of works is that they brought in agnitio
one concept that has been widely used since – the possible worlds3

3.2.2 Uncertainty in AI and Databases

Due to its close relationship with logic and, for that matter, extensive use of the
Logic Programming paradigm, AI is one of the very first CS fields that have adopted
the concept of possible worlds. The Possible Worlds Approach (PWA) is a power-
ful mechanism for incorporating new information into logical theories, studied by
philosophers interested in belief revision and scientific theory formation [3], as well
as database theorists [1, 36]. The basic premise of PWA is to keep a single model
of the world that is updated when actions are performed. The update procedure in-
volves constructing the nearest world to the current one, in which the consequences
of the actions under consideration hold. As explained in [158], the PWA-based re-
vision of a theory can be summed up as: To incorporate a set S of formulae into an
existing theory T, take the maximal subset T of T that is consistent with S, and add
S to T. This is one of the approaches undertaken for the problem of minimality of
view updates in databases [46].
Although it aimed at bringing about computationally efficient procedures for rea-

soning about actions, PWAwas shown to have problems when it comes to, so called,

3 We respectfully note that philosophers and logicians are likely to disagree that semantics based
on Kripke frames are model-equivalent to the one based possible worlds.
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frame, ramification, or qualification issues, due to the fact that it did not distinguish
between the state of the world and the description of the state of the world [158]. As
a remedy, the Possible Models Approach (PMA) was introduced, which observed
the models of a given theory T, rather than its formulae. The goal of PMA is to
change as little as possible the models of T in order to make the new set of formulae
S true. Once the focus has shifted on the models, reasoning about actions became
more amenable to incomplete information.
The archetypical example of uncertainty in traditional relational databases was

the one of an absence of value for a particular attribute, denoted as NULL. This value
is not associated with a particular type and, more importantly, it implies involvemen-
t of the three-valued logic, adding the unknown value in the picture and disturbing
the ”cushy” Closed World Assumption (CWA) model of relational databases. With
NULL value, one is no longer justified to assume that the values stored within a
database correspond to a complete version of the world and everything not stored in
the database is false – thereby imposing the Open World Assumption and demand-
ing extra caution when using SQL in practice.
A plethora of novel application domains such as Location-Based services, health

and environmental monitoring based on sensor data analysis, biological image anal-
ysis, market analysis and economics – generate a vast amount of data which is in-
herently uncertain due to the imprecision of measuring devices, randomness and
delays in data updates. This has spurred a tremendous research interest in proba-
bilistic databases [2, 11, 10, 20, 92, 125, 133, 167]. In these settings, one typical
feature is that some attributes are probabilistic, in the sense that their values are giv-
en by a probabilistic density function (pdf) – however, in practice, one cannot hope
to have the pdf available and must rely on samples instead. In general, a probabilistic
database can be thought of as finite set of probabilistic tables – one for each plau-
sible value of the uncertain tuples, associated with membership probability. If the
probability of a particular instantiation for the objects in the database is greater ze-
ro, then that particular instantiation constitutes one of the possible world. The main
problem is that the cardinality of the set of all the possible worlds is exponential
in the number of uncertain objects [6]. In addition to complicating the issue of the
semantics to the answers of the queries, the large number of possible worlds clearly
imposes computational costs in their processing – enumerating the answers in all
the possible worlds is infeasible in practice. Hence, the researchers have resorted
to balancing tradeoff between accuracy and computational cost, e.g., retrieving on-
ly objects with highest likelyhood to be in the result; reporting only answers the
probability of which exceeds a given threshold; returning approximate answers, etc.
A recent approach addressing a generic query optimization for uncertain databases,
introducing a threshold operator (τ -operator) to the query plan and demonstrating
that it is generally desirable to push it ”down” as much as possible, is presented
in [118].
Getting into a detailed discussion on the topic of probabilistic databases is be-

yond the scope of this Chapter, and for a comprehensive overview the reader is re-
ferred to the recent tutorials [134, 111, 120], along with a cohesive recent collection
of works with an extensive list of references available in [58].
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3.2.3 Time-Geography and Inexact Geometries

Time geography [61] addresses questions like:
Given a location of a mobile agent at time t0, where is the agent at a later time t1 >
t0, or where was the agent at a previous time t2 < t0? [160]. Assuming the agent can
move in any direction and is limited only by a maximum speed vmax, time geography
represents the reachable locations of this agent by a right cone in (X ,Y,Time)-space.
The cone apex represents the agents location at t0, and the aperture represents the
maximum speed of the agent – specifically, a cone base Bi represents the set of
locations the agent may settle at a time ti > t0.

Fig. 3.1 Possible Where-
abouts of an Agent: different
shades correspond to the pdf’s
emanating among consecutive
time-instants (cf. [160], with
permission)

Focusing on the discrete probabilistic space-time cone approximation of the con-
tinuous pdf of the location of a mobile agent, in [160] three approaches are un-
dertaken for deriving that approximation: (1) from a random walk simulation, (2)
from combinatorics, and (3) from convolution The results are targeting some basic
questions of interest for time-geography like, for example, what is the most prob-
able arrival time of an agent A at a particular location B? We will discuss the
space-time prisms and their implications to trajectories uncertainty in more detail in
Section 3.4.
While the interest of time geographers is on the uncertainty of location of mobile

agents as the time evolves, a specific type of handling imprecision was considered
by the GIS (Geographic Information Systems) researchers, focusing on the spatial
properties of the basic primitives. Namely, in a vector GIS, the representation is
based on the type of an infinitely small point, in accordance with Euclidean. How-
ever, more often than not it is the case that GIS maps are representing geographic
entities that have spatial extent. In [123], an axiomatic tolerance geometry was de-
veloped, aiming at formalizing the limited capability of distinguishing stimuli in
visual perception. Intuitively, the work ”blurred” the concepts of proximity and i-
dentity, and developed corresponding primitives for a formalism that can substitute
the traditional concept of ”between”-ness, with an ε-between-ness.
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Recently, an attempt of formalizing the geometric reasoning (and computing) for
uncertain object was presented in [174], offering an approach based on multiple
modalities of uncertainty in position.
The Euclidian geometry is an axiomatic well-founded logical theory, and it has

interpretation of its primitives satisfying its axioms. For example, the Cartesian
model of Euclidean geometry provides an interpretation of the geometric primitives
point, line, equality, incidence, congruency, etc..., in the real 2D plane. However,
once the uncertainty is allowed for the basic primitives, the logical foundations need
to be revisited and novel derivation rules (for developing theorems based on valid
proofs) are needed. A very recent formalization of the uncertainty into the foun-
dation of the Euclidian geometry – the first postulate – and giving interpretations
that capture the GIS-intuition of points with extension and lines with extension is
presented in [157]. The work extends the Boolean-based reasoning by translating
it into fuzzy logic, providing means of approximating and propagating positional
tolerance within sound inference system.

3.3 Uncertainty in Spatial and Temporal Databases

Two fields that have emerged in the mid/late 1980s – Spatial Databases and Tempo-
ral Databases – became, in some sense, precursors to the spatio-temporal databases.
In the rest of this section, we present some issues addressed in each field, which are
of relevance to the context of this Chapter.

3.3.1 Spatial Databases

Spatial databases [49, 122, 130] deal with efficient storage and retrieval of object-
s in space that have identity and well-defined extents, locations, as well as certain
geometric and/or topological relationships among them, owing to developments in
application fields (GIS, VLSI design, CAD) that needed to deal with large quantities
of geometric, geographic, or spatial entities. In addition to some stable and mature
prototypes prototypes based on solid algebraic type-foundation [48, 55] commer-
cial Database Management System (DBMS) vendors have provided extensions to
their products, supporting spatial types and operations (Oracle Spatial, DB2 Spatial
Extender, PostgresGIS, Microsoft SQL server, MySQL). Without a doubt, the re-
sults in spatial databases have spurred several important research avenues in MOD
settings, e.g.:

• Many popular types of MOD queries (e.g., range, nearest-neighbor) have variants
that were studied in spatial databases context [65, 124].

• Indexing structures developed for facilitating the efficient data access for pro-
cessing spatial queries [8, 57] served as foundations for spatio-temporal indexes.
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• Topological properties of and relationships among spatial types [32], as well
as generalization issues [156], have also found their ”counter-parts” in spatio-
temporal data.

What is of a most specific interest for this Chapter, is that the various concepts
of uncertainty that were investigated in the context of spatial databases have been,
in one way or another, applied and/or adopted in the context of uncertain spatio-
temporal data.

Fig. 3.2 Processing of Spatial
Range Query for Uncertain
Objects: a.) crisp range; b.)
uncertain range (cf. [142],
with permission)

The first such concept is the one of location uncertainty. Namely, if one cannot
specifically determine the values of the coordinates of a given point in a reference
coordinate system, then the specification of that point must incorporate the accom-
panying uncertainty. We already touched upon the issue of tolerance geometry in
Section 3.2.3, which generalized the concept of a point into a point with extension
and investigated the impacts on the formal reasoning in such geometries. In prac-
tice, however, in addition to capturing the uncertainty – e.g., via pdf, or histogram,
alongside with some boundary – an important aspect is how to incorporate it in the
query processing techniques. The first observation is that the answer to the query
must somehow reflect it. An illustrating example is shown in Figure 3.2, pertaining
to processing of spatio-temporal range queries for objects with uncertain locations.
Part a.) of Figure 3.2 shows the uncertain object o.ur whose possible locations are
bounded by a heptagonal region. For as long as the query region r.q is crisp, one can
determine the probability that o.ur is inside the range r.q – e.g., if the pdf of o.ur is
uniform, the probability is: |o.ur∩ r.q|/|o.ur|. However, once the query region itself
is uncertain – e.g., its boundaries have some ε bound of possible whereabouts (cf.
Figure 3.2.a.)), then the calculations of the probability become more computation-
ally expensive. To cater for this, it was observed in [142] that if one is interested
only in objects whose probability of being inside the range exceeds certain thresh-
old, then a pruning could be applied, for which the U-Tree indexing structure was
introduced.
Many entities such as regions of toxic spread, temperature maps, water-to-soil

boundaries and boundaries among different types of soil, cannot be exactly deter-
mined. One of the approaches to address the storing and querying of such data was
to introduce the concepts of fuzzy points, fuzzy lines, and fuzzy regions in the Eu-
clidian space. Along with that, fuzzy spatial set operations like union, intersection,
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and difference, as well as fuzzy topological predicates were introduced to manage
spatial joins and selections over fuzzy objects [77, 114, 127, 128].

3.3.2 Temporal Databases

Many applications of databases like, for example, accounting, portfolio manage-
ment, medical-record and inventory management record information that is time-
varying in nature [35, 72]. At the heart of the temporal databases is the distinction
between:

• valid time of a fact, which is the time at which a particular data item is collected
and becomes true as far as the world represented by the database is concerned –
possibly spanning the past, present, and future. However, the valid time may not
be known, or recording it may not be relevant for the applications supported by
the database or – in the case that the database models possible worlds – it may
vary across different possible worlds.

• transaction time of a fact, which is the time that a given fact is current in the
database. Transaction time may be associated with different database entities
like, e.g., objects and values that are not facts because they cannot be true or false
in isolation. Thus, all database entities have a transaction-time aspect, which has
a duration: from insertion to (logical) deletion of a given entity.

Capturing the time-varying nature using traditional data models and query lan-
guages can be a cumbersome activity and, as a consequence, constructs are needed
that will enable capturing the valid and transaction times of the facts, leading to
temporal relations. In addition, query languages [23, 132] are needed with syntactic
extensions that enable database operations on temporal models.
As an example of uncertainty in temporal databases, consider the following sce-

nario (cf. [12]):
Transportation companies (e.g., UPS, DHL) have massive databases containing

information about the various packages they are shipping or have previously shipped
and, most importantly, how long it takes for packages to get from a given origin to a
given destination. In such cases, based on the existing data about the valid times, it
may be the case that the database has the following information regarding the arrival
time for packages departing from oi at 10AM and arriving at d j:

{(12 : 30[0.4,0.6]),(12 : 35[0.3,0.5])}
indicating that the probability of a package arriving at 12:30PM is between 0.4 and
0.6, and the probability of a package arriving at 12:35PM is between 0.3 and 0.5.
A similar scenario in the context of trajectories uncertainty occurs, for example,

when the (location,time) data is obtained via tracking. In addition to the location im-
precision, due to the clocks-skew among the sensors participating in tracking [135].
In such cases, even if a crisp location is detected after trillateration, the value of the
time attribute will be bound to an interval instead of an instant.
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3.4 Modelling Uncertain Trajectories

We now focus on the first part of the main topic of this chapter – modelling of un-
certainty in spatial trajectories. After a brief overview of some basic spatio-temporal
concepts and definitions, we proceed with detailed discussion of the main aspects of
some of the existing models for capturing the uncertainty of spatio-temporal data.
The last part of this section is dedicated to the uncertainty aspects when the motion
of the objects is constrained to a road network.
As mentioned in Section 3.1, the (location, time) data capturing the motion of

moving objects is subject to uncertainty for a variety of reasons, at every stage
of its generation. The GPS receivers only approximate the actual position [27]
hardware. The precision of motion sensors deteriorates with the distance from
their own location and, moreover, typically the localization of a tracked object is
done via trillateration, without guaranteeing that every participating node is reli-
able [62, 73, 175, 179]. Aside from the location determination per se’ additional
issues arise due to timing synchronization [135], as well as the protocols used for
transmitting the (location,time) information from sensors to MOD or LBS server-
s [37, 162]. Last, but not the least – since it is impossible to record the location for
every single time-instant, the interpolation in-between consecutive records yields an
uncertainty of the trajectory [74, 88].
In a similar spirit to the works that have developed formal models for repre-

senting and querying ”crisp” trajectories – i.e., ones without any uncertainty of the
moving objects whereabouts(e.g., [53, 154]), researchers have addressed the prob-
lem of generic representation of uncertainty, along with a framework for syntactic
categorization of spatio-temporal queries [88, 103, 171].

Fig. 3.3 Categorization of Uncertainty Models (cf. [88], with permission)

An example is shown in Figure 3.3 where, in addition to the exact/accurate model
in which the location as a given time is assumed to be the actual one without error,
two broad categories of location uncertainty models are identified [88].

1. pdf-based models: Motivated by the GPS-based location uncertainty, within
these models the position/location at time t is described by a two-dimensional
probability density function (pdf) �t : R2→ [0, +∞).
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2. shape-based models: Bounding the possible locations by geometric shapes (e.g.,
circle, lens, polygon), these models may have associated probability values.
However, in contrast to the pdf-based models, no claims are made about the
spatial pdf within a shape.

Once a model of uncertainty is established, its impact on the syntax of the queries
needs to be considered, in conjunction with the type of a particular query – e.g.,
position, range, nearest neighbor (cf. [88, 103]).
In practice, there is a coupling between selecting the model for the motion plan

of the moving objects – affecting the choice of the representation [54, 52] of trajec-
tories in a MOD and, consequently, the overall strategy of query processing – and
the uncertainty model. One of the common definitions of a moving object trajectory
is as follows:

Definition 3.1. A trajectory Tr is a function Time→R2, represented as a sequence
of 3D (2D spatial plus time) points, accompanied by a unique ID of the moving
object:

Tri = (oidi, (xi1 ,yi1 , ti1), . . . , (xik ,yik , tik)),

where ti1 < ti2 < .. . < tik .

We note that Definition 3.1 can be used to represent both past trajectories (i.e.,
ones whose motion is completed relative to the now-time) as well as future tra-
jectories. In future-trajectories settings, users transmit to the MOD server: (1) the
beginning location; (2) the ending location; (3) the beginning time; and (4) possibly
a set of points to be visited. Based on the information available from electronic maps
and traffic patterns, the MOD server will construct and transmit the shortest travel
time or shortest path trajectory to the user. This model is applicable to the routing
of commercial fleet vehicles (e.g., FedEx and UPS) as well as to web services for
driving directions, where tens of millions of computations of shortest path trajecto-
ries are executed monthly by services such as MapQuest, Yahoo! Maps, and Google
Maps [70].
Following are the two noteworthy observations regarding Definition 3.1:

O1: What is (the description of) the location of a given object at a time instant
in-between two consecutive points (ti j ≤ t ≤ ti j+1 )?
A very common assumption is that in-between two consecutive points, the ob-

jects move along straight line segments and with constant speed, calculated as:

vik =

√
(xik − xi(k−1) )

2+(yik − yi(k−1) )
2

tik − ti(k−1)
(3.1)

Thus, the coordinates of an object oidi at time t ∈ (ti(k−1) , tik) can be obtained by
linear interpolation:

xi(t) = xi(k−1) + vik · (t− ti(k−1) )
yi(t) = yi(k−1) + vik · (t− ti(k−1) )

(3.2)

However, researchers have observed that the linear interpolation assumption need
not be suitable for certain applications, especially if prediction of future locations is
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needed. Hence, techniques have been proposed for using different (hybrid) models
based on representing the objects whereabouts with other algebraic functions [74,
138].
O2: Are the points arriving at a MOD server in a batch manner, i.e., portions of, or
the entire trip – as opposed to streams of individual (location,time) data values [100,
102, 39, 162]?
Catering to observations O1 and O2, researchers have proposed several models

of uncertainty of motion, which we address in detail next.

3.4.1 Cones, Beads and Necklaces

An idea discussed in the works of Hägerstrand in the early 1970s in time-geography
[61], was the first one to have found its way into MOD research. The first consid-
eration of the implications of the fact that the object’s motion was constrained by
some maximal speed vmax in-between two updates was presented in [113]. Based on
its definition as a geometric set of 2D points, it was demonstrated that the objects
whereabouts are bound by an ellipse, with foci at the respective point-locations of
the consecutive updates, as illustrated by the spatial (X-Y) projection in Figure 3.4.
Subsequently, [66], presented a spatio-temporal version of the model, naming the
volume in-between two update points a bead4, and the entire uncertain trajectory,
a necklace. Note that, in a sense, a bead is a ”backward-extension” of the concept
of spatio-temporal cone as discussed in Section 3.2.3. Namely, the assumption is
that for as long as there is no new (location, time) update, the object can be located
anywhere inside the cone emanating from the last-known update. However, once
a new update arrives, in addition to the possible-future locations, it also constraints
the possible locations from the past (since the previous update). A thorough analysis
of the properties of the beads was recently done in [85, 86, 108].

Definition 3.2. Let vi
max denote the maximum speed that an object can take within

the time-interval (ti, ti+1). A bead Bi = ((xi,yi, ti),(xi+1,yi+1, ti+1),vi
max) is defined

as the set of all the points (x,y, t) satisfying the following constraints:

ti ≤ t ≤ ti+1
(x− xi)

2+(y− yi)
2 ≤ [(t− ti)vi

max]
2

(x− xi+1)
2+(y− yi+1)

2 ≤ [(ti+1− t)vi
max]

2 (3.3)

The first and the second constraint of Equation 3.3, when taken together describe a
cone emanating upwards from (xi,yi, ti), with a vertical axis and with circles whose
radius value at time t is (t− ti)vi

max, whereas the first and the third constraint togeth-
er, specify a cone emanating downwards from (xi+1,yi+1, ti+1), with a vertical axis
and with circles whose radius at time t is (ti+1− t)vi

max. Hence, the bead Bi can be

4 We note that, more recently, this model is also called space-time prism.
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Fig. 3.4 Spatio-temporal
Beads and their (X,Y) Projec-
tion

 tsv1

t1

t2

tsv2

Possible locations at t = ti

(tsv1 < ti < tsv2)

L1((x1,y1), t1)

L2 ((x2,y2), t2)

ti

viewed as volume defined by the intersection of those two cones. We note that at
t = ti (resp. t = ti+1) the locations of the object are crisp (i.e., no uncertainty).
For a given bead Bi, let di =

√
(xi+1− xi)2+(yi+1− yi)2 denote the distance

between locations of the starting location (at ti) and ending location (at ti+1). Also,
let tsvi = (ti + ti+1)/2− di/2vi

max and tsvi+1 = (ti + ti+1)/2+ di/2vi
max. We observe

that each bead had two distinct types of volumes:

1. Single disk volumes: For every t ∈ [ti, tsvi ], the spatial boundary of the bead at
t is a circle with radius r(t) = vi

max(t − ti), centered at (xi,yi). Similarly, for
every t ∈ [tsvi+1 , ti+1], the spatial boundary of the bead at t is a circle with radius
r(t) = (ti+1− t)vi

max, centered at (xi+1,yi+1). Hence, throughout [ti, tsvi ], the 3D
volume of the bead consists of a single cone, with a vertex at (xi,yi, ti) (similarly
for [tsvi+1 , ti+1]).

2. Two-disks volume: In-between tsvi and tsvi+1 , (i.e., t ∈ [tsvi , tsvi+1 ]), the boundary
of the bead at t is an intersection of two circles: Ci

down(t), centered at (xi,yi),
with radius rdown(t) = (t− ti)vi

max, and Ci
up(t), centered at (xi+1,yi+1), with ra-

dius r(t) = (ti+1− t)vi
max.

We conclude this section with noting one more property of the beads: the projec-
tion of the bead Bi onto the the (X ,Y ) plane is an ellipse (cf. [86, 113]), with foci at
(xi,yi), and (xi+1,yi+1), and with equation:

(2x− xi− xi+1)
2

(vi
max)

2(ti+1− ti)2
+

(2y− yi− yi+1)
2

(vi
max)

2(ti+1− ti)2− (xi+1− xi)2− (yi+1− yi)2
= 1 (3.4)
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We will use Eli to denote the ellipse resulting from projecting the bead Bi in the
(X ,Y ) plane. Figure 3.4 provides an illustration of the different components of the
(volume of the) bead and its corresponding shapes at different time-points, as pro-
jected on the horizontal (X ,Y ) plane.

Definition 3.3. Given a trajectory Tr, its corresponding uncertain trajectory UTr is
a sequence of beads, B1, B2, . . . , Bn−1.
A Possible Motion Curve PMC(Tr) of UTr is any function f: Time → R2 for

which every point (x,y, t), is either a vertex of the polyline of Tr, or it satisfies
(x,y) = f (t) and is inside the corresponding bead – i.e., (∀t)(ti < t < ti+1) ⇒
((x,y, t) ∈ Bi).

The concept of a possible motion curve is illustrated in Figure 3.4 and we note
that, in a sense, each possible motion curve corresponds to a ”possible world” of the
object’s motion in-between two updates.
We note that in a recent work [94], an analogy is used between the expected-

trajectory (i.e., the line segment between consecutive points) where necklace is re-
served for the ”known” part of the motion, and the uncertain part termed ”pendant”.

3.4.2 Sheared Cylinders

Another uncertainty model is the one in which an uncertain trajectory is represented
as a sheared cylinder in the 2D-space + Time coordinate system. This is obtained
by associating a fixed uncertainty threshold r at each time-instant with each line
segment of the trajectory. Formally (cf. [149]):

Definition 3.4. Let r denote a positive real number and Tr denote a trajectory be-
tween the times t1 and tn. An uncertain trajectory UTr is the pair (Tr,r). r is called
the uncertainty threshold.
For each point (x,y, t) along Tr, its r-uncertainty area (or the uncertainty area

for short) is a horizontal disk (i.e. the circle and its interior) with radius r centered
at (x,y, t), where (x,y) is the expected location at time t ∈ [t1, tn].
LetUTr = (T,r) be an uncertain trajectory between t1 and tn.
A Possible Motion Curve PMC(Tr) of UTr is any continuous function fPMCTr :

Time→ R2 defined on the interval [t1, tn] such that for any t ∈ [t1, tn], the 3D point
( fPMC(Tr)(t), t) is inside the uncertainty disk around the expected location at time t.

For a given uncertain trajectory UTr = (Tr,r) and two end-points (xi,yi, ti),
(xi+1,yi+1, ti+1) ∈ Tr, the trajectory volume of UTr between ti and ti+1 is the u-
nion of all the disks with radius r centered at the points along the line segment
(xi,yi, ti),(xi+1,yi+1, ti+1). This volume is actually what defines the ”sheared cylin-
der” in the (X ,Y,T ) coordinate system. The XY projection of the trajectory volume
is called an uncertainty zone. Figure 3.5 illustrates the basic concepts associated
with the motions uncertainty under this model.
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Fig. 3.5 Uncertain Trajectory
bounded by Sheared Cylin-
ders, and Possible Motion
Curves
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trajectory volume
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3.4.3 Uncertainty on Road Networks

Fig. 3.6 Possible Positions
of an Uncertain Object Mov-
ing Along a Road Segment:
in-between two location sam-
ples, the geometry consists
of a union of two triangles,
two trapezoids and a parallel-
ogram (cf. [5], with permis-
sion)

When the motion of an object is restricted by a road network [5, 31, 30, 45, 84,
83, 178], the models described so far (cones/beads and sheared cylinders) become
inadequate for representing the moving objects uncertainty. To begin with, road net-
works are most often represented as (undirected) graph G(V,E), where the vertices
correspond to intersections and edges correspond to road segments in-between in-
tersections. Often, a given edge esk is accompanied with some additional attributes,
e.g.,:
– the length of esk, denoted l(esk); and
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– the maximum speed of esk, denoted vmax
sk , which is the upper bound on how fast an

object can move along edge esk.
Rich algebraic specification (types, operators) for representing and querying

moving objects on road networks has been presented in [50]. In [5], the authors
have extended the corresponding framework by adding data types to represent stat-
ic (unqpoint) and mobile (munqpoint) point objects with location uncertainty,
along with a detailed specification of the the respective set of predicates/operators.
As shown in Figure 3.6, assuming that the location samples at given time-instants
are ”crisp”, the geometric shape bounding the possible whereabouts of the object is
a union of three ”zones”.

Fig. 3.7 Uncertainty on
Road Networks: The pos-
sible whereabouts of the
moving objects, contrary to
the space-time prisms, is now
only a subset of the 2D ellipse
– the one intersecting the
edges. The cones/beads are
reduced to unions of vertical
line-segments, ”sweeping”
along, and perpendicular to
road network edges (cf. [84],
with permission)

The connection (and restrictions) with the beads model is illustrated in Fig-
ure 3.7. Note that in road network settings, one cannot consider the entire ellipse (the
2D projection of the bead [113]) as a spatial range of the objects possible locations.
Instead, only a subset of it intersecting the edges of the graph can be taken into
account [84, 83].
An important consequence of the model of road network trajectories is that the

distance between two moving objects can no longer be measured using the 2D Eu-
clidian distance (L2-norm) since the objects are constrained to move along the edges
of the road network. Instead we need to rely on the shortest network distancewhich,
in turn, may have a two-fold interpretation ( [67, 105, 129, 168]):
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– shortest path distance, or
– shortest travel-time distance.
Once the distance function is selected, one can proceed with determining the

earliest-possible (respectively, the latest-possible) times that an object can be at a
given location along an edge, taking the minimum and maximum speed limits along
that edge. The bottom part of Figure 3.7 illustrates the shape of the uncertainty ”vol-
ume” of a given object. Essentially, for each location (x�,y�) along a given edge, we
have a vertical line-segment bounded by the earliest-possible and the latest-possible
time that the moving object can be at that location.

3.5 Processing Spatio-Temporal Queries for Uncertain

Trajectories

When it comes to querying uncertain trajectories, as pointed out in several work-
s [88, 103, 149, 171], an important aspect is capturing the uncertainty in the very
syntax of the queries. Otherwise, posing a ”regular” query to a server without in-
corporating the uncertainty will bring a situation in which the burden of factoring
it out from the answer-set is solely upon the user. As specified in [88], the basic
requirements for uncertainty-aware query interface are:

Immediacy and comprehensiveness: The query interface should immediately build upon
the generic uncertainty model to minimize computational effort and exploit all information
provided by the uncertainty model.

Generality: The query interface has to provide all prevalent spatial query types for position
information such as position query, range query, and next neighbor query

We note that the processing of the popular spatio-temporal queries for uncertain
trajectories often follows the typical paradigm of filtering + pruning + refinement,
where: (1) the filtering stage brings a subset of the total set of trajectories – candi-
dates – from the secondary storage, which is a superset of the relevant data for the
query, based on some indexing structure. The desiderata for this stage are that there
should be no false-negatives and as few false-positive as possible; (2) the pruning
stage is used to quickly eliminates some of the candidates – e.g., based on the as-
surance that the desired probability threshold cannot be met by a trajectory which
satisfies some properties that are computationally easier to evaluate than the refine-
ment algorithm; (3) the refinement stage, which eliminates all the false positives
from among the candidates.
In the rest of this section, we will present examples of solutions to the problem

of processing spatio-temporal range queries and nearest neighbor queries for uncer-
tain trajectories for different models of uncertainty discussed in Section 3.4. Since
explaining the details of the approaches exceeds the scope of this Chapter, we will
try to highlight some of the main intuitive features of the existing results and point
out to the body of references where more detailed exposition of various topics is
available. We finalize this section with an overview of some miscellaneous queries
for uncertain moving objects.
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Fig. 3.8 Probability of an
Uncertain Moving Object
being Inside a given Region
(adapted from [21], with
permission)

3.5.1 Range Queries for Uncertain Trajectories

The basic form of spatio-temporal range query is:
QR: Retrieve all the trajectories inside the region R between t1 and t2.
where R is typically a bounded region, and t1 and t2 denote the begin-time and end-
time of interest for the query.

3.5.1.1 Instantaneous Range Query for Cones

If the model of uncertainty is the one of a cone and the moving objects are assumed
to send (location, time) updates, along with a given restriction of the velocity then,
for a given spatial pdf, one can evaluate the probability of a particular object be-
ing inside the region R at each t ∈ [t1, t2]. For a given t, the generic formula for
calculating whether a given object oi is inside R would be (cf. [21]):

Area(Uoi(t))∩Area(R)
Area(Uoi(t))

whereUoi(t) denotes the shape and/or pdf of the uncertainty zone of oi at time t. As
illustrated in Figure 3.8, all the dark objects have 100% probability of being inside
the given rectangular region R for each t of interest, however: (1) the blue object
(o1) has non-zero probability of being inside R starting slightly later than the begin-
time of interest for the query; (2) the red object (o2) always has a zero probability
of being inside R – hence, from scalability perspective it should be pruned out of
the computation in the refinement phase. The evaluation step(s) taken throughout
the refinement stage may typically involve expensive numerical integration, conse-
quently, eliminating objects that should not be evaluated yields benefits in terms of
the overall execution time.
We re-iterate that the topic of efficient processing of spatio-temporal queries for

trajectories is addressed in greater detail in Chapter 2, however, as but one example,
we note that [21] specifically uses the VCI index [117] to aid the elimination of can-
didates for processing range queries. VCI is an index structure based on R-tree [57],
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with an extra data in its nodes, which is vmax - the maximum possible speed of the
objects under a given node, with an extra storage of the overall maximum speed
at leaf nodes. The construction of VCI is similar to the R-tree, with an additional
provision of ensuring that vmax is correctly maintained at the root of each sub-tree –
which is properly considered when a node split occurs. When VCI is used to process
a given query, one must account for the changes of the position (with respect to the
stored value) over time. To cater for this, in [21] the Minimum Bounding Rectan-
gles (MBR) used to process a give query at a time instant t are expanded by a factor
of vmax× (t− t0), where t0 is the time of recording the entry for a given object at
VCI. We note that the discussion above illustrates techniques that can be applied for
processing range queries over uncertain trajectories at a particular time-instant.

3.5.1.2 Continuous Range Queries for Sheared Cylinders

In Section 3.4, we introduced the concept of a possible motion curve for a given
trajectory (PMC(Tr)) and hinted that, in some sense, it describes a ”possible world”
of a particular trip taking place. However, the generic form of a range query QR
discussed above does not reflect this anywhere in its syntax. Towards that, the works
in [150, 149] have identified the different qualitative relationships that an uncertain
trajectory (i.e., the family of its PMC’s) could have with the spatial aspect (region
R) and temporal aspect (time-interval of interest [t1, t2]) of the range query.
Firstly, since the location of the object changes continuously, the condition of

the moving object being inside R may be true sometime (∃t) or always (∀t) within
[t1, t2]. Secondly, an uncertain moving object, in addition completely failing to be
inside R, may either possibly or definitely satisfy the spatial aspect of the condition
at a particular time-instant t ∈ [t1, t2]. In simpler terms, if some PMC(Tr) is inside R
at t, there is a possibility that it has been the actual motion of the object – however,
this need not be the case as there may have been another PMC(Tr) that the object
has taken along its motion. Let V Tr denote the bounding volume of (the union
of) all the possible motion curves for a given trajectory Tr – i.e., the sequence of
sheared cylinders (cf. Figure 3.5). Formally, the concept of possibly can be specified
as ∃PMC(Tr)⊂V Tr and the one of definitely can be specified as ∀PMC(Tr)⊂V Tr.
Given the two domains of quantification – spatial and temporal – with two quan-

tifiers each, we have a total of 22 ·2!= 8 operators, and their combinations yield the
following variants of the spatio-temporal range query for uncertain trajectories:

• QPS
R : Possibly Sometime Inside(T ,R,t1,t2) (∃PMC(TR))(∃t)Inside(R,PMC(TR), t)
Semantics: true iff there exists a possible motion curve PMC(Tr) and there exists
a time t ∈ [t1, t2] such that PMC(Tr) at the time t, is inside the region R.

• QPA
R : Possibly Always Inside(Tr,R,t1,t2)

(∃PMC(Tr))(∀t)Inside(R,PMC(Tr), t)
Semantics: true iff there exists a possible motion curve PMC(Tr) of the trajectory
T which is inside the region R for every t in [t1, t2].
Intuitively, this predicate captures the fact that the object may take (at least one)
specific possible route, which is entirely contained within the region R, during
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Fig. 3.9 Illustration of the Predicates Capturing the Different Quantifiers of Spatial and Temporal
Domains

the whole query time interval.

• QAP
R : Always Possibly Inside(Tr,R,t1,t2)

(∀t)(∃PMC(Tr))Inside(R,PMC(Tr), t)
Semantics: true iff for every time value t ∈ [t1, t2], there exists some (not neces-
sarily unique) PMC(Tr) inside (or on the boundary of) the region R at t.

• QAD
R : Always Definitely Inside(Tr,R,tb,te)

(∀t)(∀PMC(Tr))Inside(R,PMC(Tr), t)
Semantics: true iff at every time t ∈ [t1, t2], every possible motion curve PMC(Tr)
of the trajectory Tr, is in the region R. Thus, no matter which possible motion
curve the object takes, it is guaranteed to be within the query region R throughout
the entire interval [t1, t2].

• QDS
R : Definitely Sometime Inside(Tr,R,tb,te)

(∀PMC(Tr))(∃t)Inside(R,PMC(Tr), t)
Semantics: true iff for every possible motion curve PMC(Tr) of the trajectory
Tr, there exists some time t ∈ [t1, t2] in which the particular motion curve is
inside the region R. Intuitively, no matter which possible motion curve within
the uncertainty zone is taken by the moving object, it will intersect the region
at some time t between tb and te. However, the time of the intersection may be
different for different possible motion curves.

• QSD
R : Sometime Definitely Inside(Tr,R,tb,te)

(∃t)(∀PMC(Tr))Inside(R,PMC(Tr), t)
Semantics: true iff there exists a time point t ∈ [t1, t2] at which every possible
route PMC(Tr) of the trajectory Tr is inside the region R. In other words, no
matter which possible motion curve is taken by the moving object, at the specific
time t the object will be inside the query region.

Figure 3.9 illustrates the intuition behind plausible scenarios for the predicates spec-
ifying the properties of an uncertain trajectory with respect to a range query, project-
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ed in the spatial dimension. Dashed lines indicate the possible motion curve(s) due
to which a particular predicate is true, whereas the solid lines indicate the expected
routes, along with the boundaries of the uncertainty zone.
A couple of remarks are in order:

1. Although we mentioned that there are 8 combinations of the quantifiers over
the variables in the predicates, we listed only 6 of them. This is actually a s-
traightforward consequence of the facts from First Order Logic – namely, for
any predicate P, given a constant A and variables x and y, it is true that:

(∃x)(∃y)P(A,x,y)≡ (∃y)(∃x)P(A,x,y)

and
(∀x)(∀y)P(A,x,y)≡ (∀y)(∀x)P(A,x,y)

This is regardless of the domain of (interpretation of) the variables and the se-
mantics of the predicate P. Hence, we have that Possibly Sometime Inside is
equivalent to Sometime Possible Inside; and Definitely Always Inside is equiv-
alent to Always Definitely Inside. Hence, in effect we have 6 different predi-
cates.

2. Similarly, the formula:

(∃x)(∀y)P(A,x,y)⇒ (∀y)(∃x)P(A,x,y)

is a tautology. In effect, this means that the predicate Possibly Always Inside
is stronger than Always Possibly Inside, in the sense that whenever Possi-
bly Always Inside is true, Always Possibly Inside is guaranteed to be true.
We observe that the converse need not be true. As illustrated in Figure 3.9, the
predicate Always Possibly Inside may be satisfied due to two or more possible
motion curves, none of which satisfies Possibly Always Inside by itself. When
the region R is convex, however, those two predicates are equivalent (cf. [149]).

3. For the same reason as above, we conclude that Sometime Definitely Inside is
stronger than Definitely Sometime Inside, however, the above two predicates
are not equivalent when the region R is convex. In Figure 3.9 this is shown
by R2 satisfying Definitely Sometime Inside, however, since it does not con-
tain the entire uncertainty disk at any time-instant, it cannot satisfy Some-
time Definitely Inside.

The algorithms for processing the respective predicates involve techniques from
Computational Geometry (CG) (Red-Blue Intersection; Minkowski Sum/Difference)
and their detailed presentation is beyond the level of detail for this Chapter. Their
detailed implementation, along with complexity analysis, is available in [149]. We
note that in the global context of query processing, [149] focused on the refinement
stage.
In a sense, the predicates described above correspond to the, so called, ”MAY”

and ”MUST” cases for range queries over uncertain trajectories (cf. [104, 103, 162])
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Fig. 3.10 Satisfying the Pos-
sibly Sometimes and Pos-
sibly Always Predicates for
Beads
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and, more specifically, the ”Inside” property is discussed as a predicate in the generic
query interface discussed in [88].

3.5.1.3 Continuous Range Queries for Beads/Necklaces

As demonstrated in [145], capturing qualitative relationships between a range query
and uncertain trajectories whose uncertainty model is the one of space-time prisms
(equivalently, beads) can be done using the same logical formalizations from [149].
Not only the same predicates are applicable, but also the relationships among them
in terms of Possibly Always Inside being stronger than Always Possibly Inside,
and Sometime Definitely Inside being stronger than Definitely Sometime Inside are
valid.
The main difference is that the bead as a spatio-temporal structure yields a bit

more complicated refinement algorithms than the ones used in [149] for sheared
cylinders. As an illustrating example, Figure 3.10 shows Possible Motion Curves
that cause the two predicates with existential quantifier over the spatial domain
(”Possibly”) to be true.
Although the model of beads is more complicated for the refinement stage, it

opens a room for improving the overall query processing when it comes to the prun-
ing phase. Namely, one can utilize vertical cylinders surrounding a particular bead
to eliminate a subset of the candidate trajectories from the answer-set more efficient-
ly. As shown in Figure 3.11, the vertical cylinder surrounding the bead Bi does not
intersect the query region R, hence, there is no need for detailed verification of any
predicate capturing the uncertain range query with respect to Bi. The benefits of two
pruning strategies are discussed in more details in [145].
As an illustrative example of pruning phase, below we show the steps of the

algorithm for processing Possibly Sometime Inside predicate. Let Eli denote the el-
lipse which is the (X ,Y ) projection of the bead Bi, and let Fl

i ( = (xi,yi)) and Fu
i
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Fig. 3.11 Pruning of Beads
which do not Qualify for the
Answer of a Range Query
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(= (xi+1,yi+1)) denote the 2D projections of its lower and upper foci in temporal
sense – i.e., Fl

i occurs at time ti and Fu
i at time ti+1. For complexity analysis, as-

sume that the region R has m edges/vertices, and an one-time pre-processing cost of
O(m) has been performed to determine the angles in-between its consecutive ver-
tices with respect to a given point in R’s interior [107]. The refinement algorithm
can be specified as follows:
1. If (ti ∈ [t1, t1]∧Fl

i ∈ R) ∨ (ti+1 ∈ [t1, t2]∧Fu
i ∈ R)

2. return true

3. else if (Eli∩R �= /0)
4. return true

7. return false
Each of the disjuncts in line 1. can be verified in O(logm) due to the convexity of

R (after the one-time pre-processing cost of O(m)) [107]. Similarly, by splitting the
ellipse in monotone pieces (e.g., with respect to the major axis), one can check its
intersection with R in O(logm), which is the upper bound on the time-complexity
of the algorithm.
We note that many of the works on formalizing the predicates that capture d-

ifferent types of spatio-temporal range queries are geared towards extending the
querying capabilities of MODs. Consider, for example the following query:
QU

R : “Retrieve all the objects which are possibly within a region R, always between
the earliest5 time when the object A arrives at locations L1 and the latest time when
it arrives at location L2”.
If the corresponding predicates are available, this query can be specified in SQL as:

WITH Earliest(times) AS
SELECT When_At(trajectory,L_1)
FROM MOD

5 Observe that a given object may pass through a given point along its route more than once
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WHERE oid = A
WITH Latest(times) AS

SELECT When_At(trajectory,L_2)
FROM MOD
WHERE oid = A

SELECT M1.oid
FROM MOD as M1
WHERE
Possibly_Always_Inside(M1.trajectory,R,

MIN(Earliest.times),
MAX(Latest.times))

3.5.1.4 Uncertain Range Queries on Road Networks

When the motion of a given object is constrained to an existing road network, one
of the sources of its location uncertainty is due to the fact that the objects speed may
vary between some vmin and vmax along a given segment – which we described in
Section 3.4.3. However, there is another source of the uncertainty of such motion
– namely, the low sampling-rate of the on-board GPS devices e.g., due to unavail-
ability of satellite coverage in dense downtown areas. The main consequence of this
is that the distance between two consecutive sampled positions can be large: e.g.,
it can be over 1.3km when sampling every 2 minutes, even if a vehicle is moving
at the speed as low as 40km/h. The additional uncertainty is reflected in the fact
that there may be many possible paths connecting the two consecutively sampled
positions, which satisfy the temporal constraints of the actual consecutive samples.
The problem is even more severe for vehicles travelling with higher speeds, as there
may be several intersections between two consecutive samples.

Fig. 3.12 Uncertainty on
Road Networks Due to Low
Location-Sampling Frequen-
cy (object may take different
routes between intersections)

As an example, consider the scenario depicted in Figure 3.12. It shows two con-
secutive location-samples: L1 at t1 = 0, and L2 at t2 = 7. There are three possible
routes between vertices (intersections) A and D: — (AC,CD) with travel time 4 + 2
= 6 time units; — AD with travel time of 4; — and (AB,BD), with a travel time of
2 + 3 = 5 time units. Given the information about minimum travel time cost – e.g.,
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1 time unit between L1 and A, as well as between D and L2, is 1 time unit, consider
the following query:
QR:Retrieve all the moving objects that are within distance r from the location Q
between t’ = 3.5 and t” = 4.
Clearly, it is impossible that the object has travelled along the route (AC,CD)

because with the maximum speed at each segment, the earliest time of arrival at
the location L2 would be 8. This leaves only two possible paths: AD and (AB,BD).
Following are the main observations regarding these plausible routes:

• If object a travelled along ADwith the maximum speed, it will definitely be insid-
e the spatio-temporal cylinder (based at the 2D disk centered at q and with radius
r) between t = 3.5 and t = 4. However, now the question becomes, what if the
moving object did not travel using the maximum speed? What is the probability
of a satisfying QR, given some pdf of its speed?

• If object a travelled along (AB,BD) using the maximum speed, it will not qualify
as an answer to QR. However, if the moving object uses smaller speed, then there
may be a possibility of it entering the spatio-temporal query cylinder sometime
during the time-interval of interest. Namely, the object can be at the location LQ
along the segment BD at any time during t = 3.3 and t = 3.7. Now the question
again becomes, given the pdf of its speed, what is the probability of a satisfying
QR. As an additional observation, we note that the object a can be anywhere
within a particular segment at a given time-instant – as illustrated in Figure 3.12
for the time t = 3.7.

The models for uncertain trajectories on road networks in terms of possible
locations at a given time-instant have been considered in [5, 45, 83]. The combi-
nation of the effects of choosing possible path together with the location uncertainty
along a particular one has been formalized in [178].

Definition 3.5. Given two trajectory samples (ti, pi) and (ti+1, pi+1) of a moving
object a on road network, the set of possible paths (PPi) between ti and ti+1 consists
of all the paths along the routes (sequence of edges) that connect pi and pi+1, and
whose minimum time costs (tc) are not greater than ti+1− ti, i.e.,

PPi(a) = {Pj ∈ Paths(pi, pi+1)|tc(Pj)≤ ti+1− ti},

where Paths denotes all the paths between pi and pi+1, tc(Pj) is the sum of all the
tc(e) of e ∈ Pj.

If the pdf of selecting a particular possible path is uniform, then:

Pri, j(a) = Pr[PPi(a) = Pj] =
1
|PPi|

where |PPi| denotes the cardinality of the set of all the possible paths PPi. As another
example, if the probability of a particular path being taken by an object a is inversely
proportional to time-cost of that path, then:
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Pri, j(a) = Pr[PPi(a) = Pj] =
1/tc(Pj)

∑Px∈PPi(a) 1/tc(Px)

Even if a particular path Pj is considered, the location of the moving object at
a given time-instant t ∈ (ti, ti+1) need not be crisp (i.e., certain) because the speed
along Pj may fluctuate. However, the set of possible locations can be restricted as
follows:

Definition 3.6. Given a path Pj ∈ PPi(a), the Possible Locations of a given moving
object a with respect to Pj at t ∈ [ti, ti+1] is the set of all the positions p along Pj
from which a can reach pi (respectively, pi+1) within time period t−ti (respectively,
ti+1− t) i.e.,

PLi, j(t) =
{

p ∈ Pj

∣∣∣∣ tcPj(pi, p)≤ t− ti
tcPj(p, pi+1)≤ ti+1− t

}
(3.5)

As an example, in the case of a uniform pdf, the probability that the object a is
between positions pA and pB along a possible path Pj, whose network-distance is
d(pA, pB), is:

Pr[pa(t) ∈ [pA, pB]] = Pri, j(a) · d(pA, pB)

PLi, j(t)
(3.6)

where PLi, j(t) denotes the the network-length of PLi, j(t). Formula 3.6 illustrates
the joint consideration of the probability that a particular path Pj is being selected
from among the possible ones, together with the probability of the object being
somewhere along the segment pA, pB at a given time-instant t [178].
Clearly, given an existing road-map along with the (location,time) samples, a

methodology is needed to construct all the possible trajectories that satisfy the tem-
poral constraints of the samplings. In addition, one needs to determine the pdfs of
the location uncertainty along different possible paths. Algorithmic solutions for
two types of probabilistic range queries: snapshot (instantaneous) and continuous,
are presented in [178], along with a novel indexing structure – Uncertain Trajectory
Hierarchy (UTH), used to index the road network, object movement and trajectories
in a hierarchical style and to improve the overall efficiency of the query processing.

3.5.2 Nearest-Neighbor Queries for Uncertain Trajectories

We now present some of the techniques that have addressed variants of the problem
of efficient management of Nearest-Neighbor (NN) queries for uncertain trajecto-
ries. Before we proceed with the details, we note that an assumption commonly
used in the literature (e.g., [21, 142]) is that the locations of the uncertain objects
are independent random variables.
The basic form of spatio-temporal range query is:

QNN : Retrieve the nearest neighbors of the trajectory Tru
q between t1 and t2.
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where Truq denotes the uncertain querying trajectory.

3.5.2.1 NN Query for Cone Uncertainty Model

Recall Figure 3.8 used to explain the intuition behind spatio-temporal range query
processing for cone-like model of uncertainty. If we take a horizontal ”slice” at a
particular time-instant, we will obtain all the spatial locations of the objects at that
time-instant.

Fig. 3.13 Relationship A-
mong Uncertain Moving
Objects when the Querying
Object is Crisp

Rmin
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Q
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Tr2
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Tr4
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Rmin   >   Rmax
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1

1

14

Consider a scenario in which that we are given a query object oQ whose location
at a particular time instant is crisp, i.e., a 2D pointQ, with no uncertainty associated
with it, and assume that the possible locations of the other objects are disks with
radius r (cf. Figure 3.13).
An important observation was made in [21], which can be used to effectively

prune all the objects that cannot qualify to have a non-zero probability of being a
nearest neighbor to oQ. Namely, the distance between Q and the most distant point
of the closest disk (e.g., Rmax in Figure 3.13), is an upper bound on the distance
that any possible nearest neighbor of Trq can have. Consequently, any object oi
(a snapshot of a trajectory Tri) whose closest possible distance to Q, denoted with
Rmin

i , is larger than Rmax, has a zero probability of being a nearest neighbor to Trq
and can therefore be safely pruned. As can be seen from Figure 3.13, Rmin

4 > Rmax
1

and similarly Rmin
5 > Rmax

1 , which means that Tru4 and Tru5 have zero probability of
being a nearest neighbor of Trq.
Once the trajectories that do not qualify to be in the answer set of an NN query

have been pruned, the next task is to evaluate the probability of a given trajectory
Trui being within a given distance Rd from Q:
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PWD
i,Q (Rd) =

∫ ∫
A

pdf i(x,y)dxdy (3.7)

where A, the integration bound, denotes the area of the intersection of the disk
with radius Rd centered at Q and the uncertainty disk of Tri, with a correspond-
ing pd fi(x,y).
Then, in order to calculate the probability that the trajectory of a given object,

Truj , is a nearest neighbor of the crisp querying object Trq at a given time instant,
one needs to consider:

1. The probability of Tr j being within distance ≤ Rd from Trq; combined with:
2. The probability that every other object Tri (i �= j) is at a distance greater than

Rd from the location Q of Trq; and
3. The fact that the distributions of the objects are assumed to be independent from
each other.

Using these observations, the generic formula for the nearest-neighbor probability
(cf. [21]) is:

PNN
j,Q =

∫ ∞

0
pd f WD

j,Q (Rd) ·∏
i �= j

(1−PWD
i,Q (Rd))dRd (3.8)

As pointed out in [21], the boundaries of the integration need not be 0 and∞ because
the effective boundary of the region for which an object can qualify to be a nearest
neighbor of Trq is the ring centered atQ with radii Rmin and Rmax. More specifically,
pd f WD

j,Q (Rd) is 0 for any Rd < Rmin
j and 1−PWD

i,Q (Rd) is 1 for Rd < Rmin
i .

By sorting the objects that have a non-zero probability of being nearest neighbors
according to the minimal distances of their boundaries from Q, one can break the
evaluation of the integral from Equation 3.8 into subintervals corresponding to each
Rmini and the computation of the PNN

j,Q can be performed in a more efficient manner,
based on the sorted distances and the corresponding intervals [21]. The importance
of this observation is in the fact that the the integrals (cf. Equation 3.8) are likely
to be computed numerically. For a uniform pdf of the location uncertainty, the ob-
jects can be sorted according to the distances of their expected locations from the
querying object.

3.5.2.2 NN Query for Sheared Cylinders – Continuity and

Time-Parameterization

While the methodology explained above is sound for evaluating a snapshot (i.e., in-
stantaneous) NN queries, an important property of the NN queries in MOD settings
is that their answer over the time-interval of interest needs to be parameterized [139].
In other words, as the querying object itself, as well as the other objects are continu-
ously moving, the nearest neighbors will change over time. To illustrate this feature,
assume that we have a MOD with four trajectory-segments
Tr1 = {(120,60,10),(220,300,20)}
Tr2 = {(310,100,10),(190,260,20)}
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Fig. 3.14 NN Queries for
Uncertain Trajectories: The
Continuity Aspect of the
Answer

Tr3 = {(150,100,10),(30,260,20)}
Tr4 = {(370,570,10),(270,330,20)}
corresponding to the scenario in Figure 3.14 without the uncertainty component,
and consider the following query:
Q NN: Retrieve the nearest neighbor of the trajectory Tr1 between t1 = 10 and
t2 = 20.
Using the existing approaches [105, 139]), the answer AQ NN to the query is the set
{[Tr3,(10,15)], [Tr2,(15,20)]}, meaning that during the first 5 seconds of the time
interval of interest, i.e., between t1 = 10 and t = 15, the nearest neighbor of Tr1 is
the trajectory Tr3 and during the last 5 seconds, i.e., between t = 15 and t2 = 20, the
nearest neighbor of Tr1 is the trajectory Tr2.
However, if we take the uncertainty into consideration (cf. Figure 3.14), assum-

ing that at every time-instant, an object can be anywhere within a disk with a 30
meter radius, we observer, for example that at time t = 13(< 15), both Tr3 and Tr2
have a non-zero probability of being the NN-trajectory to Tr1. However, that is not
the case for Tr4 which, at t = 13, cannot possibly be the nearest neighbor to Tr1.
Moreover, at t2 = 20, we note that Tr4—which was not part of the answer AQ NN
for crisp trajectories—also has a non-zero probability of being the NN-trajectory to
Tr1. Hence, now some new important aspects emerge:

• Syntax and Semantics of the Answer: how can we capture the time-parameterized
nature of the answer in a compact manner?

• Ranking: how can we establish the rank of a given trajectory’s probability (e.g.,
highest or lowest) of being a nearest neighbor [133] at a particular time instant?

• Continuity: how can we efficiently detect the changes to the continuous ranking
of the objects that qualify to be nearest neighbors (with non-zero probability)
throughout the time-interval of interest?
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Fig. 3.15 Left: Uncountably many integrations needed to evaluate Within Distance probability in
”native” space; Right: After convolution, the querying trajectory is fixed and crisp

The first source of complication comes when the querying object is no longer
crisp – how is the probability of being within distance evaluated in such cases? As
shown in the left portion of Figure 3.15, we need to take infinitely many integrations
over the entire disk of possible locations for the uncertain trajectory. However, since
the relevant part for determining the nearest neighbor status between a given trajec-
tory and the querying trajectory is their distance, it was observed in [148] that one
may actually focus on a random variable specifying the difference between the two
random variables: – one corresponding to a particular trajectory; – one correspond-
ing to the querying trajectory. It is a consequence of the laws of probability theory
that the difference-variable will have a pdf which is a convolution of the pdfs of the
original variables and, in addition, as demonstrated in [148] – if the original pdfs
have circular symmetry, so will their convolution. What is enabled by this obser-
vation is that one can ”snap” the querying trajectory to the origin of the respective
spatial coordinate system, and calculate the PWD

i,q using the results from [21], except
the non-querying trajectories will be transformed by: – translation of the expect-
ed location; – modification of their location pdf. An illustration of this is provided
in the right portion of Figure 3.15 – in effect, reducing an extra-level of an outer
integration.
Most importantly, though, since the transformation described above is applicable

to every time-instant, one can tackle the continuity aspect by using the, so called,
difference trajectories. Specifically, instead of considering the original expected tra-
jectories in the MOD to evaluate the expected distance from the querying trajectory,
one can assume that the querying trajectory is ”snap”-ed to the origin, and consider
the modified trajectories to evaluate the change of the mutual distance. The main
consequence of this, which is enabling the design of the efficient algorithm for cal-
culating the answer to the continuous NN query for uncertain trajectories (again,
assuming the location pdf has circular symmetry around the centroid) is that if the
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centroid of Tru
i −Tru

q is closer to the coordinate-center than the centroid of Tru
j−Tru

q,
then Tru

i has a higher probability of being the nearest neighbor of Tru
q than Tru

j .
Given the observations above, along with the fact that the distance function be-

tween the centroids of the querying trajectory and an individual trajectory changes
as a hyperbola [9, 119] over time6 the continuity and ranking aspects can be handled
based on the following properties:

• The nearest neighbor with highest probability will be the trajectory whose dis-
tance function determines the lower envelope of the collection of the distance
function. The rank will change in the cusps of the lower envelope (i.e., whenever
it becomes determined by the distance function of another trajectory).

• The trajectory with the second-highest probability of being a nearest neighbor
in a given time-interval can be obtained if the one defining the lower envelope
in that time-interval is removed (and recursively for the k-th highest probability
(k ≥ 2).

• Regardless of the particular pdf, for as long as the uncertainty zone of the object-
s’ locations is bounded by a circle with radius r, every trajectory whose distance
function is further than 4× r from the lower envelope can be pruned from con-
sideration for a nearest neighbor with non-zero probability.

Fig. 3.16 Time-
parameterization of the An-
swer to a Continuous Nearest
Neighbor Query for Uncertain
Trajectories (sheared cylinder
model)

When it comes to the structure of the answer that is to be presented to the us-
er [148] postulates that one compact structure can be obtained by splitting the time-
interval of interest, say [tb, te], into sub-intervals [tb, t1], [t1, t2], . . . , [tn−1, te] so that
the trajectory that has the highest probability of being the nearest neighbor of Truq in
each sub-interval is unique.
Subsequently, each such sub-interval can be further split into its own sub-

intervals – e.g., [ti−1, ti] is split into [ti−1, t(i−1),1], [t(i−1),1, t(i−1),2], . . . , [t(i−1),(k−1), ti].
To each of this sub-intervals, again a unique trajectory is matched – representing the
trajectory which would have been the actual highest-probability nearest neighbor of
Truq , if the MOD did not contain Trui−1. Towards that, a tree-structure called IPAC-
NN tree (Intervals of Possible Answers to Continuous-NN) was introduced, shown
in Figure 3.16 with the following properties:

6 Since squaring each distance function will not disturb the relative ordering, one may readily work
with the corresponding parabolae.
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• The root of the tree is node labelled with the description of the parameters of
interest for the specification of the query, e.g., Truq , along with [tb, te].

• The root has one child for each sub-interval of [tb, te], throughout which there
is a unique uncertain trajectory Trui having the highest probability of being the
nearest neighbor to Truq . Each child of the root is labelled with the corresponding
trajectory (e.g., Trui ) and the time-interval of its validity as the highest probability
nearest neighbor (e.g., ti−1, ti) in Figure 3.16).

• After obtaining the respective labels from the respective parent-node, each child-
node checks whether if it is removed from the MOD, there could still be some
object with nonzero probability of being the nearest neighbor of Truq in the time
sub-interval of its label.

– If so, then it is an internal node, and each internal node follows the principle
of splitting its own (sub)interval like it has been done in the root, and uses the
same labelling for its children.

– If not, then that node is a leaf-node.

The construction of the IPAC-NN tree is based on the algorithm for constructing
the collection of lower envelopes of the distance functions.

3.5.2.3 NN Query for Beads Uncertainty Model

Recall that at the heart of the space-time prisms (beads) is the assumption that the
motion of the objects is constrained by some maximal velocity vmax, and the ob-
jects can take any speed v ∈ [vmin,vmax] in-between two consecutive (location,time)
updates.

Fig. 3.17 Different Cases of Evaluating the Distance Between Two Objects with Uncertain Veloc-
ities (cf. [67], with permission)

The assumption for uncertain speed and crisp update points clearly affects how
the minimum possible distance between two objects can vary in-between updates.
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To capture the different variations, in [67] three basic cases of the minimum distance
were identified (cf. Figure 3.17):

• The two objects are moving along paths that intersect.
• The two objects are on the expected segments that do not intersect, and the mini-
mum distance is based on a perpendicular from a point on one segment to a point
on the other.

• The two objects are on expected segments that do not intersect, however, their
minimum distance happens when each of the two objects is located in some of
the end-points of the expected segment of motion.

Based on the three cases for instantaneous distance values, when it comes to
monitoring the distance between a given object and the querying object over a time-
interval, the so called function-switching time points are determined. The key prop-
erty is that in-between two consecutive function-switching time points the function
describing the variation of the minimum-distance between the querying object q and
a moving object o (denoted do,q(t) in [67]) is one and the same function of time.

Fig. 3.18 Boundaries on
the Possible Distances Be-
tween Two Objects (adapted
from [67], with permission)

In addition to do,q(t), a similar formalization of Do,q(t) was presented, where
Do,q(t) describes the maximum-distance function between q and o over time. In ef-
fect, these two functions determine the boundaries for the possible distance between
the two objects with uncertain speeds, q and o. An illustration of these boundaries
is presented in Figure 3.18.
Given the goal of the work – to determine the probabilistic answer for the con-

tinuous K- nearest neighbors for a querying object q, the solution proceeds in three
main stages:

1. Pruning: in this stage, based on the boundaries of the possible-distance zones –
i.e., Do,q(t) and do,q(t), the objects for which it is impossible to be among the K
closest ones to q during the time-interval of interest are eliminated from further
consideration.

2. Candidate-distilling: during this stage, sub-intervals are identified, during which
the set of possible K nearest neighbors consists of same objects. To determine
the time-instants during which the change occurs, one needs to determine the
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time tc when doi,q(tc = Do j ,q(tc) – i.e., the minimum-distance of the object oi
becomes equal to the maximum-distance of the object o j with respect to the
querying object q. In this case, if o j was among the PKNN(q) (i.e., possibly a-
mong the K nearest neighbors) before tc, then it will be substituted by oi at/after
tc.

3. Ranking: in this phase, a confidence value, based on a reasonable probability-
model is determined for each object among the candidates.

In [68], an indexing structure was proposed – TPRe tree – which can be applied
to index trajectories with uncertain velocities, thereby avoiding unnecessary I/O op-
erations from the secondary storage. Extending the paradigm from [67], scalable
efficient techniques were presented to process probabilistic variants of the K−NN
query, along with a variant of the range query – a moving range (i.e., within a given
distance from a moving object).

3.5.2.4 NN Query for Uncertain Trajectories on Road Networks

As discussed in Section 3.4.3, assuming that the periodic (location,time) samples do
not contain any errors, the main source of uncertainty for the objects moving along
road networks is the fluctuation of the speed between some minimal value vmin and
maximal value vmax. Typically, in these settings, vmax corresponds to some speed-
limits dictated for a particular type of road segment (e.g., highway portion vs. street
in downtown area).
When it comes to processing NN query on road networks, the key aspect is the

distance function. Contrary to the motion in a free 2D space, where the distance at a
particular time-instant is the L2 – Euclidian distance, as we mentioned in Section 3.4
in these settings, the distance can be evaluated only based on the existing network,
i.e., the underlying graph representing it [67, 105, 129, 168]. Hence, the typical
strategies rely on either the shortest path distance, or shortest travel-time distance.
A recent approach for tackling Continuous K−NN queries for objects moving

along segments of road networks with Uncertain speeds (CUkNN) has been pre-
sented in [91]. In a similar spirit to [67], for a given object o and a querying object
q, two bounding distance-functions are presented:

1. MaxDq,o,(t) determining how the maximum distance between o and q varies
over time.

2. MinDq,o,(t) determining how the minimum distance between o and q varies over
time.

When calculating the distance functions, given the bounds vmin and vmax, for
each of o and q at a given time-instant, the closest possible location and the furthest
possible location from a vertex (e.g., an intersection in the graph-based network
model) along the direction of movement in the current segment are obtained. The
shortest path distance between the vertices of the graph incident to the edges along
which o and q travel, together with the bounds for closest/furthest possible locations,
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is used to calculate the total value of MinDq,o,(t) and MaxDq,o,(t). The crux is that
these two functions – which were hyperbolae for the motion in free 2D space (or,
equivalently, parabolae) – now correspond to line segments in the (distance,time)
space.
The typical CUkNN query processing proceeds with the standard three stages:

pruning – eliminating the objects with zero probability of being one of the K n-
earest neighbors of q; refinement – where the possible candidates are ranked; and
probability evaluation – the last phase where the actual probabilities for the object-
s from the refinement phase are calculated. We close this part with a note that a
methodology for processing NN query in the settings in which a model based on
location-uncertainty is coupled with a network distance function based on shortest
travel-time has recently been presented in [147]

3.5.3 Potpourri: Some Miscellaneous Queries/Predicates for
Uncertain Trajectories

The range and nearest neighbor queries have been identified as important categories
even in traditional databases settings. However, there are certain predicates that are
topological in nature [33, 76] which have recently been considered in the context of
uncertain spatio-temporal data.
Given that the beads (or, space-time prisms) can be described by polynomial

constraints (cf. Section 3.4), various queries that are well-suited for constrained
database paradigm can be explored. For example, one can envision predicates like
inPrism(r,p,q,v) specifying that the point r is inside the space-time prism defined by
points p and q, with a maximum speed v, where p is preceding q in time.
An example query that is of interest to geographers [61] is the, so called, alibi-

query. Given two space-time prisms, representing the uncertain motions of two in-
dividuals, the alibi-query asks whether those objects had a chance to meet – es-
sentially, whether their corresponding space-time prisms intersect. It was observed
that relying on the quantifier-elimination approaches for first order theories to pro-
cess the alibi-query was computationally cost-prohibitive, and an analytic solution
to this problem was presented in [82].
The inside-ness (cf. Section 3.5.1.2) can also be viewed as a topological proper-

ty describing a possible relationship between an uncertain trajectory and a spatio-
temporal range corresponding to the query-prism. This is but an example of the
perspective taken in [94], where different topological predicates for uncertain tra-
jectories under the, so called, pendant model are discussed. The pendant model is,
in some sense, equivalent to the beads for moving points, however, the formalization
in [94] addresses both uncertain moving points ( unmpoint) and uncertain moving
regions (unmregion). Extending the work in [34] presenting the STP framework for
formalizing Spatio-Temporal Predicates, a collection of Spatio-Temporal Uncertain
Predicates (SUTPs) is presented, based on the pendant model. Formally, a SUTP is
a boolean expression containing:
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• Topological predicates: disjoint, meet, overlap, covers, coveredBy, equal, inside,
contains.

• Traditional logic operators: ¬,∨,∧,∃,∀.
• Set expressions: ∪,∩,∈,⊂.
• Model-operations: e.g., at instance; temp select (along with the distance function

dist).

An interesting geometric approach towards the scalability aspect of the proba-
bilistic NN query processing is presented in [4]. Namely, in a similar spirit to [22],
the work introduces the concept of Probabilistic Voronoi Diagram that can be used
to prune the objects that do not qualify to be in the answer set of the NN-query –
i.e., ones whose Voronoi cells are not adjacent to the Voronoi cell of the querying
object.

3.6 Summary

In this Chapter, we presented an overview of the research trends addressing prob-
lems related to modelling and querying of uncertain trajectories data. After a select-
ed historic overview of the treatment of uncertainty in a few disciplines which, in
one way or another, have impacted the evolution of the thought related to the theme
of this Chapter, we gave a more focused overview of the uncertainty in the fields
of spatial and temporal databases. In the last two sections, we gave detailed discus-
sions related to different models of trajectories that capture the uncertain data, and
the issues that arise when processing queries over such data.
We now bring a few observations regarding the role and impact of trajectories

uncertainty in a broader context and application settings/requirements7:

• In order to reduce the communication and bandwidth consumption, moving ob-
jects may have a ”contract” with the MOD server based, e.g., on the distance-
based dead-reckoning policy [161, 162]. In these settings, each object will pe-
riodically transmit an update of the form (location, time, velocity) and will not
transmit any other location update, for as long as the deviation between the actual
location (as observed e.g., by the on-board GPS device) and the expected location
in the MOD does not exceed certain threshold. Clearly, in-between updates, the
MOD server cannot have any certain knowledge about the objects whereabouts.
In the case that the objects are moving along a road-network, clearly, the location
uncertainty can be reduced [45].

• In order to reduce the storage requirements for the large quantities of (loca-
tion,time) data, sometimesMOD servers may apply data-reduction techniques [15].
Clearly, reducing the size of the data points will ultimately introduce an uncer-
tainty, although the size vs. imprecision trade-offs can be managed (e.g., one can

7 Note that Chapter 1 and Chapter 4 address in detail the topics of trajectory data reduction and
privacy, respectively.
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guarantee a particular error-bound). Clearly, this will affect the (im)precision in
the answers to the spatio-temporal queries in suchMOD [15]. To couple the man-
agement of the transmission cost and storage costs, sometimes one may delegate
(part of) the responsibility of spatio-temporal data reduction to the moving ob-
jects themselves, asking them to periodically transmit a historic data of their trip
after applying reduction techniques [87, 144]

• In wireless sensor networks scenarios, in the case that some imprecision in
time/space is acceptable, some reduction in the (location,time) data-items locally
generated by the tracking sensors can be spared from transmission to a dedicated
sink. This can significantly contribute towards saving the scarce energy resources
of the nodes [146, 165], and prolong the network lifetime.

• Another application domain in which the uncertainty arises as a requirement is
the location-privacy [25, 101, 166]. One of the most popular techniques – spatial
cloaking – actually blurs the user’s exact location into a cloaked area, satisfying
some ”quality threshold” – e.g., the available location information contains an
uncertainty disk with area larger than the desired threshold.

We believe that the spatio-temporal uncertainty will keep on playing an impor-
tant role in many application domains in the future. One challenge is coming up
with a unified model of location and time uncertainties, along with corresponding
query constructs and processing strategies. Many aspects of trajectory data cluster-
ing [47, 75] and warehousing [153] will inevitably require a formal treatment of
uncertainty. Similarly, many applications that rely on maintaining spatio-temporal
variograms [96, 151] will need to incorporate some type of uncertainty. One field
that could potentially benefit from proper adaptive use of uncertainty is visualization
of mobile data, both in large center displays, as well as limited resolution displays
on board moving vehicles [95].
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132. Snodgrass, R.T., Böhlen, M.H., Jensen, C.S., Steiner, A.: Transitioning temporal support in

tsql2 to sql3. In: Temporal Databases, Dagstuhl, pp. 150–194 (1997)



106 Goce Trajcevski

133. Soliman, M.A., Ilyas, I.F., Chang, K.C.C.: Top-k query processing in uncertain databases.
In: ICDE (2007)

134. Suciu, D., Dalvi, N.N.: Foundations of probabilistic answers to queries. In: ACM SIGMOD
(2005). Tutorial

135. Sundararaman, B., Buy, U., Kshemkalyani, A.D.: Clock synchronization for wireless sensor
networks: a survey. Ad Hoc Networks 3(3), 281–323 (2005)

136. Szewczyk, R., Mainwaring, A.M., Polastre, J., Anderson, J., Culler, D.E.: An analysis of a
large scale habitat monitoring application. In: SenSys, pp. 214–226 (2004)

137. Tanin, E., Chen, S., Tatemura, J., Hsiung, W.P.: Monitoring moving objects using low fre-
quency snapshots in sensor networks. In: MDM (2008)

138. Tao, Y., Faloutsos, C., Papadias, D., 0002, B.L.: Prediction and indexing of moving objects
with unknown motion patterns. In: SIGMOD Conference, pp. 611–622 (2004)

139. Tao, Y., Papadias, D.: Spatial queries in dynamic environments. ACM Trans. Database Syst.
28(2) (2003)

140. Tao, Y., Papadias, D., Shen, Q.: Continuous nearest neighbor search. In: VLDB (2002)
141. Tao, Y., Papadias, D., Sun, J.: The tpr∗-tree: An optimized spatio-temporal access method

for predictive queries. In: VLDB (2003)
142. Tao, Y., Xiao, X., Cheng, R.: Range search on multidimensional uncertain data. ACM Trans.

Database Syst. 32(3), 15 (2007)
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