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Abstract—We address the problem of efficient processing
of spatio-temporal range queries for moving objects whose
whereabouts in time are not known exactly. The fundamental
question tackled by such queries is, given a spatial region and
a temporal interval, retrieve the objects that were inside the
region during the given time-interval. As earlier works have
demonstrated, when the (location,time) information is uncertain,
syntactic constructs are needed to capture the impact of the
uncertainty, along with the corresponding processing algorithms.
In this work, we focus on the uncertainty model that represents
the whereabouts in-between two known locations as a bead, and
an uncertain trajectory is represented as a necklace – a sequence
of beads. For each syntactic variant of the range query, we
present the respective processing algorithms and, in addition, we
propose pruning strategies that speed up the generation of the
queries’ answers. We also present the experimental observations
that quantify the benefits of our proposed methodologies.

I. INTRODUCTION

The efficient management of (location,time) information of
mobile entities is essential for many applications that range
from navigation and efficient traffic management, through
environmental health monitoring and remediation [1], [2], [7],
[15]. Investigating techniques for efficient storage, retrieval
and query processing of such data has been a topic of studies of
the field of Moving Objects Databases (MOD) [9]. However,
as has been observed in the literature [3], [4], [11], [13],
[14], [19], [21], [22], [25], almost all the applications that
rely on some form of Location Based Services (LBS) [18]
need to incorporate the factor of the uncertainty of the spatio-
temporal information. The uncertainty is an inherent property
of the (location,time) data in many domains, due to various
sources: – the imprecision of the Global Positioning System
(GPS) devices [25]; – the imprecision and of the tracking
sensors and localization errors [24]; – the imprecision of the
roadside sensors [5]; etc. There are other, complementary,
motivations for inducing the uncertainty in the system like,
for example, trading off the precision for communication
cost [8], or protection of the users privacy [16]. As noted
in [22], unless the uncertainty is captured in the model and
the query language, the burden of factoring it out from the
queries’ answers is solely on the user. Hence, depending on
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the chosen model of uncertainty, for each query of interest a
proper linguistic construct needs to be provided, along with
the algorithm for efficient processing of that query.
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Fig. 1. Spatio-temporal range query for a bead

We focus on processing spatio-temporal range for trajecto-
ries, for which the basic syntax is Qb: ”Retrieve the moving
objects that were inside the region R, between t1q and t2q”. R
denotes the boundaries of the region of interest, and [t1q, t2q]
is the time-interval of interest for the query. However, when
uncertainty is present, Qb may have different variants. For
example, in tracking settings in wireless sensor networks, one
may be interested in Qb1: ”Retrieve the moving objects that
have a non-zero probability of possibly being inside the region
R, sometimes between t1q and t2q”. Such types of queries have
been investigated in [22], however, the location uncertainty
adopted in that work was the one of a disk with a given (fixed)
uncertainty-radius, around the expected location of the moving
object at any time-point. In the 2D space + time system, this
model yields a sequence of sheared cylinders representing the
possible whereabouts.

In this work, we consider a different uncertainty model –
the one in which the possible whereabouts of a given object
in-between two consecutive updates are bounded by the so-
called beads, and the trajectory – represented as sequences
of beads, is called a necklace. The model and the concepts
were introduced under these names in [11], and earlier by
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time-geography community. Arguably, many properties of the
beads can be equivalently stated in terms of the properties of
the uncertainty model presented [19] – a 2D ellipse. Recently,
a very thorough treatment of this particular model, as well
as a logical formalization of trajectories databases and query
languages, has been presented in [14]. At the heart of the beads
model is the assumption that in-between two location updates
L1(x1, y1) at t1 and L2(x2, y2) at t2, the only thing known
about the moving object is that its maximum speed is bounded,
i.e., |v| ≤ |vmax|. An illustration of the main intuition behind
the range queries in beads settings is provided in Figure 1. The
query prism has the bases consisting of the query-region R at
the times of interest tbq and teq . The projection of the possible
whereabouts of the moving objects in 2D corresponds to an
ellipse, with foci at L1 and L2 (cf. [19]). When represented in
the 3D space (=2D + time), this model yields the bead, which
is obtained via an intersection of the two cone-volumes with
vertices at (x1, y1, t1) and (x2, y2, t2) [11]. The shape of the
bead (equivalently, the shape of the ellipse), depend on the
value of1 vmax (cf. [14]).

The main contributions of this work can be summarized as
follows:
– We formalize the variants of uncertain spatio-temporal range
queries presented in [22] in the settings in which the uncer-
tainty is modelled via beads/necklaces, and we demonstrate
that some of the properties presented [22] are valid these
settings.
– For each query type, we present an efficient processing
algorithm. In addition, we propose pruning strategies that can
be used wheh processing spatio-temporal range queries.
– We present experimental observations which demonstrate
that prunning can yield a speed-up of up to a factor of 2 when
processing particular query types.

The rest of this paper is structured as follows. In Section 2
we recollect some necessary background and introduce the
foundations of the uncertainty model used throughout this
work. In Section 3, we introduce the different query types
and present the respective processing algorithms, as well as the
pruning strategies. Section 4 presents our experimental results,
and Section 5 positions our work with respect to the related
literature. Finally, in Section 6 we conclude the paper and
outline directions for future work.

II. PRELIMINARIES

We now proceed with introducing the concepts that will
be used throughout the rest of this paper. Firstly, we give
a formal definition of a trajectory, its uncertainty model and
the concepts of beads, necklaces and possible motion curves.
Subsequently, we present few properties of the beads that
will be used when deriving the algorithms for processing the
different variants of the range queries.

The basic concept describing the motion of a given object
is the one of a trajectory (cf. [14], [22]):

1Whenever clear from the context, when describing the speed we will
simply use a scalar notation, e.g. vmax .

Definition 1: A trajectory Tr of a moving object, is a
polyline in a 3D space (2D spatial + time), represented
as a sequence of points Tr = (x1, y1, t1), . . ., (xn, yn, tn),
where ∀(i, j)(i < j ⇒ ti < tj). Between two con-
secutive points (xi, yi, ti) and (xi+1, yi+1, ti+1), the ob-
ject is assumed to move along the straight line-segment
((xi, yi)(xi+1, yi+1)), and with a constant expected speed
vi =

√
(xi+1 − xi)2 + (yi+1 − yi)2/(ti+1−ti). The expected

location of the object at any time-point t (∈ (ti, ti+1)) is the
one obtained via linear interpolation between the endpoints,
using the expected speed vi. The projection of Trk in the
Euclidian 2D space is called its route.

Definition 1 implicitly casts the trajectory as a function
from Time domain into the 2D Euclidian space (i.e., f(t) →
R2). While it gives, in a sense, a crisp description of the
whereabouts-in-time of a given object, as we mentioned in
Section 1, it often may be the case in practice that the vertices
of the polyline are actual samplings (obtained via GPS device
or tracking sensors), and little is known about the location of
the object in-between two such consecutive samples. Hence,
we need to formally characterize the set of those possible
locations, for which we have the following (cf. [14]):

expected
routes

expected
trajectories

uncertainty
volumes bead

necklace

X

Y

T

Possible
Motion Curves

possible
routes

Fig. 2. Uncertain Trajectory (Beads/Necklace)

Definition 2: Let vi
max denote the maximum speed that

an object can take within the time-interval (ti, ti+1). A bead
Bi = ((xi, yi, ti), (xi+1, yi+1, ti+1), vi

max) is defined as the set
of all the points (x, y, t) satisfying the following constraints:

⎧⎪⎨
⎪⎩

ti ≤ t ≤ ti+1

(x − xi)2 + (y − yi)2 ≤ [(t − ti)vi
max]2

(x − xi+1)2 + (y − yi+1)2 ≤ [(ti+1 − t)vi
max]2

(1)

The first and the second constraint of Equation 1, when taken
together describe a cone emanating upwards from (xi, yi, ti),
with a vertical axis and with circles whose radius value
at time t is (t − ti)vi

max, whereas the first and the third
constraint together, specify a cone emanating downwards from
(xi+1, yi+1, ti+1), with a vertical axis and with circles whose
radius at time t is (ti+1 − t)vi

max. Hence, the bead Bi can
be viewed as volume defined by the intersection of those two
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cones. We note that at t = ti (resp. t = ti+1) the locations of
the object are crisp (i.e., no uncertainty). We now have:

Definition 3: Given a trajectory Tr, its corresponding un-
certain trajectory UTr is a sequence of beads, B1, B2, . . . ,
Bn−1, also called a lifeline necklace (cf. [11], [14]). A possible
motion curve PMC(Tr) of UTr is any function f: Time
→ R2 for which every point (x, y, t), is either a vertex of the
polyline of Tr, or it satisfies (x, y) = f(t) and is inside the
corresponding bead – i.e., (∀t)(ti < t < ti+1) ⇒ ((x, y, t) ∈
Bi).

The concepts introduced in Definitions 1-3 are illustrated
in Figure 2. For comparison, the left part of Figure 2 illus-
trates the corresponding concepts when the uncertainty of the
object’s location at any time t is represented as a disk with
a fixed radius r (cf. [22]). We note that Definition 2 and
Definition 3 slightly deviate from the corresponding definitions
in [14], in the sense that [14] assumes a fixed value of vmax for
every bead throughout the whole lifetime necklace, whereas
we allow different beads Bi to have different bounds on their
respective maximum speeds vi

max. This servers the purpose
of capturing the possibility that the maximum speed can be
different on different terrains or road-segments, and will be of
relevance when we discuss the pruning strategies in Section
3.

 tsv1

t1

t2

tsv2

Possible locations at t = ti

(tsv1 < ti < tsv2)

L1((x1,y1), t1)

L2 ((x2,y2), t2)

ti

Fig. 3. Components and (X,Y) projection of beads

We now proceed with introducing few more properties2

of the beads, which will be important for specifying the
algorithms for the corresponding predicates specifying the
different types of range queries. For a given bead Bi, let
di =

√
(xi+1 − xi)2 + (yi+1 − yi)2 denote the distance be-

tween locations of the starting location (at ti) and ending
location (at ti+1). Also, let tsvi = (ti + ti+1)/2 − di/2vi

max

2For detailed exposition, see [14].

and tsvi+1 = ti + ti+1)/2 + di/2vi
max. We observe that each

bead had two distinct types of volumes:
(1) Single disk volumes: For every t ∈ [ti, tsvi ], the spatial
boundary of the bead at t is a circle with radius r(t) =
vi

max(t − ti), centered at (xi, yi). Similarly, for every t ∈
[tsvi+1 , ti+1], the spatial boundary of the bead at t is a circle
with radius r(t) = (ti+1 − t)vi

max, centered at (xi+1, yi+1).
Hence, throughout [ti, tsvi ], the 3D volume of the bead con-
sists of a single cone, with a vertex at (xi, yi, ti) (similarly
for [tsvi+1 , ti+1]).
(2) Two disks volume: In-between tsvi and tsvi+1 , (i.e., t ∈
[tsvi , tsvi+1 ]), the boundary of the bead at t is an intersection
of two circles: Ci

down(t), centered at (xi, yi), with radius
rdown(t) = (t−ti)vi

max, and Ci
up(t), centered at (xi+1, yi+1),

with radius r(t) = (ti+1 − t)vi
max.

We conclude this section with noting one more property of
the beads: the projection of the bead Bi onto the the (X, Y )
plane is an ellipse (cf. [14], [19]), with foci at (xi, yi), and
(xi+1, yi+1), and with equation:

(2x − xi − xi+1)2

(vi
max)2(ti+1 − ti)2

+

(2y − yi − yi+1)2

(vi
max)2(ti+1 − ti)2 − (xi+1 − xi)2 − (yi+1 − yi)2

= 1 (2)

We will use Eli to denote the ellipse resulting from projecting
the bead Bi in the (X, Y ) plane. Figure 3 provides an
illustration of the different components of the (volume of the)
bead and its corresponding shapes at different time-points, as
projected on the horizontal (X, Y ) plane.

III. PROCESSING UNCERTAIN RANGE QUERIES

We now focus on the specification of different types of
spatio-temporal range queries for beads/necklaces, and the
respective processing algorithms. Firstly, we analyze the differ-
ent categories of queries – their syntax and semantics – noting
that in this work we focus on the qualitative (cf. [22] queries.
Subsequently, we proceed with the details of the queries
processing for which we present two pruning strategies, along
with the individual refinement-algorithms.
In the sequel, for a given range query with parameters: – R,
the spatial region; – and [tbq, teq], the temporal interval of
interest, we will denote the set {∀(x, y, t)|(x, y) ∈ R and t ∈
[tbq, teq]} with QPR (Query Prism). We reiterate that in this
work we focus on query regions that are simple and bounded
by convex polygons.

A. Categories of Range Queries

The categories of queries considered in this work are same
as the ones considered in [22] – namely, predicates specifying
whether a given moving object is Inside the query region R,
and the reasons that we need more than one predicate are:
(1) Due to the continuity of time, one may be interested
whether a given moving object is inside R, sometimes or
always throughout [tbq, teq]; (2) Due to the uncertainty of
the location, at a given time-point an object may possibly be
inside R, or definitely so. In the spirit of [22], and using the
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notation developed in Section 2, we now proceed with defining
the individual predicates for each query category. Note that,
without loss of generality, when we quantify over the temporal
values, we assume that the domain of the interpretation is
limited by the time-interval of interest for the query, [tbq, teq].

R

tbq

teq

X

Y

T
Query Prism

Possibly_Sometime
Possibly_Always
(Always_Possibly)

Fig. 4. Queries for ∃PMC(Tr)

• Possibly Sometimes Inside (Tr, R, tbq, teq): is a predicate
which is true iff there exists some possible motions curve
PMC(Tr) which, at some time t ∈ [tbq, teq] is inside R. In
other words, quantifying over the temporal domain and the
domain of all the possible motion curves of a given trajectory
(i.e., ones within the volume bounded by the lifeline necklace),
we obtain: (∃PMC(Tr))(∃t)[Inside(R, PMC(Tr, ), t)].
– Sometimes Possibly Inside (Tr, R, tbq, teq): as
demonstrated in [22], this predicate can be stated as
(∃t)(∃PMC(Tr))[Inside(R, PMC(Tr, ), t)], and is
equivalent to Possibly Sometimes Inside.
• Possibly Always Inside (Tr, R, tbq, teq): this predi-
cate is true iff there is some (at least one) PMC(Tr)
that is inside R all throughout [tbq, teq]. Formally:
(∃PMC(Tr))(∀t)[Inside(R, PMC(Tr, ), t)]. Observe that
now we are focusing on one specific function f(t) : T ime →
R2, throughout the given time-interval of interest for the query.
• Always Possibly Inside (Tr, R, tbq, teq): is true iff for every
time-instance t throughout the time-interval of interest for
the query, there exists some – unlike the previous pred-
icate, not necessarily unique – PMC(Tr) that is inside R
at t. In other words, (∀t)(∃PMC(Tr))[(t ∈ [tbq, teq]) ∧
Inside(R, PMC(Tr, ), t)].

We have the following:
Property 1: Whenever Possibly Always Inside is true, so is

Always Possibly Inside. In addition, when R is convex, the
two predicates are equivalent.

Proof: (Sketch, cf. [22]) The first part of Property
1 is true due to the properties of the First-Order Logic
– for any predicate P (x, y, . . .), (∃x)(∀y)P (x, y, . . .) ⇒
(∀y)(∃x)P (x, y, . . .). For the second part (equivalence of the
predicates for convex polygons), the steps of the proof are

almost exactly the same as the ones used in the proof of
Theorem 4.1. in [22].
An illustration of the predicates introduced thus far is pre-
sented in Figure 4.

R

tbq

teq

X

Y

T

Query
Prism

Definitely_Always
Sometimes_Definitely
(Definitely_Sometimes)

Cdown(t)

Cup(t)

Fig. 5. Queries for ∀PMC(Tr)

The rest of the predicates are defined as follows:
• Always Definitely Inside (Tr, R, tbq, teq): is true iff for
every time-instance t throughout the time-interval of inter-
est for the query, every single PMC(Tr) is inside R. In
other words, (∀t)(∀PMC(Tr))[Inside(R, PMC(Tr, ), t)].
We note that this predicate is equivalent to Definitely Always
Inside (Tr, R, tbq, teq), because switching the order of two
universal quantifiers does not affect the truth of the formula
(cf. [22]
• Definitely Sometimes Inside (Tr, R, tbq, teq): is true iff
for every possible motion curve PMC(Tr) (i.e., for ev-
ery different f(t) : T ime → R2), there exists
some time-instance (not necessarily unique), at which
that PMC(Tr) is inside the query region R. Formally:
(∀(PMC(Tr)))(∃t)[Inside(R, PMC(Tr, ), t)]
• Sometimes Definitely Inside (Tr, R, tbq, teq): is true iff there
exists (at least one) a time-instance t ∈ [tbq, teq] at which every
possible motion curve PMC(Tr) is inside the query region R.
Formally: (∃t)(∀PMC(Tr))[Inside(R, PMC(Tr, ), t)]
Similarly to Property 1, we have:

Property 2: Whenever Sometimes Definitely Inside is true,
so is Definitely Sometimes Inside.

Proof: (sketch – cf. [22]) For any predicate P (x, y, . . .),
(∃x)(∀y)P (x, y, . . .) ⇒ (∀y)(∃x)P (x, y, . . .)

.
The semantics of each of the last three predicates is illus-

trated in Figure 5.
For a given circle C, let D(C) denote the disk bounded

by C, together with the boundary. As indicated on the right
portion of the Figure 5, in order to guarantee that the predicate
Sometime Definitely Inside is true, in general, it is sufficient
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to find a lens, i.e. a region bounded by the intersection of
D(Cdown

i (t)) and D(Cup
i (t)) for some t, that is entirely inside

R at the time t. We elaborate on the details below.
Note that, although we discussed a total of 8 predicates

(22·2!), in effect we have 6 different ones, because of two pairs
of equivalences Possibly Sometimes Inside ≡ Sometimes Pos-
sibly Inside, and Definitely Always Inside ≡ Always Definitely
Inside. We conclude this section with a summary observation
that the predicate Definitely Always Inside is strongest among
all, in the sense that whenever it is true, so is any other
predicate. On the contrary, the predicate Possibly Sometimes
Inside is the weakest one, in the sense that whenever any other
predicate is true, so it Possibly Sometimes Inside.

B. Query Processing

Typically [9] the processing of spatio-temporal queries is
done in stages:
(1) Filtering, where an index is used to eliminate the retrieval
(often, from the disk) of the data items that are guaranteed not
to satisfy the query [20], [21];
(2) Pruning, where certain properties may be used to further
filter out a portion of the data set already inside the main
memory (without introducing any false negatives) [3]; and
(3) Refinement, where corresponding algorithms are used
eliminate all the false positives that were not filtered out during
the previous stage(s).

In this work, we do not address the problem of indexing
and, in the sequel, we focus on the last two stages of the
query processing.

1) Pruning Stage: One of the modelling issues addressed in
[11] was representing the lifeline necklace at different levels of
granularity – i.e., encompassing several beads’ volumes into
a larger volume. Motivated by this, in the current work we
propose modifications of the approaches presented in [11] as
different types of pruning strategies.

X

Y

T

ai

ai+1

Bi

Bi+1

R

Fig. 6. Cylinder-based pruning approximations

Large bound (LB): In this extreme approach, the entire

necklace is bounded by a single minimal vertical cylinder3.
As can be expected, this strategy is prone to introducing large
volumes of a, so-called, dead-space and completely eliminate
any benefit of the pruning for the purpose of speeding up the
refinement stage.
Individual Bead Bounds (IBb): This pruning strategy ap-
proximates each bead in a given necklace with its minimum
bounding vertical cylinder, thereby approximating the necklace
with a sequence of vertical cylinders. In effect, the ellipse
– which is the projection of a given bead on the (X, Y )
plane, becomes approximated by a circle centered in the center
of the respective ellipse, and with a diameter equal to the
major-axis of the ellipse. Based on Equation 2, the radius of
the approximation-disk Adi corresponding to the bead Bi is:
r(Adi) = 1/2(vi

max)(ti+1 − ti).
Uniform Bead Bound (UBb): This pruning strategy still
focuses on applying vertical cylinders to approximate each
individual bead in a given necklace, however, instead of
using different radii for the basis of each cylinder, we simply
approximate every bead with a uniform base. In other words,
each ellipse is approximated by a circle with a same radius:
r = maxi(r(Adi)). The UBb pruning strategy provides a
balance between keeping an extra storage item for each bead
(consequently, O(n) extra storage for a necklace of size O(n))
as done with IBb, as opposed to keeping one single parameter
for the entire necklace (albeit, introducing more dead space).
Figure 6 illustrates the IBb pruning strategy for a partially-
shown necklace (two consecutive beads). Naturally, since the
circle approximating Bi does not intersect with the query-
region R, one cannot expect that Bi will intersect the cor-
responding query-prism. Hence, the bead Bi can be safely
pruned from any further consideration regarding a particular
predicate.

2) Refinement Algorithms: Before proceeding with the de-
tails of the individual algorithms, few remarks are in order.
Firstly, given the temporal parameter of the query [tbq, teq],
since each necklace is ordered by the temporal component,
using binary search we can find the sub-sequence of the beads
that needs to be considered for the purpose of generating the
answer to a given query in O(log n), for a necklace with
n beads. We note that if [ti, ti+1] ∩ [tbq, teq] = ∅ for any
algorithm, then the answer to the corresponding predicate is
false. In the sequel, without loss of generality we will focus
on the processing algorithms for individual beads. For each
of the respective algorithms, the input consists of a bead
Bi, given as ((xi, yi, ti), (xi+1, yi+1, ti+1), vi

max), a region
R bounded by a convex polygon (∂R) which, together with
[tbq, teq] defines the query-prism QPR. Also, for a given time-
instance t, we use Cdown

i (t) (resp. Cup
i (t)) to denote the lower

(resp.) upper circles of the boundaries of the moving object’s
whereabouts at t, based exclusively on the (xi, yi, ti) (resp.
(xi+1, yi+1, ti+1)). Their respective interiors (the disks at time
t) are denoted with D(Cdown

i (t)) and D(Cup
i (t)).

3Equivalently, one could use a minimum bounding box which is more
appropriate for indexing.
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Recall that Eli denotes the ellipse which is the (X, Y )
projection of the bead Bi, and let F l

i ( = (xi, yi)) and Fu
i (=

(xi+1, yi+1)) denote its lower and upper (in temporal sense)
foci. For complexity analysis, assume that the region R has m
edges/vertics, and an one-time pre-processing cost of O(m)
has been performed to determine the angles in-between its
consecutive vertices with respect to a given point in R’s
interior [17].
Possibly Sometimes Inside – The algorithm for processing
this predicate is as follows:
Algorithm PSI
1. If (ti ∈ [tbq, teq] ∧ F l

i ∈ R) ∨ (ti+1 ∈ [tbq, teq] ∧ Fu
i ∈ R)

2. return true
3. else if (Eli ∩ R = ∅)
4. return true
7. return false

Each of the disjuncts in line 1. can be verified in O(log m)
due to the convexity of R (after the one-time pre-processing
cost of O(m)) [17]. Similarly, by splitting the ellipse in
monotone pieces (e.g., with respect to the major axis), one
can check its intersection with R in O(log m), which is the
upper bound on the complexity of Algorithm PSI .

Possibly Always Inside – Since the Inside predicate needs
to be satisfied by some PMC(TR) for every time-point, the
algorithm for processing this predicate proceeds as follows:
Algorithm PAI
1. If (Cdown

i (tbq) ∩ Cup
i (tbq)) ∩ R = ∅

2. return false
3. else if (Cdown

i (teq) ∩ Cup
i (teq)) ∩ R = ∅

4. return false
5. return true.
Essentially, Algorithm PAI checks whether the intersection
of the bead Bi with R at each end-point of the query-
interval is empty – in which case the predicate Possibly
Always Inside cannot hold. On the contrary, if both of those
intersections are non-empty then, one can construct a line
segment with endpoints at the respective intersections which,
due to the convexity of R, will be entirely contained in R.
The ”certificate” PMC(Tr), can be constructed by applying a
linear motion along the segment, and with a constant speed
between tbq and teq .
We note that tbq (resp. teq) may be inside the time-interval
during which Bi consists of a single-cone volume, e.g.,
[ti, tsvi ] (cf. Section 2). In such cases, the tests in lines 1.
and 3. of Algorithm PAI reduce to simply testing for (non)
intersection of a circle and polygon. Since a lens (intersection
of 2 circles) can be split into two monotone arcs (one from
each circle), the complexity of Algorith PAI is bounded by
O(log m).

Note that, due to Property 1, Algorithm PAI can be used
for checking Always Possibly Inside.

Definitely Always Inside – given its definition, the algorithm
for processing the DAI predicate is straightforward:
Algorithm DAI
1. If ((ti ∈ [tbq, teq]) ∧ (ti+1 ∈ [tbq, teq]))

t

t

RQP

R

in

out

T

X

Y

P1
P2

P3
P4

t
P3

B

El i

i

l

u
Eli

A

B

s  (saggitae)

Fig. 7. Critical Points for DSI and SDI predicates

∧((F l
i ∈ R) ∧ (Fu

i ∈ R)) ∧(Eli ∩ R = ∅)
2. return true
3. else
4. return false
The complexity of the Algorithm DAI is affected by checking
the containment of point(s) inside a polygon, and (non)
intersection-checking of a convex polygon with an ellipse.
Hence, we have the bound of O(log m).

Definitely Sometimes Inside – recall that, for this predicate
we must verify that every PMC(Tr) intersects the query-
prism QPR at some (not necessarily unique) time-instance
between tbq and teq . Hence, unless the expected-trajectory
(F l

i , ti), (F
u
i , ti+1) has a non-empty intersection with QPR,

we know that the predicate is false. Let tin denote the earliest
time that the i-th segment of the expected trajectory enters
QPR, and let tout denote the time that it exits QPR (cf.
Figure 7. Clearly, [tin, tout] ∩ [tbq, teq] = ∅ is a necessary,
but by no means a sufficient condition for satisfying the
predicate DSI. To proceed with the criteria, consider the ellipse
Eli. Let Elli and Elui denote the lower and upper monotonic
segments with respect to its major axis, and in direction of the
object’s motion. Unless both Elli and Elui have a non-empty
intersection with R, then we can construct a PMC(Tr) whose
2D projection is entirely inside Eli \ R, bypassing R, which
will be a ”certificate” that the predicate DSI is false. In Figure
7, this is illustrated with the points P1 and P2 for Elui , and P3

and P4 for Elli. However, this also is not a sufficient criteria.
Namely, Eli is only a 2D-projection of the bead Bi, and it
may very well be the case that some of the time-instances for
the 2D intersection points – denote them by t(Pk), may be
outside [tbq, teq]. In terms of the illustration in Figure 7, we
need to verify that, e.g., t(P3) ∈ [tbq, teq].

To obtain the time-value of each intersection point t(Pi),
we substitute the coordinates of the Eli ∩ R in the equa-
tions obtained from the last two inequalities from Definition
2. Note that those inequalities specify D(Cdown

i (t)) (resp.
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D(Cup
i (t))), hence, using ”=” instead of ”≤” will yield

Cdown
i (t) (resp. Cup

i (t)). Next, we need to verify that at
least one (of the two, since the equations are quadratic in t)
solutions is common for both of them and, lastly, we need to
verify that the common solution is inside [tbq, teq]. We have:
Algorithm DSI
1. If ((ti ∈ [tbq, teq]) ∧ (F l

i ∈ R))
∨((ti+1 ∈ [tbq, teq]) ∧ (Fu

i ∈ R))
2. return true
3. else if (Elui ∩ R = ∅) ∧(Elui ∩ R = ∅)

∧(∀k ∈ {1, 2, 3, 4})t(Pk) ∈ [tbq, teq]
4. return true
5. return false

Similarly to the previous algorithms, we need to find an
intersection between a convex polygon and a monotone arc
of an ellipse (at most 4 of them), which is O(log m), except
now we have to solve (at most 4 · 2 ) quadratic equations and
pair-wise compare their solutions, which is O(1). We note
that there are some special cases for Algorithm DSI like, for
example:
(1) F l

i ∈ R and ti < tbq , in which case, tin = tP1 = tbq.
(2) Elli ⊂ R (i.e., axis-monotone part of the ellipse is entirely
inside R), which is slightly different from the illustration in
Figure 7, where the intersection is actually between Elli and
∂R. However, such cases can be checked in constant time.

Sometimes Definitely Inside – We now address the processing
of the last remaining predicate – SDI. Recall (cf. Section
III-A) that we need a time-instance t ∈ [tbq, teq] for which
the entire lens D(Cdown

i (t)∩D(Cup
i (t)) is inside QPR. Note

that as a consequence of Property 2 (via contrapositive), we
know that if the predicate DSI is false, then so is SDI.
Hence, to process the SDI predicate, we need to verify
the DSI, plus some extra-criteria. We proceed as follows.
Let [tmin

i , tmax
i ] = [t(P1), t(P2)]∩ [t(P3), t(P4)]∩ [tin, tout].

Observe that if [tmin
i , tmax

i ] = ∅ then the predicate SDI is
false, because there exists no time interval during which the
expected location and both ends of the lens can be inside R.
Assume [tmin

i , tmax
i ] = ∅.

(1) If D(Cdown
i (tmin

i )) ∩ D(Cup
i (tmin

i )) ⊂ QPR, or
D(Cdown

i (tmax
i )) ∩ D(Cup

i (tmax
i )) ⊂ QPR, then SDI pred-

icate is true, with a ”witness” tmin
i (resp. tmax

i ).
(2) Else, if the portion of Cdown

i (t) (or Cup
i (t)) inside Eli is

not entirely contained in R in both tmin
i and tmax

i , we know
that the predicate SDI is false.
(3) If neither (1) nor (2) above can be established, let tnew

i =
tmin
i + ((tmin

i + tmax
i )/2), and repeat (1) and (2) for each of

the [tmin
i , tnew

i ] and [tnew
i , tmax

i ].
Clearly, the procedure outlined above, denote it
Cascade(tmin

i , tmax
i , Bi, QPR) is recursive in nature,

and the first question is whether it terminates. The answer
to that is affirmative and the worst case for the number of
invocations can be bounded as follows:
Let A = (x(tin), y(tin)) and B = (x(tout), y(tout)). Also, let
smin(t) denote the smallest sum of the two sagitta’s at any
t ∈ [tmin

i , tmax
i ], where: – the first sagitta is defined as the

perpendicular distance from the midpoint of the Cdown
i (t) arc

bounded by Cdown
i (t)∩Cup

i (t) to the radical axis of Cdown
i (t)

and Cup
i (t); – the second sagitta is defined as the perpendicular

distance from the midpoint of the Cup
i (t) arc bounded by

Cdown
i (t) ∩ Cup

i (t) to the radical axis of Cdown
i (t) and

Cup
i (t). Then, the procedure Cascade(tmin

i , tmax
i , Bi, QPR)

can execute at most �AB/smin(t)� times. An illustration for
the sum of two sagitta’s is provided in Figure 7. We now have:
Algorithm SDI
1. If ¬ DSI
2. return false;
3. else
4. Cascade(tmin

i , tmax
i , Bi, QPR)

Due to the assumption on convexity of R, we have
that the complexity of the Algorithm SDI is bounded by
O(�AB/smin(t)� log m).

We conclude this section with a broad remark about the
complexity results presented. Namely, in each of the algo-
rithms, we focused on an individual bead Bi. However, in
the worst case, the time interval of interest for the query,
[tbq, teq] may be spanning the entire time interval of the lifeline
necklace. Hence, assuming that a given necklace has n beads,
each of the above complexity results needs to be multiplied by
n – either because we may have to check each bead to test for
satisfiability, or because we need to ensure that the satisfiability
of a given predicate is maintained from the previous and into
the next bead.

IV. EXPERIMENTAL EVALUATIONS

We performed several experiments, in order to evaluate the
benefits of the pruning approaches presented in Section 3.
Specifically, for each of the query predicates, we implemented
the corresponding refinement algorithm, and compared the
total execution times when the particular query was evaluated
with pruning (pruning time + refinment time) and without
pruning (directly applying the refinement algorithms). For im-
plementations of intersections of the ellipses and circles with
polygons, we used the publicly available CGAL4 (Computa-
tional Geometry Algorithms Library), which contains robust
C++ implementations of data structures and algorithms for a
wide variety of geometric computing.

Our experiments were performed on a Pentium Intel Core 2
Duo 2.26GHZ, 3G MB memory, with Windows XP platform.
As parameters of the experiments, we considered:
(1) Geographic area of size 40x40 miles2.
(2) Total of 1800 moving objects that were generated using
a modified version of the random way-point model such that
each object: – starts at a randomly selected position in the
region of interest; – selects a random direction; – selects a
random speed between 35mph and 80mph (until it stops); –
has a randomly selected value of vmax along a given segment,
which can range between 20% and 90% from the selected
speed of motion.
(3) The total length of trajectories varied from 4 to 120 miles,

4http://www.cgal.org
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Fig. 8. Pruning effects

normally distributed within that interval, and in 1 mile we have
between 4 and 8 segments.
(4) Query regions that were rectangles of different shapes, and
placed at randomly selected positions. We varied their size
from small (approx. 5% of the size of the geographic area),
to medium (approx. 20% of the entire geographic area).
(5) We varied the duration of the time-interval of interest for
the range queries, as percentage of the total time between the
earliest start-time for all the trajectories and the latest end-
time, randomly selecting starting time-points.

In the sequel, we report the averaged values over 100 runs
for different combinations of values of the parameters above.
Before we proceed with the different observations, we note
that:
(1) When applying the LB (Large Bound) pruning, we ob-
served that in the best case, over 90% of the trajectories was
typically retained for the refinement stage.
(2) When applying IBb and UBb pruning strategies, we
observed a very little difference between the benefits of
the two – specifically, in one particular run (medium size
query polygon, and time-interval of 30%), IBb pruned 895
trajectories, whereas UBb pruned 899 (out of 1800 in the
dataset). Hence, in the sequel, we report our observations for
IBb pruning strategy.

Figure 8 illustrates the benefits of the pruning as a function
of the duration of the time-interval of interest for a given query,
for the cases when small (Figure 8.a) and medium (Figure 8.b)
sized query regions were used. As can be seen, approximately
90% of the trajectories can be pruned when processing queries
whose region is of a medium size (relative to the whole region
of 40x40 miles2), for queries whose duration is about 35%
of the entire time-interval of active trajectories. However, as
can be expected, the effects of the pruning are diminished as
the duration of the time-interval increases, and similarly for
increasing the size of the query region.

Another illustration of this trend is presented in Figure 11,
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Fig. 9. Pruning – running time for small size query regions

which shows the fraction of trajectories of a given length that
are pruned when the query region is small, as opposed to the
ones when the query region is medium (the numbers on each
bar indicate the length of the respective trajectories).

Next, we compared the benefits of pruning in terms of
the overall execution times for the queries. Figure 9 and
Figure 10 present the observations for the cases of small and
medium size query region, when processing the Sometimes
Definitely Inside predicate. The abscissa shows the duration
of the time-interval of the query, and each graph compares
the direct approach (i.e., no pruning) with the approach that
uses pruning. When pruning was used, we added the overall
time taken by the pruning stage and yet, as can be seen, speed
ups of up to a factor of 2 can be achieved.

An interesting observation is that, as much as pruning
does yield non-negligible processing speed ups, in some
of our experiments we observed that it does not yield a
uniform speed-up when processing different predicates. This

206



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Partitions of time interval

A
ve

ra
ge

 E
la

ps
ed

 ti
m

e 
(s

ec
on

ds
)

Medium size query polygon

 

 

Direct
Prune

Fig. 10. Pruning – running time for medium size query regions

Fig. 11. Pruning – impact on different queries

is illustrated in Figure 12, where the bars indicate the total
processing time for individual queries. On the abscissa, we
indicate a particular query using the abbreviations from the
names of their respective refinement algorithms in Section
3.3. As shown, the queries that use the universal quantifier
(Always) in the temporal domain had the least benefit – which,
in a sense, is to be expected because every single bead of the
necklace has to be tested in such queries, thereby diminishing
the benefits of the pruning.

V. RELATED WORK

The field of Moving Objects Databases [9] has generated
a large body of works and, in particular, quite a few recent
results have been focusing on efficient management of uncer-
tainty in spatio-temporal settings.

In [3], an uncertainty model similar to the one used in
this work has been analyzed for the purpose of processing
range and NN-queries. Various results were presented with
quantitative measures of actual probabilistic values. However,
in the context of the terminology introduced in this paper, [3]
used only the bottom-cone emanating from a particular update
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Fig. 12. Pruning – impact on different queries

point, and did not consider the cone emanating downwards
from the next update point in the sequence. Subsequently,
[4] have addressed the problem of probabilistic verifiers in
dynamic settings, however, the domain of the possible val-
ues considered can range along 1 dimension. More recently,
similar settings have been used by the time-series community,
where the uncertainty of the values can range within a bounded
interval, at fixed time-points only [26], and modelling of
spatial uncertainty has been addressed in the context of urban
studies [6].

The model of uncertainty for moving objects based on the
assumption of a maximum velocity being the only parameter
known in-between two consecutive (location,time) updates,
resulting in beads (and necklaces) was introduced in [11].
In addition, the authors presented several possibilities of pre-
senting a sequence of beads in different levels of granularity,
however, the work focused on the modelling aspects, and
did not present any formal mathematical analysis of the key
properties of the beads. This work was slightly preceded by
[19], which introduced the equivalent model of the location-
uncertainty of a given moving objects – focusing on the 2D
(X, Y ) projection which, as mentioned, is an ellipse. A recent
work that presents an extensive formal treatments of the beads-
based uncertainty model for trajectories is [14], where the
data model is accompanied by a complete query language.
The features of the uncertainty model when the motion is
restricted to a road-network has been presented in [13]. In this
work, we built upon these existing results, and we focused on
formalizing the processing of qualitative spatio-temporal range
queries with uncertainty, for different syntactic variants. We
considered different pruning strategies, and for each syntactic
variant we presented efficient processing algorithms.

The categories of queries considered in this work are equiv-
alent to the ones in [22], however, the uncertainty model that
we used is different. Namely, [22] used a fixed-radius disk as
a boundary of the possible whereabouts of the moving object
at every time-point. This resulted in a volume of possible
trajectories corresponding to a sequence of sheared cylinders,
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all with equal horizontal projections at individual time-points.
In this paper, we considered the model of beads where different
segments can have different 3D shapes due to the variations in
the maximum speed. The specifics of the model required novel
processing algorithms, which is what separates this work from
[22] – namely, the concept of the Minkowski sum used in [22],
which yielded compact algorithmic approaches for processing
range queries, can no longer be applied in beads/necklaces
settings. However, the beads model provided us with the
opportunity to investigate the impact of the pruning as a factor
in queries processing.

VI. CONCLUDING REMARKS AND FUTURE WORK

We addressed the problem of efficient processing of spatio-
temporal range queries for uncertain trajectories, where the
uncertainty of the motion was modelled as a necklace – a
sequence of beads. The main motivation for this model is
that in many realistic settings, the positions of the moving
objects are sampled only periodically, and little is known about
their locations in-between – and this model provides a real-
istic setting, by assuming only one restricting parameter: the
maximum velocity in-between consecutive updates. The model
was initially introduced in [11] and, from a complementary
perspective [19], however, the thorough treatment of all the
different aspects of the model has been presented only recently
[14].

Focusing on the qualitative aspects of the uncertainty, we
presented pruning strategies which, as demonstrated by our
experiments, can significantly speed up the processing of
some of the queries. We also demonstrated that some of the
properties of other uncertainty models (cf. [22], [25]) hold in
the current settings. For each different query predicate that we
defined, we presented the corresponding processing algorithms
for the refinements stage.

There are several immediate extensions of our work. Cur-
rently, we are working on quantitative range queries, where
actual probabilistic value is assigned for the existing predi-
cates, in a similar spirit to [3]. Concurrently, we are addressing
the problems of uncertain spatio-temporal Nearest-Neighbor
(NN) queries [12], [23] for beads/necklaces model. The beads
appear to be an attractive uncertainty model for trajectories
obtained by tracking via periodic sampling in wireless sensor
networks. One of the main challenges, however, is to develop
distributed and energy-efficient algorithms for processing the
spatio-temporal range queries in (near) real time [2], [24].

We note that an important part of the query processing tech-
niques is the indexing [20], and the uncertainty of the spatial
whereabouts has been incorporated into indexing schemas for
processing probabilistic range queries [21]. However, this is
beyond the scope of the current paper, and we leave it for
the future work to investigate whether some of the techniques
that we proposed here for pruning, can actually benefit some
indexing schema(s). Specifically, an important question would
be to find an optimal balance of the size of the ”pruning-
cylinder”, in the spirit of [10].
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