
The VLDB Journal (2011) 20:767–791
DOI 10.1007/s00778-011-0249-3

SPECIAL ISSUE PAPER

Ranking continuous nearest neighbors for uncertain trajectories

Goce Trajcevski · Roberto Tamassia · Isabel F. Cruz ·
Peter Scheuermann · David Hartglass ·
Christopher Zamierowski

Received: 30 September 2010 / Revised: 10 April 2011 / Accepted: 7 May 2011 / Published online: 30 August 2011
© Springer-Verlag 2011

Abstract This article addresses the problem of performing
Nearest Neighbor (NN) queries on uncertain trajectories. The
answer to an NN query for certain trajectories is time param-
eterized due to the continuous nature of the motion. As a
consequence of uncertainty, there may be several objects
that have a non-zero probability of being a nearest neigh-
bor to a given querying object, and the continuous nature
further complicates the semantics of the answer. We capture
the impact that the uncertainty of the trajectories has on the
semantics of the answer to continuous NN queries and we
propose a tree structure for representing the answers, along
with efficient algorithms to compute them. We also address
the issue of performing NN queries when the motion of the
objects is restricted to road networks. Finally, we formally
define and show how to efficiently execute several variants
of continuous NN queries. Our experiments demonstrate
that the proposed algorithms yield significant performance
improvements when compared with the corresponding naïve
approaches.

Research supported in part by NSF awards CCF-0830149, CNS-
0910952, IIS-0513553, and IIS-0812258, and by the Center for
Geometric Computing at Brown University.

G. Trajcevski (B) · P. Scheuermann · D. Hartglass ·
C. Zamierowski
Department of EECS, Northwestern University, Chicago, IL, USA
e-mail: gocez@eecs.northwestern.edu

R. Tamassia
Department of CS, Brown University, Providence, RI, USA
e-mail: rt@cs.brown.edu

I. F. Cruz
Department of CS, The University of Illinois at Chicago,
Chicago, IL, USA
e-mail: ifc@cs.uic.edu

Keywords Nearest neighbor · Uncertainty ·
Moving objects database

1 Introduction

A broad set of applications—such as traffic management,
emergency response, disaster remediation, context-aware
tourist information, and battlefield management—rely on
Moving Object Databases (MOD) [19] to manage the (loca-
tion, time) information of the mobile entities, and efficiently
process various queries of interest, e.g., range, density, vari-
ants of nearest neighbor (reverse, surface, aggregate), and
skyline [5,13,18,24,26,33,34,59,60].

Due to the imprecision of positioning technologies (e.g.,
roadside sensors, GPS), it is not always possible to ascertain
the exact location of a particular moving object [58]. Hence,
uncertainty must be taken into account in the data models, in
the linguistic constructs of the queries, and in the processing
algorithms. The impact of various sources of imprecision in
the context of probabilistic and uncertain data management
has received considerable attention recently (e.g., [3,47,48,
37]), including spatial and spatio-temporal settings (e.g., [8,
39,40,51,55]).

As an illustrative scenario, in order to balance the prompt-
ness of emergency response with the safety of the officers
involved, the command center may want to orchestrate the
traffic light sequence so that more than one patrol car can
simultaneously arrive at the site of an incident. This objective
is complicated by the fact that there are city areas where loca-
tion cannot be determined accurately. Hence, the associated
uncertainty needs to be taken into account when planning
the routes and traffic light sequence. Similarly, in environ-
mental studies that investigate the correlation of migrations
among species, tracking data that represent the motion of

123



768 G. Trajcevski et al.

a species is typically generated by a GPS-enabled beacon
device attached to only a subset of the animals. Therefore
the study of the collective behavior of the motion of a herd
or flock needs to incorporate imprecision in the average tra-
jectory as estimated from that subset. Yet another settings
are studies related to climate and weather data where, for
instance, one may be interested in the spatio-temporal prox-
imity among hurricanes. However, their typical tracking (via
satellite) has a rather uncertain location-in-time information
of the eye of a hurricane, much less the overall size of the
affected region. Motivated by this kind of applications, we
focus on variations of nearest neighbor queries, for brevity
referred to as NN-queries, which incorporate the uncertainty
of the moving objects locations.

Contrary to what happens in pure spatial settings [21,42],
the answer to a continuous NN-query in a spatio-temporal
setting is time parameterized [49] in the sense that the
actual nearest neighbor of a given object need not be the
same throughout the time-interval of interest. However, when
uncertainty is incorporated in the trajectories’ model in
MOD, the situation becomes significantly more complicated,
as illustrated next.

Example 1 (Motivational example) Consider a MOD with
the following four trajectory segments
Tr1 = {(120, 60, 10), (220, 300, 20)}
Tr2 = {(310, 100, 10), (190, 260, 20)}
Tr3 = {(150, 100, 10), (30, 260, 20)}
Tr4 = {(370, 570, 10), (270, 330, 20)}
where the values for the (x, y, t) coordinates are chosen in
some reference 2D-spatial plus 1D-temporal coordinate sys-
tem expressed for example in meters for the spatial coordi-
nates and in seconds for the temporal coordinate. The fol-
lowing query is posed to the MOD:
Q_NN : Retrieve the nearest neighbor of the trajectory Tr1

between t1 = 10 and t2 = 20.
Using algorithms available in the literature (e.g., [35,49]),

the answer AQ_NN to the query is the set {[Tr3, (10, 15)], [Tr2,

(15, 20)]}, meaning that during the first 5 seconds of the time-
interval of interest, i.e., between t1 = 10 and t = 15, the
nearest neighbor of Tr1 is the trajectory Tr3 and during the
last 5 seconds, i.e., between t = 15 and t2 = 20, the nearest
neighbor of Tr1 is the trajectory Tr2.

Now consider a slightly modified scenario, depicted in
Fig. 1, where the spatial locations of the objects along their
trajectories are uncertain. Specifically, at a given time instant,
an object can be anywhere within a disk with a 30 meter
radius, centered at its expected location for that time instant.
In this setting, at time t = 13(< 15), both Tr3 and Tr2 have a
non-zero probability of being the NN-trajectory to Tr1. How-
ever, that is not the case for Tr4 which, at t = 13, cannot
possibly be the nearest neighbor to Tr1. However, at t2 = 20,
Tr4—which was not part of the answer AQ_NN when there

Fig. 1 Uncertainty impact for continuous NN queries

was no uncertainty in the objects’ motion—has a non-zero
probability of being the NN-trajectory to Tr1, albeit smaller
than the one associated with Tr2.

The main objective of this work is to provide formalisms and
methodologies for efficient processing of queries like:
SELECT T ri FROM MOD

WHERE ProbabilityNN(T ri , T rQ , T ) > 0 AND

(T BETWEEN t1 AND t2 )

In this spirit, the challenges brought by the consideration
of uncertainty (as illustrated in Fig. 1) prompt a more detailed
investigation of the following two issues:

1. Ranking: we need to be able to distinguish the rank of a
given trajectory’s probability (e.g., highest or lowest) of
being a nearest neighbor to a given querying object [47]
at a particular time instant.

2. Continuity: we need to efficiently manage the changes to
the continuous ranking of the objects that qualify to be
nearest neighbors (with non-zero probability) along the
corresponding portions of the time-interval of interest for
a given NN-query.

Combining ranking and continuity affects the structure of the
answer that is returned to the users of a MOD with uncertain
trajectories. However, to further ease the burden of factoring
out the uncertainty from the answers to the queries, the users
need a suite of syntactic constructs that will enable them to
express their interests when posing the queries. Toward these
goals, the main contribution of our work consists of the fol-
lowing results, which can be used in the refinement stage of
the overall query processing workflow:

1. We identify mathematical properties that enable the
generation of a ranking of the probabilities associated

123



Ranking continuous nearest neighbors 769

with objects that have a non-zero probability of being
the nearest neighbor to a query trajectory; we demon-
strate that these properties are applicable to a large class
of probability density functions, or pdf s, representing
the possible location of the moving objects.

2. We formalize the declarative semantics of (the struc-
ture of) the answers to continuous spatio-temporal
NN-queries for uncertain trajectories and present a com-
pact data structure to represent the answers.

3. We present efficient algorithms for constructing the geo-
metric dual of the proposed data structure and show how
it can be used to efficiently determine those trajectories
that do not belong to the query answer.

4. We address the variant when motion is restricted to road
networks and identify the main aspects of the interplay
between uncertainty and inter-trajectories’ distance.

5. We systematically incorporate uncertainty in the syntax
of NN-queries and consider its impact on the correspond-
ing answers. We present efficient processing algorithms
for the different syntactic variants.

6. We evaluate experimentally the proposed algorithms and
show that for several NN-query variants our results are
more efficient by orders of magnitude than those pro-
vided by naïve approaches.

A preliminary version of this article was presented in [54].
In addition to the stylistic and structural improvements from
the conference version, we introduce the following new con-
tributions:

– We extend the problem setting to incorporate uncertain
NN-query processing for objects moving on road net-
works.

– We present a formal treatment of the queries and of the
algorithms for processing them.

– We expand the implementation of the proposed query
algorithms and we present an extensive experimental
evaluation.

The rest of this article is structured as follows. In Sect. 2,
we describe the necessary background. Section 3 presents
the transformation that we apply to the collection of uncer-
tain trajectories for processing NN-queries, along with the
demonstration of its applicability to a large class of loca-
tion uncertainty pdf s. Based on these properties, in Sect. 4
we focus on the processing of NN-queries: we present the
structure of the answer, along with the corresponding algo-
rithm for constructing it. In Sect. 5, the previous context is
changed so as to consider objects that move along a road
network. Section 6 addresses different syntactic variants of
NN-queries for uncertain trajectories. In Sect. 7 we present

a portion of our experimental results, following up with a
discussion of related works and concluding remarks.

Due to space limitations, we now present only a subset
of our experimental results, which demonstrate the bene-
fits of the proposed methodologies. The complete set with
a lengthier discussion, as well as a more detailed presen-
tation of related work and of the concluding remarks were
peer reviewed during the submission process and are avail-
able elsewhere [53].

2 Preliminary background

We now introduce background material, starting with an
overview of the uncertainty models typically used in MOD
settings and a formal definition of the model used in this
work. Next, we discuss instantaneous NN-queries for uncer-
tain objects for the special case when the query object is
crisp (i.e., its location is exact, without any uncertainty) [8]
and conclude with observations on probabilistic complete-
ness for NN queries.

2.1 Modeling uncertainty of motion

Selecting a model for the motion plan affects the representa-
tion of trajectories in a MOD [16,17] and, consequently, the
overall strategy of query processing, including indexing [1,2,
13,28,33,38,50,52] and pruning/refinement [11,25,49,61].
In addition, the choice of the motion model affects the cor-
responding uncertainty model that can be associated with
it. Three popular models for uncertainty in MOD settings
are:

M1: The location and time data of the moving objects are
obtained by receiving periodic updates of the form
(x, y, t), as in on-board GPS systems [13,34]. In this
case, nothing is known between consecutive updates,
except that the motion is bounded by some maximum
speed vmax. Using ideas from time-geography [20] in
a MOD context, it has been shown that the projec-
tion of the uncertain locations on the XY plane is
bounded by an ellipse with foci in two consecutive
update points [39]. A subsequent spatio-temporal ver-
sion of the model [22] names the volume between two
update points a bead (called space-time prism in [29]),
which presents the first formal analysis of the prop-
erties of the model in terms of query languages (cf.
Fig. 2a).

M2: In some applications, each object transmits its expected
velocity along with its current sampled location [25].
Typically, velocity information is provided to save
bandwidth consumption at the expense of impreci-
sion [58]. As long as the sampled location does not

123



770 G. Trajcevski et al.

T

X

Y

t = now

a.) (location,time)

b.) (location,time,V)

c.) trajectory

Vmax
Dmax

r

location
pdf's

Fig. 2 Motion models and uncertainty

deviate by more than a certain (pre-defined) thresh-
old, Dmax, from its expected location, the object need
not transmit an update to the MOD server. This policy
is known as dead-reckoning [58]. The possible loca-
tions of an object under consecutive MOD updates are
illustrated in Fig. 2b.

M3: Another model of motion represents the trajectories as
sequences of (x, y, t) points and the locations between
such points are obtained via linear interpolation [17].
Although this model is typically used for past trajec-
tories, it can also represent future trip-planning tra-
jectories, where users transmit to the MOD server: (1)
the beginning location; (2) the ending location; (3) the
beginning time; and (4) possibly a set of points to be
visited. Based on the information available from elec-
tronic maps and traffic patterns, the MOD server will
construct and transmit the shortest travel time or short-
est path trajectory to the user. This model is applicable
to the routing of commercial fleet vehicles (e.g., FedEx
and UPS) as well as to web services for driving direc-
tions, where tens of millions of computations of short-
est path trajectories are executed monthly by services
such as Google Maps. The uncertainty model for pro-
cessing spatio-temporal range queries for “full” tra-
jectories assumes that at each time instant the object’s
location is bounded [55]. This model is illustrated in
Fig. 2c, which also shows how at given time instant, the
pdf of the location of the object can be specified with
different functions (e.g., uniform, bounded Gaussian).
In this work, we focus on the M3 model and introduce
the following definitions.

Definition 1 A trajectory is a function Time → R2,
represented as a sequence of 3D (2D spatial plus time)
points, accompanied by a unique ID of the moving object:

Tri = (oidi , (xi1 , yi1 , ti1), . . . , (xik , yik , tik )),

where ti1 ≤ ti2 ≤ . . . ≤ tik .

When clear from the context, we will interchangeably use
T ri and oidi . In between two consecutive points, the objects
are assumed to move along straight line segments and with
constant speed, calculated as:

vik =
√(

xik − xi(k−1)

)2 + (
yik − yi(k−1)

)2

tik − ti(k−1)

(1)

Thus, the coordinates of an object oidi at time t ∈ (
ti(k−1)

, tik

)
can be obtained by linear interpolation:

xi (t) = xi(k−1)
+ vik · (

t − ti(k−1)

)
yi (t) = yi(k−1)

+ vik · (
t − ti(k−1)

) (2)

Definition 2 (An uncertain trajectory) Tru
i is a trajectory

augmented with: (1) information about the radius of the cir-
cle bounding the uncertainty zone, i.e., the disk representing
the 2D set of possible locations of the object at a given time
instant; and (2) the pdf of the location within the uncertainty
disk. Thus, we have:

Tru
i = (oidi , r, pd f, (xi1 , yi1 , ti1), . . . , (xik , yik , tik )).

The center of the uncertainty disk is referred to as the
expected location of the object and we use Di (t) to denote
the uncertainty disk of Tru

i at time t . When it comes to future
trajectories generated by trip planning services, this type of
location uncertainty at a given time instance indicates: (1)
The acceptable location error, with respect to the planned tra-
jectory, as measured by the on-board device; (2) The accept-
able time discrepancy for a given location (e.g., the moving
object has arrived earlier or later than predicted), the bound-
aries of which can be obtained by intersecting the sheared
cylinder at a given (X,Y) value, with a vertical plane that is
perpendicular to the 2D vector of the direction of motion.
Note that the latter actually makes the time discrepancy tol-
erance a function of the velocity at a given time instance [6].

A specific assumption used in this paper is that parame-
ters r and pd f are the same for all the trajectories in a given
MOD. Another assumption, commonly used in the literature
(e.g., [8,51]) is that the locations of the uncertain objects are
independent random variables.

In our examples, we use uniformly distributed 2D ran-
dom variables in the uncertainty zone, which implies that
the pdf of the object with ID oidk and expected location
(xk(t), yk(t)) at time t is given by

pdf t
k(X, Y ) =

{
0,

√
(xk(t) − X)2 + (yk(t) − Y )2 > r

1
r2π

,
√

(xk(t) − X)2 + (yk(t) − Y )2 ≤ r

Our results are applicable to a much larger class of pdf s, as
we will formally demonstrate in Sect. 3.

123



Ranking continuous nearest neighbors 771

Rmin

Rmax

Q

Tr1

Tr2

Tr3

Tr4

Tr5

Rmin   >   Rmax

Rd
1

1

14

Fig. 3 Uncertain NN-query (crisp oq )

2.2 Uncertain objects and crisp query object

We assume that we are given a query object oq whose location
at a particular time instant is crisp, i.e., a 2D point Q, with
no uncertainty associated with it. We also assume that the
possible locations of the other objects are disks with radius
r (cf. Definition 2). A thorough treatment of the problem of
processing range and NN queries for such settings is pre-
sented elsewhere [8]. In what follows, we present a concise
summary along with observations relevant to our work.

Observation O1: We consider bounds on the distances that
possible nearest neighbors can have from Q. As shown in
Fig. 3, the distance between Q and the most distant point of
the closest disk, Rmax, bounds the distance that any possi-
ble nearest neighbor of Trq can have. Hence, any object oi

(a snapshot of a trajectory Tri ) whose closest possible dis-
tance to Q, denoted with Rmin

i , is larger than Rmax has zero
probability of being a nearest neighbor to Trq and can be dis-
regarded in the query evaluation. As can be seen from Fig. 3,
Rmin

4 > Rmax
1 and similarly Rmin

5 > Rmax
1 , which means that

Tru
4 and Tru

5 have zero probability of being a nearest neigh-
bor of T rq . We denote with Rmin the distance from Q to the
closest point of the closest disk.

Observation O2: We now turn to the probability of the loca-
tion along a trajectory Tru

i being within distance Rd from Q.
This probability can be expressed as:

PWD
i,Q (Rd) =

∫ ∫

A

pdf i (x, y) dx dy (3)

where A, the integration bound, denotes the area of the inter-
section of the disk with radius Rd centered at Q and the
uncertainty disk of T ri , with a corresponding pd fi (x, y).

Example 2 [8] When pd fi (x,y) is uniform, the probability
PW D

i,Q (Rd) can be calculated as:

PWD
i,Q (Rd)=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0 if(Rd < rmini )
1

R2
dπ

(�− 1
2 sin 2�)+ 1

π
(α− 1

2 sin 2α)

if(di Q − r ≤ Rd ≤ di Q + r)

1 if(di Q + r < Rd)

(4)

where � = arccos
d2

i Q+r2−R2
d

2di Qr , α = arccos
d2

i Q+R2
d−r2

2di Q Rd
, and

di Q is the distance between Q and the expected location of
Tru

i . We note that modifications are needed to Eq. 4 when Q
is located inside the uncertainty zone of Tru

i [8]. Taking the
derivative of PW D

i,Q yields pd f WD
i,Q (Rd) which, in the case of

uniform distribution, will be non-zero only when di Q − r ≤
Rd ≤ di Q + r .

Observation O3: In computing the probability that a given
object, Tru

j , is a nearest neighbor of the crisp querying object
Trq at a given time instant, we consider: (1) The probability
of Tr j being within distance ≤ Rd from Trq ; (2) The prob-
ability that every other object T ri (i �= j) is at a distance
greater than Rd from the location Q of Trq ; and (3) The
fact that the distributions of the objects are assumed to be
independent from each other.

Using the above observations, the generic formula for the
nearest-neighbor probability is given by:

PNN
j,Q =

∞∫

0

pd f WD
j,Q (Rd) ·

∏

i �= j

(1 − PWD
i,Q (Rd)) dRd (5)

We note that the boundaries of the integration need not be 0
and ∞ because the effective boundary of the region for which
an object can qualify to be a nearest neighbor of Trq is the
ring centered at Q with radii Rmin and Rmax. More specifi-
cally, pd f WD

j,Q (Rd) is 0 for any Rd < Rmin
j and 1− PWD

i,Q (Rd)

is 1 for Rd < Rmin
i .

By sorting the objects that have a non-zero probability of
being nearest neighbors according to the minimal distances of
their boundaries from Q, one can break the evaluation of the
integral from Eq. 5 into subintervals corresponding to each
Rmini and the computation of the P N N

j,Q can be performed in
a more efficient manner, based on the sorted distances and
the corresponding intervals [8]. This is especially important
because the evaluation of the integrals like the one specified
in Eq. 5 may need to be computed numerically. When the pdf
of the locations is uniform, the objects can be sorted accord-
ing to the distances of their respective expected locations
from Q.

2.3 On the completeness of NN-probabilities

While the ideas in observations O1–O3 are intuitive and
sound, there may be certain issues related to their com-
pleteness. Namely, the computation of the values PNN

i (Q)

123



772 G. Trajcevski et al.

using Eq. 5 will not yield a probability space [14]. In
other words, it may be the case that adding all proba-
bilities �∀i PNN

i,Q would yield a value that is less than 1.
The reason for this is that the probability of a given
object being the nearest neighbor to T rq consists of two
parts:

PNN
i,Q = PNN_E

i,Q + PNN_J
i,Q (6)

– PNN_E
i,Q denotes the exclusive probability that Tru

i is the
nearest neighbor of T rq and is calculated in the spirit of
Eq. 5.

– PNN_J
i,Q , represents a joint probability that corresponds to

the case(s) in which Tru
i is the nearest neighbor of Trq

along with some other Tru
j . Therefore, it consists of sev-

eral additional sums. Each sum can be represented as:

S2 = � j

∞∫
0

pdf WD
i,Q (Rd) · pdf WD

j,Q(Rd)

·∏k �=i, j (1 − PWD
k,Q (Rd)) dRd

(7)

The right-hand side of Eq. 7 captures the case(s) when
Tru

i is paired with another Tru
j for being the nearest neighbor

with respect to the location Q, while all the other moving
objects have a smaller probability of that occurring.

By analogy, we have:

S3 = � j�k

∞∫
0

pdf WD
i,Q (Rd) · pd f WD

j,Q (Rd)

·pd f WD
k,Q (Rd) · ∏

l �=i, j,k(1 − PWD
l,Q (Rd)) dRd

(8)

where the right-hand side of Eq. 8 captures the contributions
when all object triples (one of which is Tru

i ) are simulta-
neously considered as nearest neighbors of Trq at Q.

Assuming a collection of N objects, SN is the value denot-
ing the probability that all of them are simultaneously neigh-
bors of Trq at Q:

SN =
∞∫

0

∏

k

pd f WD
k,Q (Rd) dRd (9)

We observe that the importance of the properties identified
above for the current work is as follows: when focusing on
the 1NN-query for uncertain trajectories with respect to a
crisp query object, the values of S2, S3, . . . SN will not be of
relevance for the ranking the respective values of the proba-
bilities in the answer—a fact that will be exploited in Sects. 4
and 5. However, in the case of processing kNN variant of
the query, where k ≥ 2, the values of such Si ’s cannot be
neglected.

3 Uncertain querying object and convolutions

In this section, we: (1) illustrate the problems that arise when
the query object has an uncertainty associated with its loca-
tion; and (2) show that by using a simple transformation, we
can reduce this case to one in which the ideas presented in
Sect. 2.2 are applicable for a large class of pdf’s, with appro-
priate modifications.

For the time being, let us consider a “snapshot” query in
which the location of the querying object T rq is also uncer-
tain, and can be anywhere within the disk of radius r centered
at the expected location Q.

The first observation is that we can no longer prune the
objects whose uncertainty disk is further than Rmax from Q.
An illustration is provided in Fig. 4. Namely, when Trq is
located somewhere in the zone denoted by Z1 inside of its
own uncertainty disk and Tr4 is located somewhere in the
zone denoted by Z2, their distance is less than Rmax and,
consequently, Tr4 has a non-zero probability of being a (pos-
sible) nearest neighbor of Trq . This fact complicates the main
benefits in terms of compactness of the representation and
the efficiency of processing probabilistic NN-queries with
respect to using the formulas from Sect. 2.2 (cf. [8]). Strictly
speaking, at the heart of the problem is the calculation of
the probability that a given object Tri is within distance Rd

of Trq .
Since the distributions of the objects within their spatial

boundaries are independent, one can obtain the probability
of two objects being within distance ≤ Rd from each other
as follows:

1. Find the set of all the possible locations in the uncer-
tainty disk Di that are at distance Rd from some point
in the disk Dq . This set is actually the intersection: Di∩
(Dq ⊕ Rd), where (Dq ⊕ Rd) denotes the Minkowski
sum (see, e.g., [9]) of the uncertainty disk of Trq with a
disk of diameter Rd .

Rmin

Rmax

TrQ

Tr1

Tr2

Tr3

Tr4

Tr5

Z1

Z2

dist(Z1,Z2) < Rmax

Fig. 4 Uncertain NN-query (uncertain T rq )

123



Ranking continuous nearest neighbors 773

Fig. 5 Evaluating within distance probability

2. For each point P(= (x p, yp)) ∈ Di∩ (Dq ⊕ Rd) and
a point Q ∈ Dq , evaluate PW D

q,P (Rd) using, e.g., Eq. 3,
and “add” the uncountably many such results—which is,
integrate over the area Di∩ (Dq ⊕ Rd), with dx p and dyp

as the extra variables of differentiation.

This method yields a quadruple integration in the correspond-
ing version of Eq. 3 used for evaluating PW D

i,q (Rd) and yields

additional overhead in determining the pd f W D
i,q (Rd) (via dif-

ferentiation), in order to be able to use Eq. 5 for evaluating
P N N

i,q . Most often, the procedure outlined above will rely on
a numerical evaluation, which approximates the outer inte-
grals by a sum of the products of the probabilities that Tri

is at location l1 ∈ Di , given that Trq is at location l2, and
‖l1l2‖ ≤ Rd (over all such locations l1 and l2, and after dis-
cretizing the corresponding location pdf’s [8,51]). Since the
locations of the individual objects are assumed to be indepen-
dent, the conditional probability Pr(T ri = l1 | T rq = l2) is
simply Pr(T ri = l1).

Example 3 Figure 5 shows the locations of 3 uncertain
objects with uniform pdf’s. Each of them has the uncer-
tainty radius of 1, and their respective expected locations are
Eloc(T rq) = (2, 2), Eloc(T r1) = (7, 3) and Eloc(T r2) =
(3, 8). The two dashed segments of circles, centered at two
locations inside the uncertainty disk of Trq illustrate part of
the calculation of the probability of Tr1 being within distance
≤ 4 from Trq (obviously, 0 for Tr2).

To explain the theoretical foundation of our main results,
let V i denote the 2D random variable representing the pos-
sible locations of the uncertain trajectory Tru

i at a given time
instant. The crux for evaluating a probabilistic NN-query is
determining the expression for the probability of Tru

i being
within a given distance Rd from Tru

q , which is, the value

of PW D
i (Rd). An equivalent interpretation is that we need

to evaluate P(‖V i − V q‖ ≤ Rd). The key observation is
that V i − V q is another random variable, denote it V iq—
known as a cross-correlation of V i and V q [32,56]. Also,
V iq can be viewed as the sum V i + (−V q). Since V i and

1 

x 

y 

pdf 

0 
-4.0 

+4.0 

4r 

3 
4r 2 

pdf(Tr 2  - Tr q ) 

pdf(Tr 1  - Tr q ) 

Fig. 6 Within distance probability: convolution

V q (consequently, −V q ) are independent variables [8,51]),
it is a well-known fact from the probability theory that the
random variable V iq has a pd fiq which is a convolution of
the corresponding pdf’s of V i and −V q ) [56]. In other words:

pd f (V iq) = pd f (V i ) ◦ pd f (−V q) (6)

Example 4 As one can readily verify (cf. [56]), the convolu-
tion of two cylinders with heights 1

r2π
is a cone whose base is

a circle with radius 2r and height 3
4r2π

. As illustrated in Fig.
6, instead of performing uncountably many additions (e.g.,
adding an extra outer integration) in the context of Example
2, for the various circles of radius 4 centered somewhere in
the uncertainty disk of Trq (cf. Fig. 5), we can now use a
simpler calculation—evaluate the volume of the intersection
of the cone centered at (5, 1) (= (7, 3) − (2, 2)), with the
cylinder with radius 4 centered at the origin (0, 0).

Specifically, for uncertain trajectories with uniform loca-
tion pdf’s, given the Eq. 2, we have

pd f (V iq(t)(X, Y ))

=

⎧
⎪⎨
⎪⎩

0,

√
((xi (t) − xq (t)) − X)2 + ((yi (t) − yq (t)) − Y )2 > 2r

3
4r2π

(1 −
√

((xi (t)−xq (t))−X)2+((yi (t)−yq (t))−Y )2

2r )

otherwise

(7)

We note that, in order for a convolution of two functions to
exist (i.e., two functions to be convolutable) it is sufficient
that each of them is Lebesgue-integrable [43]. However, in
many practical settings, the pdf’s of the objects’ locations
(e.g., uniform, Gaussian) are Riemann integrable [43], which
is a weaker condition. Before presenting the main result, we
prove some properties which demonstrate that our proposed
methodology is applicable to a wide range of pdfs for objects’
locations. For brevity, we will use f to denote pd f (V iq), g
to denote pd f (V i ), and h to denote the pd f (−V q).

123



774 G. Trajcevski et al.

Property 1 Assume that g (resp. h) has a centroid C1 (resp.
C2), which coincides with its expected value E(V i ), resp.
E(−V q). Then their convolution f = g ◦ h has a cen-
troid Cc = C1 + C2, and Cc is the expected value of the
variable V iq .

Before we outline of the proof of Property 1 and the other
claims, we briefly note that when a translation, e.g., s �→
s + w is applied as a transformation to a 2D variable (in the
sense of variable substitution), as well as rotation around the
center, e.g., s �→ w(= ρ(0,0),φ(w)), the Jacobian determi-
nant evaluates to 1.

Proof of Property 1 Firstly, observe that E(V iq) = E(V i )+
E(−V q) simply because V iq is the sum of V i and −V q .
By definition, the centroid of f can be calculated as: Cc =
(
∫

x f (x)dx)/(
∫

f (x)dx). Let us observe separately the:

1. Denominator: by the definition of the convolution, we
have:

∫
f (x)dx) =

∫ [∫ g(u) · h(x − u)du)]dx = · · ·
substitute variables x = x + u, noting that dx remains
the same and the Jacobian is “1” (translation)· · · =∫

g(u)du · ∫
h(x)dx = · · · since h and u are pdfs, each

integral evaluates to “1” …= 1.
2. Numerator: Similarly,

∫
x f (x)dx) =

∫
x[∫ g(u) ·h(x −

u)du)]dx = …applying the same substitution: x = x +
u · · · = ∫

(x + u)[∫ g(u) · h(x)du)]dx = ((
∫

xh(x)dx)∫
g(u)du) + ((

∫
ug(u)du)

∫
h(x)dx).

Observing once again that
∫

h(x)dx = C1 and
∫

g(u)du =
C2, the claim follows. ��

As specific examples, the expected value of the convolu-
tion of two Gaussian distributions with means μ1 and μ2,
is exactly μ12 = μ1 + μ2, and we note that the pdf of the
convolution is also Gaussian [56]. Similarly for the expected
value of two uniform distributions, however, as we saw in
Example 3, the resulting pdf is no longer uniform.

Property 1 provides a basis for defining the categories of
pdfs for which our main results are applicable, and toward
that end, we need to define the concept of a rotational (a.k.a
cylindrical) symmetry [32]. A given 2D function, say h, is
said to be rotationally symmetric with respect to a point C
in its domain and the vertical (Z) axis if, for all other points
P and Q in its domain, ‖PC‖ = ‖QC‖ ⇒ h(P) = h(Q).
Now we have:

Property 2 If g and h have a rotational symmetry around
their respective centers, C1 and C2, with respect to the
vertical (Z = pdf) axis, then, their convolution f = g ◦ h
also has a rotational symmetry around the vertical axis and
with respect to its centroid Cc.

Proof of Property 2 Assume P and Q are points from the
domain of f such that ‖PCc = QCc‖. Then, there exists

a rotation ρ with a center at Cc and an angle φ, such that
ρCc,φ(P) = Q. This can also be viewed as a composition of:
(1) translation of Cc to the origin; (2) rotation for angle φ;
(3) (de)translation back to Cc).

Observe f (P − Cc) =…by Property 1…= f (P − (C1 +
C2)). By definition, this is equal to

∫
g(u) ·h(P −C1 −C2 −

u)du =…substituting u with u −C1, du remains, and the Ja-
cobijan is “1” …=

∫
g(u − C1) · h(P − C2 − u)du =…by

the assumed rotational symmetry of h, if Q is a point such
that ‖PC2 = QC2‖ …=

∫
g(u − C1) · h(Q − C2 − u)du

= …substituting u with u − C1 …=
∫

g(u) · h(Q − C1 −
C2 − u)du = f (Q − (C1 + C2)). Since the convolution is
translation (shift) invariant [32], the claim follows. ��

Assume that Tru
1 and Tru

2 denote two uncertain trajecto-
ries with centers (expected locations) C1 and C2 at some time
instant t . In addition, assume that they have same (modulo
translation) corresponding location pdfs at t , which are rota-
tionally symmetric. The last claim that is needed before we
state our main result for this section is summarized in the
following:

Lemma 1 Let Q denote a 2D point. If ‖QC1‖ < ‖QC2‖,
then P N N

1 (Q) > P N N
2 (Q).

Proof of Lemma 1 It suffices to prove the claim for the exclu-
sive NN probabilities (i.e., P N N_E

1,Q > P N N_E
2,Q , cf. Sect. 2.2),

because the joint NN probability will appear equally in each
of P N N

1,Q and P N N
2,Q . Due to the assumption(s), we have that

R1
min < R2

min and R1
max < R1

max. Appropriately modifying
Eq. 5, we have:

(I): P N N
1 (Q)

=
∞∫
0

pd f W D
1 (Rd) · (1 − PW D

2 (Rd))dRd

=
Rmax1∫
Rmin

1

pd f W D
1 (Rd) · (1 − PW D

2 (Rd))dRd

and, similarly:
(II): P N N

2 (Q)

=
∞∫
0

pd f W D
2 (Rd) · (1 − PW D

2 (Rd))dRd

=
Rmax

1∫
Rmin

2

pd f W D
2 (Rd) · (1 − PW D

1 (Rd))dRd .

The claim follows from the observations that for every ν,
when evaluating pd f W D

2 (Rmin
2 + ν) in (II), there exists an

equivalent pd f W D
1 (Rmin

1 + ν) which, however, is multiplied
by a larger value of (1 − PW D

2 (Rd)) in (I). ��
Assume we are given a collection of moving objects with

equal pdfs (modulo translation with respect to their centers)
that are rotationally symmetric. Let Trq denote the (uncer-
tain) querying trajectory. The following theorem summarizes
the main result of this section:

123



Ranking continuous nearest neighbors 775

R
R/2

3R/2
X

Y

pdf

pdf(Tr 2)
2R

pdf(Tr 1 - Tr q)

pdf(Tr 2-Tr q)

pdf(Tr 1)

pdf(Tr q)

Fig. 7 Convolution of intersecting pdfs

Theorem 1 The permutation of the oids representing the
ranking of the probabilities of individual objects being near-
est neighbor to Tru

q at a given time instance, is exactly the
same as the permutation representing the ranking of the dis-
tances of their centers (expected locations) from the center
(expected location) of Tru

q .

Proof Theorem 1 follows from the properties of the con-
volution for independent random variables with rotational
symmetry and Lemma 1.

As an illustration, recall Fig. 6. Since the centroid of
Tru

1 − T ru
q is closer to the coordinate center than the one

of Tru
2 − Tru

q , we get P N N
1 (Q) > P N N

2 (Q).
We conclude this section with an observation regarding the

mutual whereabouts of the uncertainty disks. In the examples
so far, we assumed that the uncertainty disks of the respective
trajectories did not intersect. However, in practice, this need
not be the case. For instance, Fig. 7 shows the impact on the
(pdf of the) resulting convolution, when a given trajectory
intersects the querying trajectory. Essentially, the radius of
the disk in the basis of the convolution cone will be smaller
than 2r , and the cone itself will be reduced to a frustum,
i.e., bounded by a smaller disk at its top, instead of a vertex.
However, it can be readily demonstrated that Theorem 1 is
still valid. Specifically, at the time instant illustrated in the
scenario in Fig. 7, T r2 has zero probability of being a nearest
neighbor.

4 Uncertain NN-query

In this section, we describe the structure of the answer to a
continuous NN query for uncertain trajectories and we pres-
ent an algorithm for constructing this structure.

4.1 Recursive time-parameterizing

Recall that in the motivational Example 1 (Sect. 1), the
answer to a continuous NN-query for crisp trajectories was
presented as a sequence:

AQ_NN : [Tr3, (10, 15)], [Tr2, (15, 20)].

Our goal is to devise something similar for the case of an
NN-query for uncertain trajectories. However, relying on a
simple sequence in a manner of AQ_NN would, at best, pro-
vide an opportunity to capture one trajectory within a par-
ticular time-interval. As we discussed in Sect. 1, this need
not be the case when the trajectories are associated with an
uncertainty of the location at a given time instant. As a con-
sequence, throughout a particular time-interval, there may be
more than one object that could have a chance of being the
nearest neighbor to the query trajectory.

Within a give time instant, some objects will have higher
probability of being the nearest neighbor to a given Tru

q than
the others. We would like to extend this observation through-
out the entire time-interval of interest for the query by iden-
tifying the critical time instants at which the relative ranking
of the probabilities changes—equivalently, by identifying the
time intervals throughout which portions of the relative rank-
ing do not change. We identify the following objectives for
the representation of the answer to an NN-query for uncertain
trajectories:

1. The time-interval of interest [tb, te] should be split into
sub-intervals [tb, t1], [t1, t2], . . . , [tn−1, te] so that the
trajectory that has the highest–probability of being the
nearest neighbor of Tru

q in each sub-interval is unique.
For example, Tru

i−1 is the uncertain trajectory with the
highest–probability of being the nearest neighbor of Tru

q
all throughout [ti−1, ti ].

2. Each such sub-interval, in turn, is further split into its own
sub-intervals—e.g., [ti−1, ti ] is split into [ti−1, t(i−1),1],
[t(i−1),1, t(i−1),2], . . . , [t(i−1),(k−1), ti ]. To each of this
sub-intervals, again a unique trajectory is matched—
representing the trajectory which would have been the
actual highest–probability nearest neighbor of Tru

q , if the
MOD did not contain Tru

i−1.
3. The process is recursively repeated for each sub-interval,

terminating when no further split is possible which would
contain an uncertain trajectory with non-zero probability
of being nearest neighbor to Tru

q .

According to the above goals, the answer to the NN-query
from the motivational scenario in Sect. 1, assuming that every
trajectory has an uncertainty radius of 30 m, would be for-
mulated as:
AQ_NN : { [Tru

3, (10,15) [Tru
2, (12,15)]],

[Tru
2, (15,20) [Tru

3, (15,18)],[Tru
4, (19,20)]] }

Specifically, the answer AQ_NN indicates that during the
time-interval (10, 15), the uncertain trajectory Tru

3 always
has the highest–probability of being the nearest neighbor
of Tru

q . However, during the (sub)interval (12, 15) Tru
2 also

has a non-zero probability of being Tru
q ’s nearest neighbor,

except at every time instant that probability is lower than

123



776 G. Trajcevski et al.

the corresponding probability of Tru
3. Similarly, in the rest of

the time-interval (15, 20), Tru
2 has the highest–probability of

being the nearest neighbor of Tru
q . However, there exist time-

(sub)intervals during which other objects have nonzero prob-
ability (lower than that of Tru

2) of being the nearest neighbor
of Tru

q , e.g., Tru
4 for t ∈ (19, 20). As a generic representa-

tion of the answer of a continuous NN query for uncertain
trajectories, we propose a tree structure with the following
properties:

– The root of the tree is node labeled with the description
of the parameters of interest for the specification of the
query, e.g., Tru

q , along with [tb, te].
– The root has one child for each sub-interval of [tb, te],

throughout which there is a unique uncertain trajectory
Tru

i having the highest–probability of being the nearest
neighbor to Tru

q . Each child of the root is labeled with the
corresponding trajectory (e.g., Tru

i ) and the time-interval
of its validity as the highest–probability nearest neighbor
(e.g., ti−1, ti ).

– After obtaining the respective labels from the respec-
tive parent node, each child node checks whether if it is
removed from the MOD, there could still be some object
with nonzero probability of being the nearest neighbor of
Tru

q in the time sub-interval of its label. If so, then it is an
internal node, and each internal node follows the princi-
ple of splitting its own (sub)interval like it has been done
in the root, and uses the same labeling for its children. If
not, then that node is a leaf node.

We call this structure IPAC-NN tree (Intervals of Possible
Answers to Continuous NN), as illustrated in Fig. 8. Note that
the nodes in Fig. 8 also contain another component of their
labeling, D, which is an application-dependent Descriptor of
that node. For example, this descriptor can be the maximum
value of the probability of being the nearest neighbor in the
respective time-interval. We will present a specific example
of using the Descriptor attribute in Sect. 5.

Observe that the removal of the root of the tree yields a
DAG (Directed Acyclic Graph) as a structure to represent
AQ_NN. In the rest of this section, we focus on developing
methodologies for constructing the IPAC-NN tree for a given

Fig. 8 Answer structure for an NN-query: the IPAC-NN tree

set of uncertain trajectories, with respect to a particular query
trajectory.

4.2 Constructing the IPAC-NN tree

The basic observation that the difference of two trajectories
can be expressed as a single random variable, along with The-
orem 1, forms the foundation for constructing the IPAC-NN
tree introduced in Sect. 4.1.

To simplify the presentation, and without loss of gener-
ality, throughout most of this section we assume that each
trajectory consists of a single segment during the time-inter-
val of interest for a given query UQ_nn(Tru

q ), [tb, te]. In other
words, the expected location of each trajectory during [tb, te]
consists of one straight line segment. We analyze the impact
of the general case (i.e., the removal of this assumption) on
the complexity of the algorithms at the end of Sect. 4.

Let (xbi , ybi ) denote the expected location of the uncer-
tain trajectory Tru

i at tb and, similarly, let (xei , yei ) denote the
expected location of Tru

i at time te. The expected motion of
T ru

i during time-interval [tb, te] is characterized by a velocity
vector whose X and Y components are given by:

vxi = (xei − xbi )/(te − tb); and

vyi = (yei − ybi )/(te − tb).

Hence, the expected location at a time instant t ∈ [tb, te] will
have coordinates:

xi (t) = xbi + vxi (t − tb); and

yi (t) = ybi + vyi (t − tb),

which are the coordinates of the center of the uncertainty disk
at t .

For a given trajectory Tru
i that is not the query trajec-

tory (i.e., i �= q), let T Riq denote the difference-trajectory
Tru

i − Tru
q . In other words, at each time instant t , the expected

location of the object moving along T Riq(t) is the vector dif-
ference of the expected locations of the corresponding points
along Tru

i and Tru
q . Trajectory T Riq(t) captures the spirit of

Sect. 3, in the sense that the 2D distance between the expected
locations of the objects moving along Tru

i and Tru
q at time t

(see, e.g., [4,41]) now becomes the distance at time t that an
object moving along T Riq has from the origin (0, 0).

Let Vxiq and Vyiq denote the components of the velocity
of the object whose expected trajectory is T Riq . We have
Vxiq = vxi − vxq and Vyiq = vyi − vyq . Also, let Xbiq and
Ybiq denote the coordinates of the expected location at tb. We
have Xbiq = xbi − xbq and Ybiq = ybi − ybq .

The distance of T Riq from the origin, as a function of time,
is given by (cf. [4,41]) diq(t) = √

At2 + Bt + C , where:

A = V 2
xiq + V 2

yiq ,

B = −2(V 2
xiq

tb + Vxiq Xbiq + V 2
yiq

tb + Vyiq Ybiq ), and

C = 2Xbiq Vxiq tb + V 2
xiq

t2
b + X2

biq
+ 2Ybiq Vyiq tb + V 2

yiq
t2
b + Y 2

biq
.

123



Ranking continuous nearest neighbors 777

Since A ≥ 0, the function diq(t) is a hyperbola and, based
on the underlying parabola (under the square root), it attains
a minimum at tm = −B/2A (if tm /∈ [tb, te], the hyperbola is
strictly monotonic).

Given a collection of such distance functions (one for each
moving object, except the querying one), based on the obser-
vations in Sect. 3, we know that at any time instant t , the
ranking of the probabilities of a given object T ru

j being
a nearest neighbor to T ru

q is the same as the ranking of
the distance functions diq(t). Hence, the problem of con-
structing the IPAC-NN tree, that is, determining the member
nodes of each level along with their respective time-intervals,
can be reduced to the problem of finding the collection of
(ranked) lower envelopes for the set of distance functions
SDF = {d1q(t), d2q(t), . . . , dNq(t)} between tb and te. We
now focus on describing how to construct the lower envelope
of SDF .

We observe that two different distance functions, e.g.,
diq(t) and d jq(t), in general, can intersect in at most two
points.1 Consequently, they can have zero, one or two inter-
sections throughout [tb, te]. Their intersections (if any) can
be obtained by setting diq(t) = d jq(t) which, after squar-
ing both sides, amounts to solving a quadratic equation and
checking whether each of the solutions (if any) is ∈ [tb, te].
Parts (a) and (b) in Fig. 9 illustrate two cases in which pairs
of distance functions (corresponding to pairs of T R-like tra-
jectories) intersect in two points and one point, respectively.
We call such intersection points critical time-points.

To determine how each of the two input-hyperbolae
contributes to the lower envelope, it suffices to compare the
corresponding distance functions in a single time value tin
anywhere in between two consecutive critical time-points.
In the sequel, without loss of generality, we assume the
existence of an function, denoted Env2(T Riq , T R jq , t1, t2),
which takes two difference-trajectories as input, and returns
their lower envelope as output, along with the critical times,
between times t1 and t2. Essentially, Env2(T Riq , T R jq ,

t1, t2) does exactly what we described in the previous para-
graph:

1. Solves the quadratic equation in which the Left-hand
Side is the respective quadratic function T Riq and the
Right-hand Side is the corresponding one of T R jq ;

2. Checks which ones of the solutions are inside [t1, t2],
defining the critical time-points;

3. For each interval in between critical time points, includ-
ing the boundaries t1 and t2, determines which one of the
T Riq and T R jq defines the lower envelope;

4. Returns the result.

1 In their intervals of strict monotonicity, they can have at most one
intersection.

(a)

(b)

(c)

Fig. 9 Constructing the lower envelope

Clearly, algorithm Env2(T Riq , T R jq , t1, t2) runs in O(1)

time, since the difference-trajectories can intersect in at most
two points.

Example 5 In the example of Fig. 9a, algorithm Env2(T R1,

T R2, tb, te)outputs the lower envelope L E1,2 =[(T R2, [tb, t11]),
(T R1, [t11, t12]), (T R2, [t12, te])]. On the other hand, in the

123



778 G. Trajcevski et al.

settings of Fig. 9b, algorithm Env2(T R3, T R4, tb, te) yields
L E3,4 = [(T R4, [tb, t31]), (T R3, [t31, te])].

Now, the main question is how to efficiently construct
the lower envelope of the whole collection of distance-
trajectories (i.e., the set SDF of their distance functions
to T rq ). The problem of efficiently constructing a lower
envelope has already been addressed in the literature [9,46].
For our settings, we have implemented a divide-and-con-
quer method in the spirit of MergeSort, which has been
also been used in our experiments. Algorithm 1 constructs
the lower envelope for a set of distance-trajectories ST R =
{T R1, T R2, . . . , T RN } (i.e., their distance functions SDF =
{d1q(t), d2q(t), . . . , dNq(t)}), assuming an additional base
case specifying that the output of LE_Alg(ST R ,i, i, tb, te)) is
[(T Ri , [tb, te])].

Algorithm 1 uses method Merge_LE to merge two lower
envelopes with a technique similar to the traditional merge
sort algorithm. Method Merge_LE incrementally sweeps
over the critical time-points of each input lower envelope
maintaining the output lower envelope E computed so far,
along with the values of the current lower bound and cur-
rent upper bound from among the critical times of the
inputs. Function Env2 is used to compute the next frag-
ment F to append to E . Note that we cannot simply con-
catenate E and F . Instead, if the first fragment of F is
defined by the same T R j that terminates E , two consec-
utive time intervals have to be merged into one. In other
words, appending [(T R j , [t j2, t j3])] to [(T R j , [t j1, t j2])]
yields [(T R j , [t j1, t j3])].

Algorithm 1 Construction of the lower envelope for a set of
distance-trajectories
LE_Alg(ST R ,1,N,tb, te)
Input: set ST R = {T R1, T R2, . . . , T RN }
of distance-trajectories and query interval [tb, te]
Output: lower envelope of ST R Let C = �N/2�;

Merge_LE((LE_Alg(ST R,1,C,tb, te),LE_Alg(ST R,C,N,tb, te));

For completeness, we show the details of method
Merge_LE in Algorithm 2.

Due to the properties of the Davenport–Schinzel sequen-
ces [46], the combinatorial complexity of the lower enve-
lope is λ2(N ) = 2N − 1 = O(N ) since two hyperbolae can
intersect in at most two points. The time complexity of Algo-
rithm 2 is linear in the size of the sum of its inputs which,
in turn, implies that the time complexity of Algorithm 1
is specified by the recurrence: T (2N ) = 2T (N ) + 2N .
Hence, the complexity of constructing the lower envelope
is O(N log N ). We illustrate the above concepts with the
following example.

Algorithm 2 Merging two lower envelopes.
Merge_LE(L E1, L E2)
Input: Two lower envelopes with their critical time-points

L E1 = [(T R1i1 , [tb, t11]), (T R1i2 , [t11, t12]), . . . ,
(T R1im , [t1(m−1), t1m ])]

L E2 = [(T R2i1 , [tb, t21]), (T R2i2 , [t21, t22]), . . . ,
(T R2in , [t1(n−1), t1n])]

Output: The combined lower envelope L E1,2 = L E1 � L E2
Let L E1,2 = ∅;
k = p = 0;
while((k < m) ∨ (p < n))
{ tcl

1 = t1k ; tcl
2 = t2p;

tcu
1 = t1(k+1); tcu

2 = t2(p+1); // assume t10 = t20 = tb
tcl = max(tcl

1 , tcl
2 ); // current lower bound

tcu = min(tcu
1 , tcu

2 ); // current upper bound
// of the sweeping time-interval

L E1,2 = L E1,2 � Env2(T R1ik , T R2 jp , tcl , tcu)

// concatenate (�) the currently obtained
// envelope to the existing one.

if (tcu
1 < tcu

2 ) k++;
else_If (tcu

2 < tcu
1 ) p++;

else // (tcu
2 = tcu

1 )

{ p++; k++; } // advance }

Example 6 Observe Fig. 9, and assume that the envelopes in
Part a.) and b.) represent the inputs to the Merge_LE. Ini-
tially, the current lower bound tcl is tb (since tcl

1 = tcl
2 = tb),

whereas the current upper bound is tcu = min(t11, t31) =
t11. Hence, Env2(T R2, T R4, tb, t11) is applied in the first
iteration, obtaining a new critical time-point (t1,new) and
generating an envelope with two portions (T R4, [tb, t1,new])
and (T R2, [t1,new, t11]). Since t11 < t31, we increment k
at the end of the loop which, in turn, means that tcl

1 = t11

and tcu
1 = t12. Consequently, throughout the second iter-

ation of the while-loop we have tcl = max(tcl
1 (= t11),

tcl
2 (= tb)) = t11 and tcu = min(tcu

1 (= t12), tcu
2 (= t31)) =

t31. Env2(T R1, T R4, t11, t31), yields the next part of the
overall envelope [(T R1, [t11, t31])]. Since t31 < t12, this
time we increment p before we enter the next iteration. Sub-
sequent iterations will consecutively invoke the following
operation:

– Env2(T R1, T R3, t31, t12), generating a new critical time-
point (t2,new in Fig. 9c) and removing t31 from the
list of critical time-points because T R1 continues to be
the lower envelope at it (cf. �-concatenation). After
this iteration, L E1,2,3,4 consists of [(T R4, [tb, t1,new]),
(T R2, [t1,new, t11]), (T R1, [t11, t2,new]), and (T R3,

[t2,new, t12])];
– Env2(T R2, T R3, t12, te), generating [(T R3, [t12, te])],

which “absorbs” t12 as a critical time-point when added
to the existing L E1,2,3,4.

123



Ranking continuous nearest neighbors 779

Fig. 10 Envelopes and IPAC-NN tree

One of the benefits of constructing the lower envelope is
that it provides a continuous pruning criteria. Namely, in the
(distance, time) space, any trajectory whose distance function
does not intersect the region bounded by the lower envelope
and its vertically translated (i.e., along the distance axis),
copy for a vector of length 4r , can never have a non-zero
probability of being a nearest neighbor to T ru

q . The reason
for this is that at any time instant, in order for any (after
convolution) object to have a non-zero probability of being
a nearest neighbor to (0,0), its nearest location (which is 2r
closer than the centroid of its convolution) must be no further
than 2r from the ring centered at the nearest neighbor to (0,0)
at that time, and with width 2r . As an example, in Fig. 10,
T R7 can be safely pruned from any consideration, because
its distance from the lower envelope at any time instant is
greater than 4r .

Algorithm 3 constructs the IPAC-NN tree, which can be
used for answering queries based on the continuous ranking
of the uncertain trajectories which have a non-zero probabil-
ity of being nearest neighbors to a given querying trajectory.

Algorithm 3 Construction of the IPAC-NN tree
Tree_IPAC-NN(T , T rq , [tb, te])

Input: A collection of trajectories T ; a querying trajectory T rq ∈ T ,
and a time-interval [tb, te]
Output: The IPAC-NN tree for the continuous probabilistic NN-query.

Construct the lower envelope using Algorithm 1. The lower envelope
corresponds to the nodes in Level_1 of the IPAC-NN tree;
Prune all the objects that cannot have a non-zero probability of being
a nearest neighbor;
for each level L

for each time-interval bounded by a pair of consecutive
critical time-points ti and ti+1 on the level L − 1 envelope

Remove from consideration T RL−1
i defining the

envelope at level L − 1 in (ti , ti+1);
Construct the portion of the lower envelope at

level L applying Algorithm 1;
end_for

end_for

The combinatorial complexity of the lower envelope is
O(N ) and its construction takes O(N log N ) time. Since
each of the (N ) distance functions will need to be com-
pared against the each of the O(N ) segments of the
lower envelope, the completion of the pruning phase has
O(N 2) time complexity. Assuming that after the pruning
there are �N/K � (K ≤ N ) objects left for consideration,
the running time for constructing the 2nd-lower-envelope
(equivalently, the Level_2 nodes of the IPAC-NN tree) is
O(�N/K � log�N/K �). Since two distance functions (hyper-
bolae) can intersect at most twice, we observe that the total
number of intersection points within the zone bounded by the
lower envelope and its translation for 4r along the vertical
(distance) axis in the (distance,time) space is O(�N/K �2),
which is the upper bound on the complexity of (i.e., the num-
ber of nodes in) the IPAC-NN tree. Figure 10 illustrates the
first two levels of lower envelopes for a set of (distance func-
tions of) uncertain trajectories. We summarize the results of
this section with the following theorem:

Theorem 2 The graph of all the envelopes in the (distance,
time) space that intersect the zone bounded by the lower enve-
lope and its copy vertically translated by 4r between times tb
and te is the dual of the DAG obtained by removing the root
of the IPAC-NN tree corresponding to a given continuous
probabilistic NN-query between tb and te. The combinato-
rial complexity of this graph is O(�N/K �2), which is the
combinatorial complexity of the IPAC-NN tree.

We conclude this section with a discussion on the complex-
ity of the algorithms, removing the assumption that all the
trajectories consist of single line-segments, since in practice
each trajectory may have a different number of segments.
Assume that a given trajectory Tru

j has m j segments through-
out the time-interval of interest for the query, while all the
rest of the trajectories still consist of one segment. Clearly,
this will incur an additional factor of m j multiplying every
complexity result presented in this section, for the simple
reason that we will need to repeat the calculations for each
of the m j segments of Tru

j . Generalizing this observation, if
every trajectory Tru

i (i ∈ {1, 2, . . . , M}) has mi segments,
then each of the corresponding complexity results will need
to be multiplied by the factor

∑M
i=1 mi .

5 Uncertain NN-query on road networks

We now consider the processing of uncertain NN-queries in
the settings in which the moving objects are restricted to
move along a road network. First, we study the impact of the
road network constraint on the distance function, following
with uncertainty model and its implications on the semantics
and processing of the uncertain NN-queries in these settings.

123



780 G. Trajcevski et al.

5.1 Trajectories’ distance in road networks

Many aspects of the problem of modeling and querying of
spatio-temporal objects in road networks have been investi-
gated the literature [10,18,35,44,60], and one of the typical
assumptions is that the network is represented as a graph
G(V, E), where:

– V denotes the set of nodes/vertices {n1, n2, . . . , nw},
where each vertex is associated with its coordinates in
the reference coordinate system, e.g., ni (xni , yni ).

– E denotes the set of edges (E ⊆ V × V ) where, in addi-
tion to its own labeling, a given edge is often represented
as a pair eks = (nk, ns) of adjacent vertices.

A commonly accepted interpretation is that the vertices
represent intersections and edges represent road segments
in-between intersections. We assume an undirected graph,
which means that each edge can be traversed in both direc-
tions. Finally, we assume that each edge esk has the following
two attributes:

1. the length of esk , denoted l(esk); and
2. the maximum speed of esk , denoted vmax

sk , which is the
upper bound on how fast an object can move along
edge esk .

Definition 3 Given a road network graph G(V, E), a road
network trajectory consists of the ID of a moving object and
a sequence of 3D points (2D spatial coordinates plus time),

RN-Tri = {oidi , (xi1 , yi1 , . . . , (xik , yik , tik )}

where: ti1 ≤ ti2 ≤ . . . ≤ tik

– Every two consecutive points, except, possibly (xi1 , yi1)

and (xik , yik ), coincide with two adjacent vertices in V ,
and in between two points, the object is assumed to travel
along the edge incident to the corresponding vertices

– The speed of the object along a given edge eks is assumed
to be constant and less than or equal to vmax

sk .

The concepts introduced in Definition 3 are illustrated
in Fig. 11, which shows three road network trajectories:
RN-Trq , RN-Tr1 and RN-Tr2. The labels along edges indi-
cate the minimum travel-time needed to traverse a given
edge esk , which can be readily calculated as l(esk)/v

max
sk .

The time labels next to the vertices indicate the time when a
particular moving object is at a given vertex.

We note that Q1, the first point of trajectory RN-Trq

does not coincide with a vertex (intersection) of a graph.
Indeed, a vehicle may start a trip from a parking spot on
a street in between two intersections. Also, we observe that

Fig. 11 Trajectories on Road Networks

the motion along the road network trajectories may be slower
than the maximum speed. For example, the last leg (G3, G4)

of RN-Tr1 is an edge that can be traversed in 15 time
units; however, the trip along that edge for RN-Tr1 takes

 = 55 − 35 = 20 time units.

The main consequence of the model of road network
trajectories in the context of our work is that the distance
between two moving objects can no longer be measured
using the 2D Euclidian distance (L2-norm) since the objects
are constrained to move along the edges of the road net-
work. Instead we need to rely on the shortest network dis-
tance which, in turn, may have a two-fold interpretation
(e.g., [23,35,44,60]):

1. shortest path distance, or
2. shortest travel-time distance.

The first interpretation captures the scenarios in which the
length of the edges in the graph representing the road net-
work are used to calculate the distance between two adjacent
vertices. This corresponds to the cases where the trips are
planned in a manner in which the goal is to minimize the
total mileage traveled.

The second interpretation captures the fact that traveling
along longer road segments but with higher maximum speed
may yield a shorter overall duration of a given trip. In more
dynamic settings, the travel-time-based distance is also used
to reflect different durations of a trip due to fluctuations in
traffic density [10].

In the example scenario depicted in Fig. 11, we have used
shortest travel-time distance for labeling the edges, but the
actual travel-time values that can be used to determine the
distance(s) can be obtained from the labels of the individual
vertices.

123



Ranking continuous nearest neighbors 781

Assuming an undirected road network graph, the distance
between two trajectories at any given time-instant t will con-
sist of the following three components [23]:

1. The time taken by the object to get to the first vertex
along the shortest path.

2. The time taken by the object to get to the vertex nearest
to the location of the object along the second trajectory
at t .

3. The time taken by the object to get from that vertex to
the actual location at t .

For the purpose of evaluating an NN-query, following two
key assumptions ([23]) are used in the calculation of the
travel-time distance between two objects:

1. If a particular edge belongs to the trajectory, then we
use the travel-time distance information from the trajec-
tory data itself, although it may be longer than the one
obtained using the maximum speed and the edge length.

2. If a particular edge does not belong to the trajectory, we
use the minimum travel-time (i.e., corresponding to the
maximum speed motion along that edge) value.

In the example of Fig. 11, the shortest path between trajec-
tories RN-Trq and RN-Tr1 will consist of their individual
corresponding portions, along with the edge (Q2, G2) for as
long as:

– RN-Trq is anywhere along the segments (Q1, Q2) and
(Q2, AQ1)

– RN-Tr1 is anywhere along the corresponding segments
(for those time-values) (G1, G2) and (G2, A11)

Let oQ denote the object moving along RN-Trq , o1 denote
the object traveling along RN-Tr1, and o2 denote the object
traveling along RN-Tr2. As soon as oQ is located at Aq1

and o1 is located at A11, their shortest path distance will be
obtained via the edge (Q3, G3). A straightforward calcula-
tion yields that oQ will be at Aq1 and o1 will be at A11 at
time t = 20.

Similarly, as soon as oQ is located at Aq2 and o1 is located
at A12, the role of o1’s nearest neighbor is taken by o2—from
t = 40 until the end of the trip.

An important consequence of the model of motion along
a road network is that, in contrast to the case of free motion
in 2D Euclidian space, the distance function between two
trajectories is piece-wise linear (cf. [23]). In addition to the
changes in the instances in which the motion of a particular
object changes from one edge to another at a given inter-
section, the cusps (non-differentiable points) of the distance
function may occur in a time-instant in which an object is

Fig. 12 Continuous travel-time distance

somewhere along a single edge. The reason for this phe-
nomenon is that the edges that constitute the shortest path
have changed. In the example of Fig. 11, this happens to the
distance between oQ and o1 when oQ reaches location Aq1

along RN-Trq , at t = 20.
Figure 12 shows the network distances of RN-Tr1 and

RN-Tr2 from RN-Trq as a function of time, along with their
lower envelope, throughout the period between t = 0 and
t = 50. Although we do not have hyperbolae (cf. Sect. 4),
Algorithm 1 and Algorithm 2 can be used on the line-seg-
ments verbatim. Just as importantly, since two line segments
can intersect in at most one point, we can apply the theory
of Davenport–Schinzel sequences [46] to obtain a bound of
λ2(N ) = 2N − 1 = O(N ) on the combinatorial complexity
of the lower envelope within a time-interval in which each
distance function is continuous and monotonic (thereby, dif-
ferentiable).

However, a bit of extra caution is needed to justify the
upper bound on the time-complexity for constructing the
lower envelope. Assume that a given trajectory RN-Tri has
mi segments and recall that, according to Definition 3, all
except the first and the last segment coincide with the edges
of the graph representing the road network. As we noted, each
of those trajectories can have an “extra cusp” (i.e., a point at
which the distance function to the respective query trajec-
tory is non-differentiable). Hence, in addition to the vertices
from the trajectories, we have to account that there may be
an extra O(mi ) critical time instants for the distance function
between RN-Tri and the querying trajectory RN-Trq when
calculating the lower envelope. However, adding a factor of
2 retains the upper bound O

((∑
mi

) · N log N
)

of the time
complexity of constructing the lower envelope of the distance
functions in the road network settings.

5.2 Uncertainty and road network trajectories

An important aspect of uncertainty in the road networks set-
tings is the coupling of its physical nature with the one of the
distance function used. Consider the following two cases:

123



782 G. Trajcevski et al.

1. The network distance is based on the length of the edges
representing the road segments, and the uncertainty of
object’s location at each time instant is bounded by a
fixed length.

2. The network distance is based on the travel times along
the edges representing the road segments and the uncer-
tainty of the object’s location at each time instant is
bounded by a fixed duration.

In each of the above cases, for as long as the instantaneous
pdf satisfies the (appropriately modified) requirement from
Sect. 3, i.e., the pdf is axially symmetrical around the per-
pendicular to the expected location, it can be readily demon-
strated that the main results from Sects. 3 and 4 hold in the
road network settings. In other words, we can use the IPAC-
NN tree to represent the answer to the NN-query and, in order
to construct it we can again rely on Algorithm 3 (along with
Theorem 2). Moreover, the pruning power of the IPC-NN
tree is retained. As discussed in Sect. 5.1, the only modifica-
tion is the appropriate definition of the distance function in
Algorithms 1 and 2.

An especially interesting scenario occurs when the phys-
ical nature of the distance function used is different from
the one of the uncertainty. As an illustration, assume that the
travel time distance is being used, and consider the following
definition of uncertain road network trajectory.

Definition 4 An uncertain road network trajectory RN-Tru
i

is a trajectory of an object moving along a road network aug-
mented with: (1) information about the distance bounding
the possible locations of the object along the edges of the
graph a given time instant, denoted with d; and (2) the prob-
ability distribution function (pdf) of the location of the object
within the uncertainty region.

From the previous definition, an uncertain road network is
given by RN-Tru

i = {oidi , d, pd f, (xi1 , yi1 , ti1), (xi2 , yi2 , ti2),

. . . , (xik , yik , tik )}.
An illustrating scenario for Definition 4 is provided in

Fig. 13, which shows a portion of uncertain variants of each of
the trajectories RN-Trq , RN-Tr1 and RN-Tr2 used in Fig. 11.
Looking at RN-Tru

1, for the expected location A12, the object
can be anywhere within the line segment centered at A12 and
stretching for d/2 toward vertices G3 and G4. As shown in
Fig. 4, the object o1 can have different pdf’s along that line
segment. We make the following observations:

I: Object o1 can be at location A12 at any time instant
between t = 39 and t = 41. Since the dependency
between the distance and time domains is linear, with
constant factor d/vmax, it follows that the pdf of the
variable describing the time bounds for a given loca-
tion will have the same shape as the pdf of the location

Fig. 13 Uncertain trajectories in road networks

uncertainty (cf. Definition 4), with possibly different
parameter values. In other words, if the pdf of the
location at a given time instant is uniform (respec-
tively, Gaussian), the pdf of the temporal random vari-
able describing the possible time values for which the
object can be at a given location will also be uniform
(respectively, Gaussian) [56].

II: Although the physical length is the same for both
RN-Tru

q and RN-Tru
1, when looking at the location

along the edge (Q3, Q4) where oQ is expected to be
at t = 40, the temporal interval [40 − δ, 40 + δ] hap-
pens to be much larger than the corresponding tem-
poral interval [39,41] of o1. Looking at the slopes of
the corresponding trajectories’ segments, this follows
from the fact that oQ , whose trajectory is RN-Tru

q , is
moving at a slower speed than o1, whose trajectory is
RN-Tru

1.
III: Observe that near the vertices of the graph, since the

incident trajectory segments can have different speeds,
it may be the case that the temporal error bounds may
be different “before” and “after” a particular time-
instant, as is illustrated in the vicinity of the point H3

in Fig. 13.

In general, the main consequence of the above obser-
vations is that the temporal uncertainty will have variable
bounds along different trajectory segments. To analyze the
impact on the calculation of the ranking of the answers to an
uncertain NN-query, we proceed as follows. Let δ0 denote the
(half) bound on the temporal uncertainty of the querying tra-
jectory RN-Tru

q at a particular time-instant, and let δi denote
the corresponding bounds for the trajectory RN-Tru

i . Depend-
ing on the (relative) values of δ0 and δi (for i = 1, 2, . . . , N ),

123



Ranking continuous nearest neighbors 783

Fig. 14 Travel-time distance and within-distance pdfs

a situation may arise in which although the expected loca-
tion of a given trajectory RN-Tru

j is not the nearest neighbor
of the querying trajectory, the corresponding object o j may
still have a nonzero probability of being the nearest neighbor
of oQ .

Example 7 Consider the scenario illustrated in Fig. 14,
which shows a snapshot of the distance of three objects, o1,
o2 and o3, to the query object oQ at some time instant τ .
Assume that the uncertainty in the temporal domain for each
of the objects, including oQ , is uniform, with the following
values: δ0 = 1/2; δ1 = 1/2, δ2 = 5/2, and δ3 = 3/2.
Figure 14 shows the status after computing (the pdfs of) the
convolution of each object oi (i ∈ {1, 2, 3}). Since the clos-
est possible point in time-distance of o3, which is at distance
9 − (δ3 + δ0) = 9 − 2 = 7, is further away than the fur-
thest possible point of o1 from oQ , which is 5 + (δ1 + δ0) =
5 + 1 = 6, object o3 has zero probability of being a nearest
neighbor to oQ at τ . However, although the expected value
of the distance of o2 from oQ is 6, given that: 6 − (δ0 + δ2)

= 6 − 3 = 3 < 5 − (δ0 + δ1) = 5 − 1 = 4—not only does
o2 have a non-zero probability of being oQ’s nearest neigh-
bor at τ , but it also has a chance of being the actual nearest
neighbor of oQ , depending on the mutual whereabouts of the
distances of o2 and o1 to oQ , it may be the case that o2 has a
higher probability of being the nearest neighbor.

The scenario presented in Example 7 is actually a straight-
forward consequence of adapting the Eqs. 3 and 5 from
Sect. 2 to the current settings of motion along a road network.
Since the travel-time distance is one dimensional, Eq. 3 needs
to be modified as follows:

PWD
oi ,oQ

(Td) =
lexp+(δ0+δi )∫

lexp−(δ0+δi )

pdf conv
i (td) dtd (10)

where the variable Td (respectively, td ) denotes the travel-
time distance (respectively, its differentiation variable) bet-
ween oi and oQ , and pd f conv

i denotes the pdf of the
convolution of the respective random variables correspond-
ing to the uncertainties of oi and oQ .

In the context of Example 7, if we want to know for which
travel-time distance values objects o1 and o2 have the same
probability of being the nearest neighbor of oQ at τ , we need
to solve the following equation:

∞∫
0

pd f WD
o1,oQ

(Td) · (1 − PWD
o2,oQ

(Td)) dTd

=
∞∫
0

pd f WD
o2,oQ

(Td) · (1 − PWD
o1,oQ

(Td)) dTd

(11)

Equation 11 essentially presents a generic form of stating that
a value of the (road network) distance needs to be determined
in which the probability of o1 being within certain distance
from oQ together with the probability of o2 not being within
that distance, is same as the probability of o2 being within
certain distance from oQ together with the probability of o1

not being within that distance. Given the convolutions in the
Example 7, this amounts to finding the value such that the
areas of the subsets of the respective triangles representing
the pdfs of o1 and o2 to the left of that value, are equal. For
the specific settings at hand (cf. Fig. 14), this yields a qua-
dratic equation with solutions 15/4 (which is out of bounds)
and 9/2. Thus, when the value of the travel-time distance
from oQ is greater then 9/2, the highest–probability near-
est neighbor of oQ is o1. As we mentioned in Sect. 2.3, the
main reason that we are justified to use Eq. 11 is that we
are considering strictly the 1NN case. For the k-NN cases
where k ≥ 2, we would need to augment each side of the
equation with the respective terms capturing the possibility
of the distance functions of pairs of objects having the same
within-distance probabilities.

5.3 Semantics of the answers of uncertain NN-query on
road networks

Based on the observations from Sect. 5.2, we now analyze
the impact of the road network settings on the structure of
the answer to the NN-query for uncertain trajectories, along
with its computation. First, we present the modifications to
the construction and interpretation of the lower envelope for
uncertain trajectories and, subsequently, we discuss the mod-
ifications of the corresponding IPAC-NN tree.

Consider the scenario depicted in Fig. 15, which shows the
expected distances and uncertainty regions for four trajecto-
ries RN-Tru

1, RN-Tru
2, RN-Tru

3 and RN-Tru
4 from the querying

trajectory RN-Tru
q throughout the time-interval [t1, t2] during

which each distance is monotonic and continuous. As shown,
the lower envelope consists of RN-Tr1 between t1 and t11,
followed by RN-Tr2 between t11 and t2. Observe that the
relative difference of the distance values between RN-Tr4

and RN-Tr1 is greater than (δ0 + δ1) + (δ4 + δ0) throughout
[t1, t11]. Similarly, the relative difference between RN-Tr4

and RN-Tr2 is greater than (δ0 + δ2) + (δ4 + δ0) through-
out [t11, t2]. Hence, we can readily conclude that RN-Tr4

123



784 G. Trajcevski et al.

Fig. 15 Lower envelope and nearest neighbor in road network settings

has zero probability of being a nearest neighbor to RN-Trq

throughout [t1, t2]. Complementary to this, we observe that
there exists a time-instant t12 ∈ [t11, t2], starting at which
the value of (δ0 + δ2) + (δ3 + δ) is larger than the value of
the difference between the respective distance functions of
RN-Tr3 and RN-Tr2. This, in turn, implies that RN-Tr3 does
have a non-zero probability of being a nearest neighbor to
RN-Trq throughout [t1, t2].

To generalize and compare these observations with the
corresponding results in Sect. 4, let RN-Tri denote the trajec-
tory whose segment is defining the lower envelope of the dis-
tances to RN-Trq throughout a time-interval [ti1, ti2]. Also,
let d(RN-Tri , RN-Tr j ) denote the difference of respective
distances of RN-Tri and RN-Tr j from RN-Trq . If RN-Tr j

satisfies

(δ j + δ0) + (δi + δ0) < d(RN-Tri , RN-Tr j ) (12)

then it has zero probability of being a nearest neighbor of
RN-Trq .

The impact of the road network settings on the pruning
aspects of the lower envelope, when compared to the corre-
sponding results in Sect. 4, is that each monotonic and con-
tinuous interval of the lower envelope may have a different
upper-bound on the pruning value. To capture this fact, we
use the Descriptor field in each of the nodes in the IPAC-NN
tree and, as far as its geometric dual—the lower envelope—is
concerned, we can augment the data structure used to repre-
sent each segment of the distance function with a real-valued
attribute that will store the corresponding δ’s.

Recall the observation in Example 7 regarding the impact
of the combination of the relative positions of the expected
values and the values of the convolutions of the distance
functions for the respective object. A continuous version of
it is illustrated throughout the interval [t ′11, t11] in Fig. 15.
Namely, although RN-Tr2 begins to define the lower enve-

lope of the distance from RN-Trq at t11, due to the large
enough value of δ0 + δ2, it has a chance of being the near-
est neighbor as early as t ′11. This, in general, implies that
additional specifications are needed in order to properly
describe which object is the actual NN-answer. Once again,
we rely on the Descriptor field of the IPAC-NN tree. More
specifically, in the context of Fig. 15, the leftmost node of
the first level of the IPAC-NN tree, [URN-Tr1, (t1, t11)], will
be augmented with the following two fields:

• Condition:

pd f WD
o1,oQ

(Td) · (1 − PWD
o2,oQ

(Td)) dTd

< pd f WD
o2,oQ

(Td) · (1 − PWD
o1,oQ

(Td)) dTd
(13)

• Duration: [t ′11, t11]

to indicate that throughout [t ′11, t11], although the distance of
the expected location along RN-Tr2 is still further than the
corresponding value of RN-Tr1 from oQ , it may be the near-
est neighbor with the highest–probability value, provided that
Condition attribute (Eq. 13) holds. We note that t ′11 can be
obtained as the value of the intersection of the segment spec-
ifying the expected location of o1 translated by δ0 + δ1, with
the segment specifying the expected location of o2 trans-
lated by δ0 +δ2. However, solving the Condition attribute—
although reducible to quadratic equation at a given time-
instant for uniform pdfs, in general may require numerical
methods (e.g., if pdfs are Gaussian).

The last topic that we address in this section is the compu-
tation of the entire IPAC-NN tree for uncertain trajectories on
road networks. As it can be readily verified, a property sim-
ilar to Theorem 2 holds for the case of trajectories moving
on road networks. This, in turn enables us to use the collec-
tion of lower envelopes of linear segments with the following
adaptations:

– A function RN-Env2(RN-Tri , RN-Tr j , t1, t2), that calcu-
lates the lower envelope of two line segments between
times t1 and t2 takes O(1) time.

– Secondly, as a consequence of the above, Algorithm 1
can be used verbatim, whereas Algorithm 2 can be
used almost verbatim. Namely, we need to appropriately
change the line:

L E1,2 = L E1,2 � Env2(T R1ik , T R2 jr , tcl , tcu)

of Algorithm 2 into:
L E1,2 = L E1,2� RN-Env2(RN-Tr1ik , RN-Tr2 jr , tcl , tcu)

Regarding the construction of the collections of lower
envelopes used to generate the complete answer to the
NN-query throughout the time-interval of interest, the main

123



Ranking continuous nearest neighbors 785

complexity results from Sect. 4 hold also in road network
settings. As we discussed, the main difference will be in the
values used for pruning throughout the sub-intervals con-
sisting of a single monotone and continuous segment. We
reiterate that a peculiarity of the current settings is that the
adapted versions of the Algorithms from Sect. 4 will need
to augment the data structures used, in order to cater for the
values in the Descriptor field of the geometric dual of the
lower envelope, the IPAC-NN tree.

6 Variants of the uncertain NN-query

We now address the issue of increasing MOD capabilities
for continuous NN queries for uncertain trajectories, build-
ing upon the results from the previous sections and we present
a suite of new predicates along with the algorithms for their
processing. Essentially, we explore different variations of the
SQL query presented in Sect. 1, reflected in the correspond-
ing argument-signatures of the predicates. We first discuss the
syntactic variants and processing algorithms in the context
of a specific trajectory and we follow with a discussion for
the entire MOD. Deviating slightly from the standard termi-
nology of logic programming and deductive databases [57],
we will assume that symbols that start with a lowercase let-
ter and those that have subscript/index denote constants from
the respective domains. We will use symbols starting with an
uppercase letter and without subscripts to denote variables.
In addition, for brevity, we will use LEB to denote the “belt”
of the lower envelope, which is the zone bounded by it and
by its 4r -translated copy in the (time, distance) space.

Given a querying trajectory Tru
q , we may be interested in

the possibility of a particular trajectory Tru
i being its near-

est neighbor throughout a time-interval of interest, [tb, te].
However, the term “possibility” is not precisely defined—it
can pertain to a time instant or a sub-interval—and it may
also concern the relative ranking of Tru

i among all the other
possible nearest neighbors of Tru

q .
The first category of predicates address the nearest neigh-

bor status of a particular uncertain trajectory with respect to
the querying trajectory at a given time instant:

– C11: PossibleNN(Tr u
i , Tr u

q , tb, te, t)
this predicate verifies whether Tru

i has a non-zero prob-
ability of being the nearest neighbor of Tru

q at the time
instant t .

– C12: PossibleNN(Tr u
i , Tr u

q , tb, te, t, k)

this predicate verifies whether Tru
i has the k-th highest–

probability of being the nearest neighbor of Tru
q at the

time instant t .

The algorithms for processing the C11 and C12 predicates are
relatively straightforward:

1. For the C11 PossibleNN(· · · ) predicate, we need to
check whether the expected location of the trajectory
Tru

i at t , is within distance ≤ Rmax + 4r from the
expected location of Tru

q at that same time instant t . This
is equivalent to checking whether the value of the dis-
tance between the two expected locations is inside the
zone LEB at t . For a collection of N trajectories, this will
clearly require a running time bounded by O(N log N ).
Note, however, that this cost will be amortized when
other trajectories are checked against the same Tru

i , since
for each of the rest of them, the verification of the C11

PossibleNN(· · · ) can be achieved in O(1) time.
2. For the C12 PossibleNN(· · · ) predicate, in addition to

verifying that (at time t), the expected location of Tru
i is

inside the permissible zone, bounded by the lower enve-
lope and its 4r -translated copy, we also need to verify that
it is exactly the kth one in the distance from the lower
envelope. In other words, we need to verify that the node
of the IPAC-NN tree, which has an entry labeled Tru

i at
time t , is at depth k. This amounts to traversing a single
path (the time-interval containing t) along the IPAC-NN
tree. Assuming a fanout factor of f for the internal nodes,
and based on Theorem 2, this yields a time complexity
of O(log f (�N/K �2)).

The next two predicates pertain to the properties of a partic-
ular uncertain trajectory with respect to a querying trajectory
throughout a portion of the time-interval. To express these
predicates concisely, we introduce the concept of a φ-portion
of an interval [tb, te] for a given 0 ≤ φ ≤ 1, which denotes a
finite sequence of disjoint subintervals of [tb, te] whose total
length is φ(te − tb).

– C21: PossibleNN-Int(Tr u
i , Tr u

q , tb, te, φ)

this predicates verifies whether Tru
i has a non-zero prob-

ability of being the nearest neighbor of Tru
q , for at least a

φ-portion of the interval [tb, te].
– C22: PossibleNN-Int(Tr u

i , Tr u
q , tb, te, φ, )

this predicate verifies whether Tru
i has the th highest–

probability of being the nearest neighbor of Tru
q , for at least

a φ-portion of the interval [tb, te].
Algorithm 4 evaluates predicate C21: PossibleNN-Int

(Tr u
i , Tr u

q , tb, te, φ). Essentially, Algorithm 4 needs to con-
sider the intersection times of the distance function between
Tri and Trq with the upper bound (4r translated copy of
the lower envelope) of LEB . By the monotonicity proper-
ties of the distance function (hyperbola), it follows that there
can be at most two such intersections with a given segment
of the boundary. Since the combinatorial complexity of the
boundaries of LEB is O(N ), after their initial construction
(O(N log N )), we obtain that the time-complexity of Algo-
rithm 4 is O(N ).

123



786 G. Trajcevski et al.

Algorithm 4 C21—Evaluating PossibleNN-Int
PossibleNN-Int (Tru

i , Tru
q , tb, te, φ)

Input: Uncertain trajectory Tru
i , Uncertain querying trajectory Tru

q ,
time-interval of interest [tb, te], temporal fraction of interest φ

Output: True/False

Let {t1, t2, . . . ts} denote all the intersection times of the distance func-
tion between Tri and Trq with the boundaries of the zone LEB;
Let count = 1, Total = 0;
If (Tri Trq inside LEB at tb)

then count = 0;
while (count ≤ s)

{ Total = Total + t(count+1) − tcount;
count = count + 2; }

If (Total ≥ φ · (te − tb))
return True;

return False;

The evaluation of the C22: PossibleNN-Int(Tr u
i , Tr u

q , tb,
te, φ, ) predicate is specified in Algorithm 5.

Algorithm 5 C22—Evaluating PossibleNN-Int
PossibleNN-Int (Tru

i , Tru
q , tb, te, φ, )

Input: Uncertain trajectory Tru
i , Uncertain querying trajectory Tru

q ,
time interval of interest [tb, te], temporal fraction of interest φ, rank 

Output: True/False

Traverse the nodes at depth  in the IPAC-NN tree;
Let IN1, IN2, . . . , INs denote all the nodes at the depth  in the IPAC-
NN tree that are labeled with Tru

i ;
Let [t IN

i1 , t IN
i2 ] denote the time interval in the label of the i th such node;

Let j = 1, Total = 0;
while (j ≤ s)

{ Total = Total + tIN
j2 —tIN

j1 ;
count++; }

If (Total ≥ φ · (te − tb))
return True;

return False;

Based on Theorem 2, an equivalent specification of the
Algorithm 5 could have been given relying on the enve-
lopes inside the LEB zone. As for its running time, the
worst case complexity is bound by O( f  + ), where  ≤
log f O(�N/K �2). We note, however, that further improve-
ments are possible in the sense of pruning parts of the IPC-
NN tree from the search: namely, if a node with a label Tru

i
is encountered at depth l < , then the entire subtree rooted
at that node can be eliminated.

Regarding objects with uncertain trajectories moving
along a road network, we have a corresponding variant for
each of the predicates discussed above.

– CRN
11 : PossibleNN((Tr u

i , Tr u
q , tb, te, t), RoadNet)

this predicate verifies whether RN-Tru
i has a non-zero

probability of being the nearest neighbor of RN-Tru
q at

the time instant t , when the motion of both objects is
constrained by a given road network RoadNet.

– CRN
12 : PossibleNN((Tr u

i , Tr u
q , tb, te, t, ), RoadNet)

this predicate verifies whether RN-Tru
i has the th

highest–probability of being the nearest neighbor of
RN-Tru

q at the time instant t , when the motion of both
objects is constrained by a given road network RoadNet.

– CRN
21 : PossibleNN-Int((Tr u

i , Tr u
q , tb, te, φ), RoadNet)

this predicates verifies whether RN-Tru
i has a non-zero

probability of being the nearest neighbor of RN-Tru
q , for at

least a φ-portion of the interval [tb, te], where the motion
of both objects is constrained by a given road network
RoadNet.

– CRN
22 :PossibleNN-Int((Tr u

i , Tr u
q , tb, te, φ, ), RoadNet)

this predicate verifies whether RN-Tru
i has the th

highest–probability of being the nearest neighbor of
RN-Tru

q , for at least a φ-portion of the interval [tb, te],
where the motion of both objects is constrained by a given
road network RoadNet.

The individual steps of the algorithms used for process-
ing/verifying CRN

11 , CRN
12 , CRN

21 and CRN
22 are exactly the same

as the corresponding ones used for the processing/verifying
of C11, C12, C21 and C22. However, there is a semantic dif-
ference that stems from the nature of L EB in road network
settings. Namely, as we discussed in Sect. 4, in the case of
free 2D motion, L EB has a constant width (4r ) and both
of its boundaries (the lower envelope and its 4r -translated
copy) are continuous but not differentiable, i.e., each has the
cusps at time instants at which a change occurs in the trajec-
tory that defines the lower envelope. In the case of motion
along road networks, while the lower envelope of the dis-
tance itself is continuous (once again, not differentiable at
cusps), the upper bound is not. The main reason is that the
width of the pruning region can vary when different trajec-
tories are defining different segments of the lower envelope.
As discussed in Sect. 5, this is a consequence of intermixing
the travel time distance with a spatially defined uncertainty
of the whereabouts of the objects. Thus, the respective com-
parisons in each of the algorithms will need to take this fact
into account.

The predicates described above, together with the con-
cepts introduced in Sect. 4, can be used as basic building
blocks for answering queries related to the nearest neigh-
bor property for uncertain trajectories in MOD settings. We
note that the comprehensive (optimization of the) query pro-
cessing requires a combination of filtering and refinement
stages [19]; however, the issues related to indexing and opti-
mization are beyond the scope of this article. In the rest of this
section, we present several variants of nearest neighbor que-
ries for uncertain trajectories and we outline the processing
of their respective post-filtering part, i.e., after the relevant

123



Ranking continuous nearest neighbors 787

subsets of the trajectories have been brought from secondary
storage.
Q1: Does a particular moving oidi object have a chance of
being a nearest neighbor of Tru

q at any time between tb and
te?
This existential (in the temporal domain) variant can be spec-
ified as:
SELECT ∗
FROM MOD
WHERE PossibleNN(Tr u

i , Tr u
q , tb, te, T )

AND (T BETWEEN tb AND te)
Since the query Q1 is interested in any time instant, and the

predicate C11: PossibleNN(Tr u
i , Tr u

q , tb, te, t) has a specific
value of t in its argument signature, we use the conjunction
AND (T BETWEEN tb AND te). This bounds the possible
values of the variable T to the time values of interest for the
query.

The processing of Q1 amounts to checking whether the
distance function of Tru

i and Tru
q has any intersections with

LEB or its boundaries throughout [tb, te], the complexity of
which is O(N ) due to the combinatorial complexity of the
LEB . This, however, is in addition to the O(N log N ) needed
to construct LEB .

An example of the universal variant in the temporal
domain is:
Q1′: Does a particular moving oidi object have a chance of
being a nearest neighbor of Tru

1 throughout the entire interval
[tb, te]?

which can be specified as:
SELECT ∗ FROM MOD
WHERE PossibleNN-Int(Tr u

i , Tr u
q , tb, te, 1)

When processing Q1′, in contrast to processing the Q1
query, one needs to check the conjunction of:

1. Is the value of the distance function of Tru
i and Tru

q inside
LEB or on its boundaries at tb?

2. Does the distance function between Tru
i and Tru

q have no
other intersection with the boundaries of LEB throughout
(tb, te)?

We have the same time complexity for processing Q1′ as
for processing Q1, which is O(N ) with the overhead of
O(N log N ) for constructing LEB .

The predicates and the queries that we discussed so far all
pertained to a single trajectory in the MOD with respect to a
given querying trajectory. However, in practice, one is likely
to be interested in detecting all the data items that satisfy a
particular property. In our settings, this yields the following
queries:
Q2: Select all the moving objects that have a chance of being
a nearest neighbor of Tru

q at any time between tb and te.

SELECT Tr
FROM MOD
WHERE PossibleNN(Tr, Tr u

q , tb, te, T )

AND (T BETWEEN tb AND te) where we use again
the conjunction AND (T BETWEEN tb AND te) to bound
the possible values of the variable T .
Q2′: Select all the moving objects that have a chance of
being a nearest neighbor of Tru

q throughout the entire interval
[tb, te].
SELECT Tr
FROM MOD
WHERE PossibleNN-Int(Tr, Tr u

q , tb, te, φ)

Both respective running times for processing Q2 and Q2′
are upper bounded by O(�N/K �2).

The most general form of a nearest neighbor query for a
MOD with uncertain trajectories is:
Q3: Select all the moving objects that have at least th
highest–probability of being a nearest neighbor of Tru

q ,
throughout at least φ-fraction of the interval [tb, te].
SELECT Tr
FROM MOD
WHERE PossibleNN-Int(Tr, Tr u

q , tb, te,�, Level)
AND (� ≥ φ ) AND (Level ≤ ) With the exception

of reporting the resulting answer set, the time complexity of
processing the query Q3 can be retained at the level of pro-
cessing the variant of the query that would verify the prop-
erty for a single trajectory. However, there is the overhead of
O(�N/K �) space requirements to update the variables that
maintain the total time for each individual trajectory as the
IPAC-NN tree is being traversed at the depth k and lower,
which will impact the reporting of the result.

We note that in the case of a MOD in which the objects’
motion is constrained by a given road network described as
a graph, in each of the three types of queries above—Q1, Q2
and Q3—we need to use the properly modified predicates in
the WHERE clause, which will include the RoadNet param-
eter.

To conclude this section, we reiterate that at the heart of
the efficiency gains for the processing of all the above queries
is the pruning enabled by the lower envelope of the distance
functions and its boundaries. As our experiments will dem-
onstrate, these gains are significant when compared to the
corresponding brute-force approaches.

7 Experiments

We have developed a prototype implementation of our algo-
rithms in Java and we have performed experiments on an
Intel Core-2 3.0 GHz machine with RedHat Enterprise Linux.
The source code and the datasets used for our experiments
are available at http://www.eecs.northwestern.edu/~goce/
UncertainNN and we note that, as stated in the Introduction,
we only report a small subset of experiments here (cf. [53]).

123

http://www.eecs.northwestern.edu/~goce/UncertainNN
http://www.eecs.northwestern.edu/~goce/UncertainNN


788 G. Trajcevski et al.

0 2000 4000 6000 8000 10000 12000
10

−2

10
0

10
2

10
4

10
6

Number of objects

T
im

e(
Lo

g 
S

ca
le

)
Our method
Naive method

Fig. 16 Processing existential query Q1

We considered datasets ranging from 1,000 to 12,000
moving objects. Their trajectories were generated using a
modified version of the random waypoint model, where each
object starts its motion at a random (x, y) location at a
given time. The objects randomly pick a direction and speed
between 15 and 60 mph, and change their velocity vectors
simultaneously every 3 min, in a manner that satisfies the
following constraints: (1) The new direction of motion is
within ±60◦ from the previous one; (2) The new speed is
again within the range [15,60] mph.

The total duration of the trips for the trajectories is 1 hour
and the geographic area for the motion is a square region
with a 40-mile side.

We reiterate that the goal of this work is not to present effi-
cient strategies for the overall NN query processing, which
would involve indexing and data structures focusing on the
effectiveness of the pruning at large (cf. [12,15,23]). In the
sequel, we present the results of two groups of experiments
that we conducted [53]. Since our algorithms outperform the
corresponding naïve approaches by several orders of magni-
tude, the time axis is represented using a logarithmic scale.
For each chart, we ran 100 different executions, randomly
choosing one trajectory in the dataset to serve as the query
trajectory, Tru

q , and we averaged the results over all the
100 runs.

The naïve approach for processing query Q1 compares
the distance between Tru

q and Tru
i at every intersection point

between two distance functions throughout the time-interval.
Clearly, this incurs a major overhead caused by unnecessary
computations, as illustrated in Fig. 16.

Among other things, we investigated the speed-up offered
by our approach when processing a variant of query Q3 with
ranking, as a function of k. The results for two datasets, of
sizes 2,000 and 8,000 trajectories, respectively, are shown
in Fig. 17. We observe an increase in the running time as k
grows. However, since we are using a logarithmic scale for
the Y-axis (time), the fluctuations are not obvious.

0.5 1 1.5
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

105

K (percentage of number of objects)

T
im

e(
Lo

g 
S

ca
le

)

Our method − 2000 Objects
Naive method − 2000 Objects

Our method − 8000 Objects
Naive method − 8000 Objects

Fig. 17 Impact of the ranking parameter on existential query Q3

8 Related work

Processing nearest neighbor queries is of interest in a vari-
ety of applications, ranging from clustering and data mining,
to machine learning and computer vision [45]. The prob-
lem of scalable and efficient processing of k-NN queries in
the context of spatial databases has been addressed with a
branch-and-bound approach [42] and with an incremental
technique [21], both of which use R-trees as an index.

Recent years have witnessed tremendous growth in MOD
research [19], where one of the main goals is the efficient pro-
cessing of various categories of spatio-temporal queries. As
part of the filter + prune + refine paradigm, a large number of
spatio-temporal indexing structures have been proposed [1,
2,13,28,33,38]. Specifically, for efficient processing of
k-NN queries in spatio-temporal settings, a dual transforma-
tion (points to lines) is explored for the settings in which the
objects are moving in one dimension [27]. Generic methodol-
ogies for processing spatio-temporal queries for trajectories,
based on a rich algebra of types, are presented in [30]. The
generation of time-parameterized answers to the continuous
variant of NN queries and their efficient scalable processing
(based on TPR-trees) was presented in [49]. One specific con-
text is when the motion is constrained to road networks [10].
Techniques for efficient processing of NN queries in such
setting have been presented in [35,60]. Closely related to
our current work, results on the efficient processing of con-
tinuous k-NN queries on trajectories are presented in [12]
and in [15], and k-NN query processing on road networks is
addressed in [23].

Two works very similar in spirit to ours, considering a
collection of hyperbolae representing the distance functions
from a querying object, are [4,41]. In particular, [41] focuses
on processing a k-NN query but, unlike our approach, does
not use the construction of the lower envelope for the pur-
pose of pruning objects that have zero probability of being
the nearest neighbor to the querying object within a given

123



Ranking continuous nearest neighbors 789

time-interval. The main objective of [4] is the scalable pro-
cessing of regular and reverse NN queries; its focus is on
the efficient management of updates (insertions/deletions);
however, uncertainty is not formally addressed.

The uncertainty model adopted in our work is used for
processing range queries in MOD settings [55], where var-
ious semantic categories of the answers to the queries are
presented and geometric concepts are used for their efficient
processing. We rely on the results in [8] for processing instan-
taneous NN queries in uncertain environments and provide
a two-fold extension: (1) the convolution property, which
enables us to handle uncertainty in the locations of the query
objects; and (2) the algorithms based on convolution for con-
structing the answers to the continuous variations of the NN
query.

The problem of efficiently processing continuous k-NN
queries for objects moving with uncertain velocity along a
road network was recently studied in [23], focusing on find-
ing the upper and lower envelopes of the set of distance func-
tions, guaranteeing that a certain object may be one of the
k-nearest neighbors. Although no formal complexity analysis
is given, it appears that the construction of the upper enve-
lope takes quadratic time. More recently [31] has addressed
the continuous variant of the problem of efficiently main-
taining the information related to the probability of nearest
neighbors for uncertain objects moving in road networks with
uncertain speeds. Based on observations regarding the possi-
ble changes to the shortest distance between a given moving
object and a query object in-between updates, efficient meth-
ods are proposed that combine pruning (based on maximal
and minimal distance functions), refinement and probability
evaluation. The main difference from our work is that [23,31]
do not explicitly consider the consequences of mixing in the
travel-time distance with the location-based uncertainty of
the objects’ whereabouts in a given time instant.

9 Conclusions and future work

In summary, we addressed the problem of processing effi-
ciently the time-parameterized ranking of the answers to con-
tinuous nearest neighbor queries for uncertain trajectories,
where the uncertainty at any time instant is bounded by a cir-
cle with a fixed radius, for objects traveling in 2D space, and
by a line segment for motions restricted to road networks.
We demonstrated by using convolution that it is possible to
transform the original problem into the problem where the
query trajectory becomes crisp, at the expense of changing
the pdf s of the rest of the trajectories. An important property
that is retained after the transformation is that the relative
NN-based ranking of the original trajectories (with respect
to the querying one) is preserved. We showed that this feature
is preserved for a large class of location uncertainty pdf s—

namely, the ones that exhibit rotational symmetry—and that
similar properties are retained for trajectories on road net-
works when the pdf s along the edges exhibit a symmetry
with respect to the expected locations.

Based on these results, we were able to derive efficient
algorithms for constructing a compact structure that repre-
sents the complete answer to a continuous NN query for
uncertain trajectories: the IPAC-NN tree. An important prop-
erty of this tree is that it can be used to efficiently eliminate
from consideration the uncertain trajectories that have no
possibility of being a nearest neighbor to a given query tra-
jectory. In addition, we presented a set of predicates and we
have shown how to use them to extend the available catego-
ries of queries that take into consideration uncertainty when
specifying continuous NN queries. Based on the IPAC-NN
tree, as well as its geometric dual LEB , we have also given
efficient algorithms for the refinement stage of query pro-
cessing, yielding a significant speed up when compared to
the corresponding naïve approaches.

Given the importance of NN-like queries in different
application domains, there are several challenging problems
that we plan to investigate in the future. A first extension
of our work will be to explore the applicability of our find-
ings toward processing other variants of NN queries (e.g.,
all pairs and reverse [4]) and compare the semantics of tra-
ditional Top-k NN queries [47] for crisp trajectories with
that for uncertain trajectories. In this work, we focused on
the qualitative ranking of the answers; however, a practically
important extension is to address threshold-based probabi-
listic queries such as retrieve the objects that have more than
65% probability of being a nearest neighbor within 50% of
the time [7].

In this work, we have only addressed the efficiency of the
processing algorithm for the refinement stage. The devel-
opment of an indexing structure for scalable processing of
uncertain NN queries is an open challenge; a spatio-tempo-
ral variant of the U-tree structure [51] for free 2D motion is
desirable. In addition, we would like to explore the possibil-
ity of using the indexing structures from [23,31] to couple
the uncertainty due to speed with that due to location. Lastly,
given recent trends in MOD research, we plan to investigate
how our results can be applied to spatio-temporal data ware-
housing and mining [36].

Acknowledgments We thank the anonymous reviewers for their con-
structive suggestions, Abraham Haddad and Ajit Tamhane for their use-
ful comments, and Hui Ding for helping with the experiments presented
in the conference version [54].

References

1. Agarwal, P.K., Arge, L., Erickson, J.: Indexing moving points. In:
ACM PODS (2000)

123



790 G. Trajcevski et al.

2. Aggarwal, C.C., Agarwal, D.: On nearest neighbor indexing of
nonlinear trajectories. In: ACM PODS (2003)

3. Aggarwal, C.C., Yu, P.S.: A survey of uncertain data algorithms and
applications. IEEE Trans. Knowl. Data Eng. 21(5), 609–623 (2009)

4. Benetis, R., Jensen, C.S., Karciauskas, G., Saltenis, S.: Nearest
and reverse nearest neighbor queries for moving objects. VLDB
J. 15(3), 229–249 (2006)

5. Böhm, C., Ooi, B.C., Plant, C., Yan, Y.: Efficiently processing con-
tinuous k-NN queries on data streams. In: ICDE (2007)

6. Cao, H., Wolfson, O., Trajcevski, G.: Spatio-temporal data reduc-
tion with deterministic error bounds. VLDB J. 15(3), (2006)

7. Cheng, R., Chen, J., Mokbel, M.F., Chow, C.-Y.: Probabilistic
verifiers: evaluating constrained nearest-neighbor queries over
uncertain data. In: ICDE (2008)

8. Cheng, R., Kalashnikov, D.V., Prabhakar, S.: Querying imprecise
data in moving objects environments. IEEE Trans. Knowl. Data
Eng 16(9), 112–1127 (2004)

9. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.:
Computational geometry: algorithms and applications. Springer,
New York (2001)

10. Demiryurek, U., Pan, B., Kashani, F.B., Shahabi, C.: Towards
modeling the traffic data on road networks. In: GIS-IWCTS (2009)

11. Ding, Z., Güting, R.H.: Managing moving objects on dynamic
transportation networks. In: SSDBM (2004)

12. Gao, Y., Li, C., Chen, G., Chen, L., Jiang, X., Chen, C.: Efficient
k-nearest-neighbor search algorithms for historical moving object
trajectories. J. Comput. Sci. Technol. 22(2), 232–244 (2007)

13. Gedik, B., Wu, K.-L., Yu, P.S., Liu, L.: Processing moving queries
over moving objects using motion-adaptive indexes. IEEE Trans.
Knowl. Data Eng. 18(5), 651–668 (2006)

14. Gnedenko, B.V.: Course of Probability Theory. Nauka, Moscow
(1988)

15. Güting, R.H., Behr, T., Xu, J.: Efficient k-nearest neighbor search
on moving object trajectories. VLDB J. 19(5), 687–714 (2010)

16. Güting, R.H., Böhlen, M.H., Erwig, M., Jensen, C.S., Lorentzos,
N., Nardelli, E., Schneider, M., Viqueira, J.R.R.: Spatio-temporal
models and languages: an approach based on data types. In: Spatio-
Temporal Databases—The CHOROCHRONOS Approach (2003)

17. Güting, R.H., Böhlen, M.H., Erwig, M., Jensen, C.S., Lorentzos,
N.A., Schneider, M., Vazirgiannis, M.: A foundation for repre-
senting and querying moving objects. ACM Trans. Database Syst.
25(1), 1–42 (2000)

18. Güting, R.H., de Almeida, V.T., Ding, Z.: Modeling and querying
moving objects in networks. VLDB J. 15(2), 165–190 (2006)

19. Güting, R.H., Schneider, M.: Moving Objects Databases. Morgan
Kaufmann, Los Altos (2005)

20. Hägerstrand, T.: What about people in regional science?. Papers
Reg. Sci. Assoc. 24, 7–21 (1970)

21. Hjaltason, G.R., Samet, H.: Distance browsing in spatial dat-
abases. ACM Trans. Database Syst. 24(2), 265–318 (1999)

22. Hornsby, K., Egenhofer, M.J.: Modeling moving objects over
multiple granularities. Ann. Math. Artif. Intell. 36(1-2), 177–194
(2002)

23. Huang, Y.-K., Chen, Z.-W., Lee, C.: Continuous k-nearest neighbor
query over moving objects in road networks. In: APWeb/WAIM,
pp. 27–38 (2009)

24. Huang, Z., Lu, H., Ooi, B.C., Tung, A.K.H.: Continuous skyline
queries for moving objects. IEEE Trans. Knowl. Data Eng. 18(12),
1645–1658 (2006)

25. Iwerks, G.S., Samet, H., Smith, K.P.: Maintenance of K -nn and
spatial join queries on continuously moving points. ACM Trans.
Database Syst. 31(2), (2006)

26. Jensen, C.S., Lin, D., Ooi, B.C., Zhang, R.: Effective density
queries on continuously moving objects. In: ICDE, p. 71 (2006)

27. Kollios, G., Gunopulos, D., Tsotras, V.: Nearest neighbor queries
in a mobile environment. In: STDM, pp. 119–134 (1999)

28. Kollios, G., Gunopulos, D., Tsotras, V.: On indexing mobile
objects. In: ACM PODS, pp. 261–272 (1999)

29. Kuijpers, B., Othman, W.: Trajectory databases: data models,
uncertainty and complete query languages. J. Comput. Syst. Sci.
76(7), (2010)

30. Lema, J.A.C., Forlizzi, L., Güting, R.H., Nardelli, E., Schneider,
M.: Algorithms for moving objects databases. Comput. J. 46(6),
(2003)

31. Li, G., Li, Y., Shu, L., Fan, P.: C-kNN query processing over mov-
ing objects with uncertain speeds in road networks. In: APWeb
(2011)

32. Lim, J.S.: Two-Dimensional Signal and Image Processing. Prentice
Hall, Englewood Cliffs (1990)

33. Mamoulis, N., Cao, H., Kollios, G., Hadjieleftheriou, M., Tao, Y.,
Cheung, D.W.: Mining, indexing, and querying historical spatio-
temporal data. In: ACM SIGKDD (2004)

34. Mokbel, M.F., Aref, W.G.: SOLE: scalable on-line execution of
continuous queries on spatio-temporal data streams. VLDB J.
17(5), (2008)

35. Mouratidis, K., Yiu, M.L., Papadias, D., Mamoulis, N.: Contin-
uous nearest neighbor monitoring in road networks. In: VLDB,
pp. 43–54 (2006)

36. Nanni, M., Kuijpers, B., Körner, C., May, M., Pedreschi, D.: Spa-
tiotemporal data mining. In: Mobility, Data Mining and Privacy
(2008)

37. Pei, J., Hua, M., Tao, Y., Lin, X.: Query answering techniques on
uncertain and probabilistic data: tutorial summary. In: ACM SIG-
MOD (2008)

38. Pelanis, M., Saltenis, S., Jensen, C.S.: Indexing the past, present,
and anticipated future positions of moving objects. ACM Trans.
Database Syst. 31(1), (2006)

39. Pfoser, D., Jensen, C.S.: Capturing the uncertainty of moving
objects representation. In: SSD (1999)

40. Pfoser, D., Tryfona, N., Jensen, C.S.: Indeterminacy and spatiotem-
poral data: basic definitions and case study. GeoInformatica 9(3),
(2005)

41. Raptopoulou, K., Papadopoulos, A., Manolopoulos, Y.: Fast
nearest-neighbor query processing in moving-object databases.
GeoInformatica 7(2), 113–137 (2003)

42. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries.
In: ACM SIGMOD (1995)

43. Royden, H.L.: Real Analysis. Macmillan Co, New York (1963)
44. Shahabi, C., Kolahdouzan, M.R., Sharifzadeh, M.: A road

network embedding technique for k-nearest neighbor search
in moving object databases. GeoInformatica 7(3), 255–273
(2003)

45. Shakhnarovich, G., Darrel, T., Indyk, P. (eds.): Nearest-Neighbor
Methods in Learning and Vision: Theory and Practice. MIT
Press, Cambridge (2006)

46. Sharir, M., Agarwal, P.K.: Davenport–Schinzel Sequences and
Their Geometric Applications. Cambridge University Press, Cam-
bridge (1995)

47. Soliman, M.A., Ilyas, I.F., Chang, K.C.-C.: Top-k query processing
in uncertain databases. In: ICDE (2007)

48. Suciu, D., Dalvi, N.N.: Foundations of probabilistic answers to
queries. In: ACM SIGMOD (2005) (tutorial)

49. Tao, Y., Papadias, D.: Spatial queries in dynamic environments.
ACM Trans. Database Syst. 28(2), 131–139 (2003)

50. Tao, Y., Papadias, D., Sun, J.: The TPR∗-tree: an optimized
spatio-temporal access method for predictive queries. In: VLDB,
pp. 790–801 (2003)

51. Tao, Y., Xiao, X., Cheng, R.: Range search on multidimensional
uncertain data. ACM Trans. Database Syst. 32(3), 15 (2007)

52. Theodoridis, Y., Sellis, T., Papadopoulos, A., Manolopoulos, Y.:
Specifications for efficient indexing in spatiotemporal databases.
In: SSDBM (1998)

123



Ranking continuous nearest neighbors 791

53. Trajcevski, G., Tamassia, R., Cruz, I.F., Scheuermann, P.,
Hartglass, D., Zamierowski, C.: Ranking continuous nearest neigh-
bors for uncertain trajectories: full and Peer Reviewed Accepted
Version. Technical Report NWU-EECS-11-06, Dept. of EECS,
Northwestern University (2011)

54. Trajcevski, G., Tamassia, R., Ding, H., Scheuermann, P., Cruz,
I.F.: Continuous probabilistic nearest-neighbor queries for uncer-
tain trajectories. In: EDBT (2009)

55. Trajcevski, G., Wolfson, O., Hinrichs, K., Chamberlain, S.: Manag-
ing uncertainty in moving objects databases. ACM Trans. Database
Syst. 29(3), 463–507 (2004)

56. Trivedi, K.S.: Probability and Statistics with Reliability, Queueing
and Computer Science Applications. Wiley, London (2002)

57. Ullman, J.D.: Principles of Database and Knwoledge—Base
Systems. Computer Science Press, Rockville (1989)

58. Wolfson, O., Sistla, A.P., Chamberlain, S., Yesha, Y.: Updating and
querying databases that track mobile units. Distr Parallel Databases
7(3), 257–387 (1999)

59. Xia, T., Zhang, D.: Continuous reverse nearest neighbor monitor-
ing. In: ICDE (2006)

60. Yiu, M.L., Mamoulis, N., Papadias, D.: Aggregate nearest neigh-
bor queries in road networks. IEEE Trans. Knowl. Data Eng. 17(6),
820–833 (2005)

61. Yu, X., Pu, K.Q., Koudas, N.: Monitoring k-nearest neighbor
queries over moving objects. In: ICDE, pp. 631–642 (2005)

123


	Ranking continuous nearest neighbors for uncertain trajectories
	Abstract
	1 Introduction
	2 Preliminary background
	2.1 Modeling uncertainty of motion
	2.2 Uncertain objects and crisp query object
	2.3 On the completeness of NN-probabilities

	3 Uncertain querying object and convolutions
	4 Uncertain NN-query
	4.1 Recursive time-parameterizing
	4.2 Constructing the IPAC-NN tree

	5 Uncertain NN-query on road networks
	5.1 Trajectories' distance in road networks
	5.2 Uncertainty and road network trajectories
	5.3 Semantics of the answers of uncertain NN-query on road networks

	6 Variants of the uncertain NN-query
	7 Experiments
	8 Related work
	9 Conclusions and future work
	Acknowledgments
	References


