Minimal Spatio-Temporal Database Repairs

Markus Mauder!, Markus Reisinger!, Tobias Emrich!, Andreas Ziifle!, Matthias
Renz', Goce Trajcevski?, and Roberto Tamassia3

! Ludwig-Maximilians-Universitit Miinchen
reisinger, mauder, mauder, zuefle, renz@dbs.ifi.lmu.de,
2 Northwestern University
gocel@eecs.northwestern.edu
3 Brown University
rt@cs.brown.edu

Abstract. This work addresses the problem of efficient detection and fixing of
inconsistencies in Spatio-Temporal Databases. In contrast to traditional database
settings where integrity constraints pertain to explicitly stored values (and, pos-
sibly, values defined via views and aggregates), we observe that spatio-temporal
data may exhibit a specific types of violations to constraints that cannot be ex-
plicitly tied with the stored values. The main reason is that spatio-temporal phe-
nomena are continuous, but their database representations are discrete. Thus, the
constraints are semantic in nature, as opposed to being firmly dependent on the
actual stored data. We give a general definition of semantic constraints of a tra-
jectory database, and define rules to repair violations of these constraints. We aim
at minimizing the changes needed for repairing violations of such semantic con-
straints, in order do minimize the distortion of the state of the database induced
by the repairs. Towards this, we define dissimilarity between the initial database
and its repaired state and, to minimize this dissimilarity, we propose several rules
of space- and time-distortion, which shift inconsistent observations in space and
time to remove inconsistencies. Our evaluation shows that these simple rules of-
ten run into local minima, and thus may not be able to repair a database. To
remedy this problem, we propose a hybrid approach which may choose between
possible space and time distortions. We show that a greedy approach which al-
ways chooses the locally best repair may still run into local minima and propose
a Simulated-Annealing approach, which combines greedy and random repairs to
avoid these local minima.

1 Introduction

By the end of 2014, there were nearly 7 billion mobile subscriptions worldwide [1].
This fact, along with miniaturization of computing and sensing devices and GPS and
RFID technologies, has provided a foundation for generating extremely large volumes
of location-in-time data: petabytes of location-based (i.e., spatio-temporal) data are gen-
erated every day [11]. The management of (location, time) information about mobile
entities is essential for a variety of application domains, ranging from navigation and
efficient traffic management to emergency/disaster rescue management, environmen-
tal monitoring, fly-through visualization, and various military applications (e.g., radar
data, troops tracking) [14]. Essentially, every application requiring some form of Lo-
cation Based Services (LBS) [16] needs efficient techniques for storage, retrieval and

query processing of spatio-temporal data—topics studied in the field of Moving Objects
Databases (MOD) [10].

Physical factors, such as the imprecision of sensing devices and communication
links, often cause the location data to be inaccurate and noisy. In addition to this
problem—even with perfect sampling accuracy—the data intended to capture a contin-
uous motion can be represented only at discrete time-instances. Moreover, data records
can be obsolete as users may update their location infrequently, e.g., due to bad con-
nectivity or to preserve battery power. Thus, one has to cater to the uncertainty as a
natural factor when considering the representation of spatio-temporal data (cf. [6]). A
complementary observation is that data sources may be various heterogeneous devices:
roadside-sensors, weather stations, satellite imagery, (mobile) weather radar, crowd
sourced observations, ground and aerial LIDAR—to name but a few. Having multi-
ple sources may yield not only cause type-mismatch issue, but also generate conflict-
ing location information about the same object and cause problems in reconciling the
data [18]. Complementary to uncertainty, the above contexts may cause other types
of semantic inconsistencies that have not been addressed so far. Namely, a user pos-
ing a continuous k-Nearest Neighbor (k-NN) query, may be presented with an answer
containing two (or more) vehicles that “have collided.” This is a simple example of vio-
lating the following basic semantic constraint: “two objects cannot be at the same place
at the same time.” Such a violation may be due to imprecise location-samples. Also,
it often arises from the use of interpolation (linear, Bezier, etc.) in-between observed
samples [9].

The main objective this work is to provide techniques for detection of and, just
as importantly, “fixing” such inconsistencies. We note that the focus of this paper is
not on removing the inherent uncertainty, which is a consequence of the imprecision
of location detections and can be an additional cause for inconsistencies. Rather, we
aim at repairing the "symptoms" of the "inevitable uncertainty". As a simple example,
the interpolation of GPS signals may lead to the consequence of having a trajectory of
a given car going through a lake. Fixing this problem by having the trajectory going
around the lake may still yield the wrong trajectory, as the true trajectory may look
different. Hence, while we cannot claim to have alleviated the root-causes for errors
in spatio-temporal databases, we take a first step towards fixing the symptoms based
on semantic constraints. Clearly, a method for database repairs should aim at minimiz-
ing the distortion between the original database and the repaired database. The main
contribution of this work can be summarized as follows:

— We identify and formalize the problem of semantic inconsistencies in spatio-
temporal data. This formalization identifies a wide class of problems, that have
been largely neglected in the moving object and trajectory database literature.

— Since the problem of finding an optimal database repair is NP-hard, we propose a
number of heuristics to repair a spatio-temporal database, which are organized into
three general categories of solution, including time-distortion, space-distortion and
hybrid approaches.

— We present experimental observations quantifying different trade-offs among the
proposed methods.

The rest of this paper is organized as follows. Section 2 presents a review related
work. In Section 3, we formalize the problem of Moving Object Database (MOD) in-
consistencies along with metrics to measure the quality of a database repair. Section 5
gives the details of the proposed algorithmic solutions and the experimental observa-
tions are presented in Section 6. Finally, in Section 7, we conclude the paper and outline
directions for future work.

2 Related Work

We now overview the literature on several different topics related to the problems ad-
dressed in this paper. However, as we will argue, although each body of work has
yielded interesting and relevant results, none has addressed the specific problems tack-
led by our work, nor has provided a readily applicable “tool-chain.”

Relational Database Repairs: Traditional database approaches repair [3,4,17] the
identified inconsistencies by removing objects or by changing attribute values. Such
approaches however, can not be applied directly to spatio-temporal data. Arbitrarily
changing a (location, time) pair is likely to yield new inconsistencies, as the changed
trajectory may reach an unreachable state, or may have an unrealistically high speed in
the repaired version of the database. The main challenge in spatio-temporal data is to
incorporate repair rules to span a space of semantically meaningful repairs.
Probabilistic Spatio-Temporal Database Repairs: The recently published approach
of [12] aims at repairing probabilistic spatio-temporal databases as defined in [13]. In
this setting, each mobile object is assigned a set of spatial regions and a probability
interval defining the likelihood to be within this region. In an interpretation of such a
database, the probability of a region must be within its interval and the probabilities
of all regions of an object must sum up to one. Such a database is inconsistent if no
interpretation exists. The approach of [12] shows how to minimally change probability
intervals in order to obtain an interpretation. The problem setting in this work can not
be extended to trajectory databases.

A recent approach presented in [8] models the motion of a spatio-temporal object
by a stochastic process, such that each possible world is indeed associated with a proba-
bility. Constraints such as “Object z must not be in state s at time ¢”” can be incorporated
into this model by adapting the corresponding probabilities. More complex constraints,
such as inter-object constraints that prohibit objects from being at in same state at the
same time, can not be incorporated into such models as easily.

Linear Temporal Logic: Our problem of removing inconsistencies from a trajectory
database can be cast in the realm of temporal logic. For instance, using Propositional
Linear Temporal Logic (LTL) [7], a trajectory T' = s1, s2, ..., §|7| can be described us-
ing the eventually operator ¢ by ¢s1 ¢ s3... ¢ 5|7|. Semantically, this LTL formulation
induces a trajectory where eventually state s; must be visited after any number of in-
termediate states, then s; must eventually be visited after possible more intermediate
states and so on. Further constraints can be formulated, e.g. to constrain the database
such that no two objects may be at the same location at the same time, by applying the
always operator [J to express the the rule V71,75 € D,t € T : T} (¢) # Ta(t). Using

logical solvers for LTL [15], we can efficiently find an interpretation* for each trajec-
tory such that all constraints are satisfied, if any such interpretation exists. While LTL
allows to formulate any semantic constraint, the main problem of LTL is that, being a
logic rather than a function, it does not allow to find any optimal solution. Thus, LTL
allows to check if there exists a model that satisfies all given constraints, which any way
of formulating a cost function that can be optimized. In most applications, the problem
of finding such a model is trivia. For example, the solution of using a serial sched-
ule, which avoids any inconsistency between objects by simple removing any temporal
overlap between trajectories, does always work.

While the solution based on serially scheduling each trajectory is valid, it is pro-
hibitively expensive, since “repaired” trajectories may be extensively distorted in time.
We are looking for a solution which minimizes the changes to the database performed
by the repair.

3 Problem Definition

This section presents the details of the novel types of inconsistencies and desirable
properties of (methodologies for) enforcing the semantic constraints in a given MOD.

A spatio-temporal database DST stores triples (oid, location, time), where oid €
{01, ...,on'} is a unique object identifier, location € S is a spatial position in space and
time € T is a point in time. Semantically, each such triple corresponds to the location
of object o; at some time. In D, an object can be described by a function tr,, : 7 — S
that maps each point in time to a location in space® S; this function is called trajectory.
The corresponding trajectory database is denoted as D = {t74,, ..., troy }-

Assuming that the location of an object o; is known for any point in time is unre-
alistic as the location of object o; can only be determined at discrete time-instants. The
frequency of location-samplings is also bounded by physical constraints, such as the
availability of a GPS signal. Between discrete observations, the position of a moving
object has to be estimated via some type of a dead reckoning. These estimations are
based on incomplete information, and thus, may be imprecise.

3.1 Spatio-Temporal Constraints

The violation of a constraint in a trajectory database D indicates that D contains erro-
neous trajectories, possibly incurred due to faulty dead reckoning, or due to deficiency
of measuring devices used to capture trajectories. Since we are considering historical
data, we lack the option of improving the available information, e.g., by requesting the
objects to give a more accurate position update. Since the cause for the inconsistency
cannot be removed, the only viable approach is to repair the trajectories in order to
mitigate the symptoms of this lack of information.

*In LTL, an interpretation is a Kripke structure which, in our case, maps each trajectory and
each point in time to a state.

3> Most often the Euclidian 2D space is considered, however, extension to 3 (or higher) dimen-
sions as well as road-network constraints have been commonly considered in the literature.

Definition 1. Let C be a set of constraints. A database D is said to satisfy C, noted as
D E C, if all constraints are satisfied in D. If D ¥ C, then D is said to be inconsistent.

Loosely speaking, a spatio-temporal constraint can be thought of as any rule describing
some semantic constraint related to the trajectories in D. A constraint ¢ € C may per-
tain to an individual object. An example of such an Object Constraint is the constraint
“An object must not enter a specified area R on Sunday between 2am and 5Sam.” This
constraint can be formally expressed as

Y(tr, € D),V(t € [Sunday 2am, Sunday 5am|) : tr,(t) € R.

In contrast, some constraints may be defined between trajectories, such as “two objects
must not be in the same place at the same time” which can be expressed as

V(tro,, tro;, 0 #), Yt : tro, (t) # tro, ().

In practice, constraints involving more than one object lead to hard optimization prob-
lems, as a single repair of one trajectory may have a large number of consequences
on the constraints involving other objects. Section 4 will show that such constraints
lead to NP-hard optimization problems. Since we are considering the general case, we
will be considering such hard inter-object constraints in our experimental evaluation in
Section 6.

3.2 Database Repair Rules

In this work, we will propose a number of trajectory database repair rules. These rules
define for a given trajectory T' € D the set of possible repairs 7. Before we propose
these rules in Section 5, we first formally define the purpose of a repair rule.

Definition 2 (Trajectory Database Repair Rule). Let D denote the set of all possible
trajectory databases. A trajectory database repair rule R : D — D is a function,
which maps a trajectory database D to a set of possible repairs.

As an example, a repair rule R may allow to simply remove a trajectory from D. This
repair rule can be be specified by

R(D) = {D'|D' ¢ D).

Definition 3 (Database Repair). Let D be a trajectory database inconsistent with
respect to a set of semantic constraints C and let R be a set of repair rules. Let
DE € R*(D) be a trajectory database derived by iteratively applying repair rules
R € R to D. If DE = C holds, then the trajectory database D is called a database
repair of D.

In many cases, such as the aforementioned exemplary repair rule that allows to discard
trajectories, one trivial way of obtaining a database repair D which satisfies all given
constraints ¢ € C is, for example, the empty database D® = {}. Given the lack of
any actual trajectory, it trivially satisfies many constraints. Hence, strictly speaking, the
challenge is not only to find just any database repair, but to find a database repair having
the minimal difference from the initial database D.

Definition 4 (Minimal Database Repair). Let D be a trajectory database inconsistent
with respect to a set of semantic constraints C. Let dist(D, D) be a dissimilarity
function between databases. A minimal repair DE . is defined as

Dr?nn dZSt(Da DR))

= aTgMZnDReiDR,D\:C

where DR represents the set of all possible repairs of D.

The goal of this work is to efficiently compute, for a given trajectory database D and a
set of semantic constraints C, a minimal repair DZ, = of D. This problem falls into the
class of constraint satisfaction problems and we show in Section 4 that it is NP-hard.
We will relax the problem to find heuristic solutions that yield a database repair having

sufficiently low dissimilarity to the initial database.

3.3 Quality of a Repair

To measure the quality of a repair, a dissimilarity function dist(D,DF) is needed
which, in accordance with Definition 4, will be minimized. Thus, this function defines
semantic of a “good” database repair. Semantically, a good database repair is expected
to minimize the total number of changes of the database D, and should guarantee that
changes are divided fairly over all trajectories. To measure the total dissimilarity be-
tween D and D, we can simply aggregate the dissimilarity of individual trajectories:

dist(D, D) = Y dist(T,T"),
TeD

where dist(T, T*) is a dissimilarity function defined on trajectories such as average
Euclidean-distance or edit distance. In addition, changes in DE should be divided fairly
among trajectories, in order to avoid starvation of single trajectories in the repaired
database. Such fairness can be enforced as follows

dist(D, D) = Y g(dist(T, T")),
TeD

where g(z) is a function that monotonically increases in R, such as the square func-
tion, to weight the distances of individual trajectories.

In the remainder of this work, we propose solutions to remove inconsistencies from
a trajectory database D. For this purpose, we first provide a formal proof that the NP-
hardness of fixing inconsistencies in a trajectory database in Section 4. Thus, heuristic
solutions are presented in Section 5. In Section 6, we perform an experimental analysis
of the quality of these solutions on real data sets, evaluating both run-time and quality
of the resulting repair.

4 Complexity Analysis

In the following, we show that the problem of finding the optimal repair D of a trajec-
tory database D is generally hard. For this purpose, we show that the simpler problem
of finding any repair is already NP-complete.

Lemma 1. Given a trajectory database D, a set of constraints C' and a set of repair
actions A, the problem of deciding whether there exists a repair D which is derived
from D using rules in A, such that D¥ |= C is NP-complete.

Proof. Let D be a database of arbitrary trajectories, and let A be repair action such that
for each trajectory T; € D there exists exactly one possible repair. For each T; € D, let
p; denote the unrepaired trajectory 75, and let p; denote the repaired trajectory which
is derived by applying the only possible repair in A to 7;. Furthermore, let C' be a set
of inter-object constraints such that each constraint ¢, ; € C requires that at least one
object must be in state s at time ¢. Let ¢ (D, A) C ()y<,<y{Pi, i} denote the set
of all possible trajectories that satisfy constraint c, ¢, i.e., all possible trajectories that
are located in state s at time ¢. Since each constraint s ; requires at least one trajectory
to be in state s at time ¢, the constraint s, ; can be rewritten as the disjunction of all
trajectories satisfying this constraint:

Cst = \/ D

p€cs,i(D,A)

This boolean formula returns true if and only if the constraint ¢, ; is satisfied. For all
constraints to be satisfied, the conjunction of all these disjunctions yields the following

boolean formula:
AV »
cs,+€C pEcs (D, A)

This formula returns true, if and only if, for a given database repair DT € {p;, p1} x
{pn, '} satisfies all constraints in C. Consequently, the problem of finding a valid
repair of D is equivalent to the satisfiability problem of the above boolean formula. This
satisfiability problem, known as k-SAT, is known to be NP-complete. (|

Due to the hard nature of the problem, will omit an exact algorithm to find an optimal
database repair, i.e., a repair that minimizes the amount of database distortion. It should
be noted that such an algorithm can be specified using integer linear programming, yet
such a solution may have unbearable run-times even for toy databases. Instead, in the
next section, we will propose approximate algorithms, which return a database repair
DE which may not be minimal in terms of distortion of the original database D, or
which may fail to satisfy some constraints.

5 Algorithms

Before discussing our algorithmic solutions for spatio-temporal database repairs in Sec-
tion 5.2, we specify the following components in Section 5.1:

1. Spatio-temporal constraints and techniques for their detection
2. Allowed repair rules
3. Dissimilarity function to measure the quality of a database repair

5.1 Component Specifications

Spatio-Temporal Constraints There are several alternatives for spatio-temporal con-
straints. In this paper, we consider the following very general constraint: “Two objects
must not be within a threshold of € meters within each other at any time.” This constraint
is formally expressed as follows:

V(tro,,tro, i # 7)Yt : dist(tro, (1), tro, () > €.

This constraint is able to ensure that objects with a spatial extent of € never occupy the
same space at the same time, or that objects do not get too close to each other.

As the next step, it is important to be able to quickly find violations of the above
constraint in the database. To detect these violations, we use a spatio-temporal R*-tree
to index the set S of all trajectory segments defined by two successive GPS signals of
the same object, using time as a third dimension. Each trajectory segment s is minimally
bounded by a rectangle [I(s) and added to the tree. Thus, each leaf of this R*-tree is
a single rectangle pointing to the exact representation of the approximated trajectory
segment. To find all initial collisions, we perform a similarity-join [5] joining the in-
dexed database with itself (ignoring identity) and using € as the similarity threshold
that is only applied on the spatial dimensions (and not on the time). The result is a set
of intersection pairs (s, ¢) where s and c are segments of two different trajectories.

Once the initial collisions have been found, future collisions caused by database
repairs can be found very efficiently, by querying against the tree only segments that
have been changed by a repair.

Repair Rules In our problem setting (Section 3), a database repair is still unspecified.
In the following, we focus on the manipulation of the vertices of the trajectories in order
to obtain a countable number of possible repairs. To identify the vertex to be repaired
to remedy a constraint violation, we always consider the vertex closest to the violation
point of both corresponding trajectories. The vertex can then be manipulated in one of
the following ways:

— Time domain: The manipulation of a vertex v back in time implies that the move-
ment from the previous vertex to v is slowed down and the movement from v to
its subsequent vertex is sped up. The manipulation of v forward in time has the
opposite effect. Note that the time manipulation of a vertex is constrained by its
predecessor and its successor. Manipulating the time of v beyond the times of its
predecessor or its successor yields anomalous movement in the spatial domain.

— Spatial domain: Manipulating the spatial position of a trajectory vertex has also
impact on the speed of the movement.

— Time and spatial domains: Obviously, the spatial and temporal manipulation can be
combined. A special case of spatio-temporal manipulation is the manipulation of v
along the spatio-temporal path to its predecessor or its successor.

Based on these observations, we define the following three rules named after the
cardinality of the set provided. Throughout this section, the input to a rule is the repair
triple vy, v, vy, where v is the vertex to repair, v, is the predecessor of v, and vy is the

55,66 -
55,66 1281 o 55,68

12,61
T2,61

5556
Latitude

Longitude

12,61 5566 SSEE Latitude

Longitucle

(a) Two-Rule (b) Four-Rule

43

Tycho
Brahes
Alle 25-27
3
Tim
18
]
218
12,81
Latitue 20488 1261 Longitude
(c) Ten-Rule (d) Ten-Rule

Fig. 1. Repair Rules

successor of v in the trajectory. Furthermore, a vertex v is characterized by the triple
(v.t,v.z,v.y) representing the time, the x position and the y position of v, respectively.

Definition 5 (Two-Rule). Given repair triple vy, v, vy, the Two-Rule returns two ver-
tices v} and vl, where

vi:vp;—v
 urt (1)
V2= T

Note that the two vertices returned by the Two-Rule are located in time and space
half the way forward and backward around vertex v.
The Four-Rule adds temporal repairs.

Definition 6 (Four-Rule). Given repair triple vy,,v,vs and time distortion At, the
Four-Rule returns the two vertices returned by the Two-Rule plus the two vertices v}
and v}, where

vy = (v.t — At,v.z,v.y)

2
vy = (vt + At,v.z,v.y) @

ensuring that v.t — At > vp.t and v.t + At < vyt
The Ten-Rule adds eight absolute spatial distortions.

Definition 7 (Ten-Rule). Given repair triple vy, v, vy, time distortion At, and space
distortion As, the Ten-Rule returns the following ten vertices:

(v.t + At,v.z,0.y),
(v.t,v.x + As,v.y),

= (v.t — At,v.z,v.y)0) =
):v6 =

vh = (vt,va, vy — As)ws = (v.t,v.2,0.y + As), 3)
)i =
)Vig =

/
Vg =
!
U5 =

(v.t,v.x — As,v.y),

/

vy = (v.t,v.x — As,v.y — As),v1 = (v.t,v.x + As,v.y + As),
/

v = (vt v — As,v.y + As) v, = (vt v.x + As,v.y — As)
ensuring that v.t — At > vyt and v.t + At < vyt

Figure 1 gives an overview of these three rules, where we show in 1(a) the shift on
the segment and we show in 1(b) the additional time shift. Figures 1(c) and 1(d) show all
ten options, while the Southwest option was chosen in Figure 1(d). The effectiveness
of these rules will be evaluated later on, but obviously the Ten-Rule should perform
best, as it offers the most possibilities and so the algorithms will typically choose one
of the ten vertices output by the Ten-Rule as the best repair. Besides that, the Two-Rule
and Four-Rule are again working relative to the surrounding vertices which brings the
already discussed disadvantages.

Quality Measure As the cause of a constraint violation is unknown, the only sensible
approach is to limit the changes to the database as much as possible. Accordingly, the
quality of a repair is assessed by the magnitude of its effect on D. A heuristic solution
will generally generate a number of possible solutions, one of which will be chosen as
the best solution after a finite amount of processing time. For this purpose, a quality-
measurement function dist(D, D) for repairs is required upon which a ranking can be
based.

dist(D,D?) = Z dist(tr;, trl).)
i€[1,|D|]

For the purpose of measuring the distance between the original trajectories and the
repaired trajectories, we propose the following three dissimilariy functions.

The first function, dist.,i:4, intuitively yields the spatial difference of two trajec-
tories.

M

distewciralir, i) = 30 (w1, =l + (0, — ol 4 (1, o)))
1€[1,]tr]]

Utilizing weights for every dimension (wg, wy, w;) it is easy to provide a Weighted
Euclidean Distance function that takes into account the weighting of the time in contrast
to the spatial dimensions.

distyeighted(tr, trR) = Z (w¢>(vi¢ — 05)2 + wy (v, — vﬁ)2 + we (v, — vf)2)
i€[1,]tr|]
(6)

Finally, in order to provide an alternative to the Euclidean Distance, the third func-
tion is based on the Maximum Distance:

dist paz(tr, trR) = Z max{(vi, — vf;), (viy — vﬁ), (vi, — vﬁ)} 7
i€[1,]tr]]

In order to improve efficiency, the implementation of the above dissimilarity func-
tions does not compute the complete dist(D, D?) after every repair step, but rather
compares only trajectories that have been changed during the repair step and sums up
the differences for every repair step.

5.2 Generate database repairs

The components outlined above can be combined to create an algorithm to generate
a database repair. As finding a minimal database repair is NP-hard (Section 4), any
resulting algorithm should employ heuristics to find a good (but not necessarily optimal)
repair.

We have identified the following paradigms as possible approaches: Random,
Greedy, and Simulated Annealing.

In our description of these algorithms we use the following functions:

— c¢: D — V returns the set of vertices that are part of any conflict in D.
- R, : D — 7D is the repair function R (as defined in Section 3), but limited to
manipulations of the conflicting vertex v.

Random The simplest approach does not try to choose a good repair function at all.
Instead it applies a random instance of a set of possible repair functions to a random
conflicting vertex in the database. See Algorithm 1 for a detailed description.

Applying a random repair function does not necessarily reduce the number of con-
flicts. As a consequence, the algorithm might not converge on a solution.

[N

Algorithm 1 Random(D, R)
1: while ¢(D) # 0 do
2: V<« D)

3 v rnd(V)

4: R+ rd(R)
5
6:

D« R,(D)
end while

Greedy The more sophisticated Greedy algorithm uses the number of remaining con-
straints after applying each function to make a better choice. The Random algorithm’s
weak spot is its unguided choice of repair function. The Greedy algorithm considers
only the local improvement of each repair. The repair yielding the lowest number of
remaining constraint violations is picked and applied to D. See Algorithm 2 for details.

Algorithm 2 Greedy(D, R)
1: while ¢(D) # 0 do
2: V<« ¢(D)
3 v V[0]
4: Ropt + argminger |R(D)||
5
6:

D < Ropt(D)
end while

Compared to the Random algorithm, Greedy’s locally optimal repairs yield a much
faster convergence on a (possibly local) optimum. However, the increase of complexity
leads to an increase in runtime. To find a repair that is closer to the minimal database
repair, an algorithm must avoid the local minimum Greedy is prone to converge on. The
following algorithm addresses this problem by combining random and greedy elements.

Simulated Annealing The deterministic nature of greedy algorithms makes them
prone to local minima. For this reason, algorithm Greedy presented above is likely
to return a valid database quickly, but this result is unlikely to be minimal (or close to
minimal). To increase the likelihood of finding a global minimum, we now describe an
algorithm based on simulated annealing. See Algorithm 3 for a detailed description.

Algorithm 3 SA(D, R)

I:6=1

2: while ¢(D) # (0 do
if random(]0;1]) < ¢ then
4 D < Random(D,R)
5 else
6: D + Greedy(D,R)
7: endif
8
9:

W

0+ 06— As
end while

By consolidating the Random and Greedy algorithms we counter the overly deter-
ministic nature of greedy algorithms by introducing some randomness in a directed way.
This algorithm avoids local minima by initially choosing random repairs, then trying to
improve on the best random result using more and more greedy approaches. In each
iteration, this algorithm first decides to either perform a Random repair or a Greedy
repair with increasing bias toward greediness. In the first iteration, the probability &
of performing a Greedy repair is zero. In each subsequent iteration, this probability
increases by a parameter Ay € [0, 1].

The Simulated Annealing algorithm is expected to be slower than the Greedy al-
gorithm, but more flexible and able to find a more global minimum. Compared to the
Random algorithm, Simulated Annealing is faster and more directed. This claim will
be evaluated in the following.

6 Experiments

The experimental evaluation presented in this section was conducted using a desktop
computer having an Intel i7-870 CPU at 2.93 GHz and 8GB of RAM. The spatio-
temporal dataset that we are using consists of workout GPS data, i.e., running and hiking
GPS-traces obtained from Endomondo (https://www.endomondo.com). For each GPS-
position of a workout a trajectory is stored in D using linear interpolation, which is the
main source of inconsistencies. The service is most popular in Scandinavia, so most
workouts are located in cities there. The dataset we used was from the area of Copen-
hagen, which has a number of vertices between 2567 and 652854. In a data cleaning
step, we removed: (1) trajectories that do not have an absolute time-stamp, to avoid hav-
ing a huge number of runners at the beginning of time; (2) outlier GPS signals yielding
a run-speed of more than 50 kilometers per hour. The constraint is that two objects
must not be closer than e to each other, where € is a parameter that we can vary in order
to alter the number of inconsistencies, called collisions. Unless otherwise specified, the
default value is € = 3 meter. In this evaluation, we use four straightforward algorithms as
a baseline. These four algorithms randomly pick a conflicting GPS-signal p that is adja-
cent to a conflicting trajectory segment. The, p is distorted by (i) moving its time-stamp
one second towards the time of the next GPS-signal (Absolute Time-Distortion), or (ii)
by moving its time-stamp half-way to the time of the next GPS-signal, or (iii) moving
its location one meter towards the location of the next GPS-signal, or (iv) by moving its
location half-way to the location of the next GPS-signal. Table 1 lists the various repair
heuristics that we presented in Section 5 and shows the respective abbreviations that we
will use in the following evaluation.

tdra Absolute Time-Distortion Repair tdrr Relative Time-Distortion Repair
ldra Absolute Location-Distortion Repair|1drr Relative Location-Distortion Repair

ra Random gr Greedy
sa Simulated Annealing 2 Two-Repair-Rules
4 Four-Repair-Rules 10 Ten-Repair-Rules

Table 1. Abbreviations for experiments

Hmm Collisions
E Timeins

collisions

I Find colins
[Repaircolins
[Move to index ins

0 200 400 600 800 1000 1200
Time in sec

5 10
Epsilon in meter

(a) Number of collisions (b) Overall Run-Times

Fig. 2. Runtime Experiments

6.1 Collision Detection

In Section 5.1 we describe how we can find collisions in a trajectory database. This
is performed by querying individual trajectory segments at an R*-tree. For our exper-
iments, we use the R*-tree implementation of the ELKI-framework [2]. The average
time required for a single intersection query, depends on the capacity of the R*-tree.
For leaf capacities of 10, 100, and 1000, we measured an average query time of 0.1283,
0.3390, and 7.2444, respectively. We are using a leaf capacity of 10 in the following.
Figure Figure 2(a) shows the total time required to find all initial collisions, which
requires a large number of intersection queries. The number of collisions is also in-
fluenced by the intersection pipe radius ¢, and Figure 2(a) illustrates the effect on the
Endomondo dataset. It is notable that the time required to find collisions seems indepen-
dent of €. This is attributed to the fact that even for a € of 50m, the number of collision
candidates that have to be evaluated is too small to significantly impact the run-time.
Thus, the vast majority of time is lost in the collision candidate generation step.

Figure 2(b) shows the time required to repair the found collisions. In each iteration
of each algorithm, three steps are required: (i) Repairing a collision, (ii) then updating
the index with the new distorted trajectory, and (iii) finding new collisions involving the
distorted trajectory. The times required for these three steps are shown in Figure 2(b).
We note that despite the use of an efficient index structure, the time needed to repair
two colliding trajectories lasts only a fraction of the time needed to find the collision
and update/move the trajectory.

6.2 Run Time

The time to repair a collision is further shown in Table 2, along with the number of
repair iterations — which varies depending on the heuristic used (likely that the collision
has not been fixed, or new collisions may have been incurred). In Table 2, stars next to
run-times imply that in at least one case, the repair algorithm did not terminate. Non-
terminating cases are ignored for the computation of run-times in this experiments. We
can make the following observations: We see that purely time distorting heuristics (tdra

Algorithm|Time to repair|# Repairs| t/#rep

GR4 16.294 342 |0.047643
GR10 51.181 330 [0.155094
GR2 10.522 429 10.024527
Idra 0.198* 341 {0.000581
Idrr 20.92* 1341 |0.015600
RA4 0.557 545 (0.001022
RA10 0.503 519]0.000969
RA2 0.898 684 |0.001313
SA4 16.046 343 10.046781
SA10 47.673 332 |0.143593
SA2 11.708 464 10.025233
tdra 18.02* 5506 |0.003273
tdrr 17.823* 1340 |0.013301

Table 2. Runtime of all algorithms

and tdrr) and purely location distorting heuristics (Idra and 1drr) are able to repair a
database quickly. However, due to the simple rules that these approaches follow, they
are unable to handle some cases which may occur in trajectory databases.

— In the case of relative repairs (tdrr and Idrr) this is caused be the fact that if two
trajectory segments completely falls into their e-range, then no distortion on these
segments can yield a successful repair.

— In the case of absolute repairs (tdra and Idra), some special cases can not be handled.
For instance, in the case where two trajectories remain at the same location for
multiple GPS-signals: in this case GPS-signals are shifted, but the likelihood of
reaching a state where all signals are collision free becomes minimal.

When omitting the cases where these approaches do not terminate, we note that the
fastest repair is achieved by the Idra heuristics, which distort observed GPS-signals in
space. Furthermore, we can see that among the heuristics to choose a possible repair,
the Random-heuristics (RA2, RA4, RA10) perform best, which is expected as these
heuristics are not required to make any expensive greedy probing steps. The Greedy
(GR2, GR4, GR10) and the Simulated Annealing (SA2, SA4, SA10) require approx-
imately the same time to apply their repairs, but require significantly more time than
the pure random approach. Finally, we can see that an increase of the number of repair
rules does not affect the random approach, since the time to pick a rule at random can be
neglected. For the Simulated Annealing and Greedy approaches, the run-time increases
sub-linearly in the number of repair rules: Firstly, each greedy-step requires probing all
possible repair rules to pick the most promising one. Yet, this greedy choice is rewarded
by reducing the number of total repair iterations that are required to fix the database,
thus lowering the run-time.

I Euclid |
[Weighted Euclid
E Max 1

3 4
Distortion in km

Fig. 3. Quality of Repairs.

6.3 Experiments on Quality of Repair

In Section 5.1 we established three different dissimilarity functions. The results of the
experiments are shown in Figure 3. The larger the dissimilarity, the lower the quality
of the corresponding repair. The Euclidean and Maximum Distances almost always re-
turn the same values, as in most cases, a single trajectory is distorted at one segment
only. For the Euclidean distance, we set the weights to (1,1,0.5) in order to weight
the location stronger, because the domain of latitude and longitude is smaller than the
time domain of a workout in seconds. At first glance, it appears that the purely time
distorting heuristics (tdra and tdrr) and purely location distorting heuristics (1dra
and 1drr) seem to yield a nearly perfect repair quality. However, this conclusion is
misleading, since for this experiment, we were not able to consider the cases where
ldra, 1drr, tdra and tdrr do not terminate. These cases however, are the interest-
ing and hard cases, where the most distortion is required to repair the database. Despite
this bias, which arises from the fact that 1dra, 1drr, tdra and tdrr can not repair
some collisions, we decided to keep the quality experiments for completeness. Another
important observation that we can make in Figure 3, is that for the repair quality of ap-
proaches utilizing several repair rules (Random, Greedy and Simulated Annealing), the
repair quality improves significantly as the number of possible repair rules increases.
In particular, the approach that allows to dodge collisions by distorting space in one
of eight directions or by distorting time in one of two directions (the ten-repair-rule
case) achieves an extremely high repair quality. When we compare the three heuristics
to choose a repair rule, we see that the random heuristic performs by far the worst,
thus leading to a large number of needless distortions. The greedy heuristic and the
simulated annealing heuristic show comparable results. In fact, the simulated annealing
approach yields a better quality in some cases. This is possible, as our greedy approach

only selects the locally best next repair rule, which may lead to the global best repair.
In contrast, the simulated annealing allows to initially do quick random decisions to
get rid of the majority of collisions, and then fix the remaining ones by using greedy
decisions.

To summarize, our initial proposed repair rules using only spatial distortion (1dra
and 1drr) and our proposed repair rules using only time distortion (tdra and tdrr)
are not able to repair complex inconsistencies. Nevertheless, these approaches are eas-
ily implemented and have low run-times, such that these approaches might find appli-
cations in cases where a few remaining inconsistencies can be tolerated. Regarding our
proposed repair rules, we saw that the random heuristic is able to achieve the fastest
run-time, but incurs a repair-error that may not be tolerable in practice. The greedy ap-
proach has the worst run-time, which is attributed to the fact that in every iteration all
possible repair rules are tested to choose the locally best. The simulated annealing ap-
proach yields a good trade-off, achieving a repair quality comparable to the quality of
the greedy approach, while being much faster. Furthermore, we saw a trade-off between
run-time and repair quality in the number of repair rules: a larger number of repair rules
leads to a (sub-linear) increase in run-times but also to a (drastic) improvement of repair
quality. Clearly, a proper choice of repair rules is highly domain specific, depending on
the types of inconsistencies that are repaired, and depends on the time-constraints given
to the algorithm.

7 Conclusions

In this work, we have formalized a category of problems that has been largely neglected
in moving object literature — repairing inconsistencies in historical trajectory databases.
This is an important problem since such databases are inherently uncertain for a num-
ber of reasons and, in addition, attempt to capture continuous phenomena via discrete
values. We have shown that this problem is NP-hard, such that we aim at finding heuris-
tics that find a good repair rather than finding the optimal repair. For this purpose, we
presented a number of initial solutions, including a time-distortion algorithm, a space-
distortion algorithm, as well as a set of generic algorithms that apply pre-defined repair
rules, including a random algorithm, a greedy algorithm and a simulated annealing algo-
rithm. Our experimental setting is aimed at one specific type of inconsistency, namely
collisions. The results show that the simple approaches fail to find any repair at all.
In contrast, our proposed repair-rule based solutions are able to find a good repair in
acceptable time. We believe that this work will spur many challenges in identifying
different domain-properties and corresponding heuristics to speed up the "fixings" for
different constraints. While finding an optimal repair is a hard problem, we feel that a
combination of the techniques presented in this work, as well as the consideration of
new ideas, may yield a new solution that combines the best these worlds.

The problem of fixing inconsistencies in moving objects database becomes even
more challenging when moving regions are involved. For instance, objects may cor-
respond to hurricanes, consisting of “eye” and “tail”, each approximated by regions,
passing over same spatial area. The removal of inconsistencies in such setting may
have the potential of existing prediction models that are used in geo-sciences. Address-
ing the context of mobile regions is one part of our future work. We are also planning
to investigate the trade-offs between fixing the inconsistencies in the data vs. fixing

inconsistencies in the (answers to) pending queries — which can be challenging in the
context of streaming (location,time) data. Another challenge that we plan to address
is to investigate the impact — and efficient removal — of the inconsistencies in various
spatio-temporal data mining tasks.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.
18.

Mobile subscribers 2014. Source: ITU World Telecommunication/ICT Indica-
tors database. (http://www.itu.int/en/ITU-D/Statistics/Documents/
facts/ICTFactsFigures201l4-e.pdf).

. E. Achtert, H.-P. Kriegel, E. Schubert, and A. Zimek. Interactive data mining with 3d-

parallel-coordinate-trees. In Proceedings of the 2013 ACM SIGMOD International Confer-
ence on Management of Data, pages 1009-1012. ACM, 2013.

. M. Arenas, L. Bertossi, and J. Chomicki. Consistent query answers in inconsistent databases.

In Proceedings of the eighteenth ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, PODS ’99, pages 6879, 1999.

. P. Bohannon, W. Fan, M. Flaster, and R. Rastogi. A cost-based model and effective heuristic

for repairing constraints by value modification. In Proc. SIGMOD, pages 143-154, 2005.

. T. Brinkhoff, H. Kriegel, and B. Seeger. Efficient processing of spatial joins using r-trees. In

Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data,
Washington, D.C., May 26-28, 1993., pages 237-246, 1993.

. R. Cheng, T. Emrich, H. Kriegel, N. Mamoulis, M. Renz, G. Trajcevski, and A. Ziifle. Man-

aging uncertainty in spatial and spatio-temporal data. In IEEE 30th International Conference
on Data Engineering, Chicago, ICDE 2014, IL, USA, March 31 - April 4, 2014, pages 1302—
1305, 2014.

. E. Emerson. Temporal and modal logic. In Handbook of Theoretical Computer Science,

Volume B: Formal Models and Sematics (B), 1990.

. T. Emrich, H.-P. Kriegel, N. Mamoulis, M. Renz, and A. Ziifle. Indexing uncertain spatio-

temporal data. In Proc. CIKM, pages 395-404, 2012.

. T. Gindele, S. Brechtel, and R. Dillmann. Learning driver behavior models from traffic

observations for decision making and planning. /EEE Intell. Transport. Syst. Mag., 7(1):69—
79, 2015.

R. H. Giiting and M. Schneider. Moving Objects Databases. Morgan Kaufmann, 2005.

J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and A. H. Byers. Big
data: The next frontier for innovation, competition, and productivity. McKinsey & Company
Report, May 2009.

F. Parisi and J. Grant. Repairs and consistent answers for inconsistent probabilistic spatio-
temporal databases. In Scalable Uncertainty Management, pages 265-279. Springer, 2014.
A. Parker, V. Subrahmanian, and J. Grant. A logical formulation of probabilistic spatial
databases. Knowledge and Data Engineering, IEEE Transactions on, 19(11):1541-1556,
2007.

E. Pitoura and G. Samaras. Locating objects in mobile computing. IEEE Transactions on
Knowledge and Data Engineering (TKDE), 13(4), 2001.

K. Rozier and M. Vardi. Ltl satisfiability checking. In Automated Technology for Verification
and Analysis, 2011.

J. Schiller and A. Voisard. Location-Based Services. The Morgan Kaufmann Series in Data
Management Systems, 2004.

J. Wijsen. Database repairing using updates. ACM Trans. Database Syst., 30(3), 2005.

B. Zhang and G. Trajcevski. The tale of (fusing) two uncertainties. In Proceedings of the
22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information
Systems, Dallas/Fort Worth, TX, USA, November 4-7, 2014, pages 521-524, 2014.

