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1. INTRODUCTION AND MOTIVATION

Miniaturization of computing devices and advances in wireless communica-
tion and sensor technology are some of the forces that are propagating com-
puting from the stationary desktop to the mobile outdoors. Important classes
of new applications that will be enabled by this revolutionary development
include location-based services, tourist services, mobile electronic commerce,
and the digital battlefield [Brundick and Hartwig 1997; Chamberlain 1995;
Pitoura and Samaras 2001; Want and Schlidt 2001]. Many existing applications
will also benefit from this development: transportation and air traffic control,
weather forecasting, emergency response, mobile resource management, and
mobile workforce [Hartwig et al. 1996; Hightower and Borrielo 2001]. Location
management, that is, the management of transient location information, is an
enabling technology for all these applications. It is also a fundamental compo-
nent of other technologies such as fly-through visualization, context awareness,
augmented reality, cellular communication, and dynamic resource discovery.

Database researchers have addressed some aspects of the problem of model-
ing and querying the location of moving objects. The largest efforts were made
in the area of access methods. Aside from purely spatial (Gaede and Günther
[1998] surveyed 50+ structures) and temporal databases [Tansel et al. 1993],
there are several recent results which tackle various problems of indexing
spatio-temporal objects and dynamic attributes [Agarwal et al. 2000; Kollios
et al. 1999a, 1999b; Pfoser et al. 1999; Saltenis et al. 2000; Tayeb et al. 1998;
Theodoridis et al. 1999a, 1999b]. Representing and querying the location of
moving objects as a function of time is introduced in Sistla et al. [1997], and
[Wolfson et al. 1998, 1999] addressed policies for updating and modeling impre-
cision and communication costs. Modeling and querying location uncertainties
due to sampling and GPS imprecision was presented in Pfoser and Jensen
[1999]. Algebraic specifications of a system of abstract data types, their con-
structors and a set of operations were given in Erwig et al. [1998], Forlizzi et al.
[2000], and Güting et al. [2000].

In this article we deal in a systematic way with the issue of uncertainty of the
trajectory of a moving object. Uncertainty is an inherent aspect in databases
which store information about the location of moving objects. Due to continuous
motion and network delays, the database location of a moving object will not
always precisely represent its real location. Unless uncertainty is captured in
the model and the query language, the burden of factoring uncertainty into
answers to queries is left to the user.

Traditionally, the trajectory of a moving object was modeled as a polyline
in three-dimensional space (two dimensions for geography, and one for time).
In this article, in order to capture uncertainty we model the trajectory as a
cylindrical volume in 3D. Typically, spatio-temporal range queries ask for the
objects that are inside a particular region, during a particular time interval.
However, for the moving objects one may query the objects that are inside
the region sometime during the time interval, or for the ones that are always
inside during the time interval. Similarly, given the uncertainty of the objects
whereabouts, one may query the objects that are possibly inside the region or
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the ones that are definitely there. For example, a trucking company may be
interested in a query like:

Q1: “Retrieve the current location of the delivery trucks that will possibly be
inside a region R, sometime between 3:00PM and 3:15PM.”

As another example, a military analyst may be concerned with:

Q2: “Retrieve the number of tanks which will definitely be inside the region R
sometime between 1:30PM and 1:45PM.”

and a police dispatcher may want to:

Q3: “Retrieve the squad cars which will possibly be inside the region R, always
between 2:30AM and 2:40AM.”

We provide the syntax of the operators for spatio-temporal range queries with
uncertainty, and their processing algorithms. It turns out that most of these
algorithms have a strong geometric flavor.

The model and the operators that we introduce in this paper have been
implemented and integrated in our DOMINO system [Trajcevski et al. 2002a;
Wolfson et al. 2002].

When implementing a real-life application, one needs to consider the exist-
ing, commercially available, technology. Due to the recent trend for supporting
universal applications, commercial Object-Relational Database Management
Systems (ORDBMSs) are now offering new complex data types, inheritance,
user-defined routines which implement operators/methods over the user-
defined types and various extensions to SQL ([Carey et al. 1999; Oracle Corpo-
ration 2000]). In particular, IBM’s DB2 Spatial Extender [Davis 1998], Oracle’s
Spatial Cartridge [Oracle Corporation 2000], and Informix Spatial DataBlade
[Team 1999] provide several two-dimensional (2D)—spatial types (e.g., line,
polyline, polygon, . . . ) and include a set of predicates (e.g., intersects, contains)
and functions for spatial calculations (e.g., distance). The ability to employ a
mature technology brings the benefits of scalability and usage of tested and op-
timized components; however, extending it toward new problem domains is al-
ways a welcome challenge. We implemented our operators as UDFs in Oracle9i
as part of our DOMINO system. We conducted several experiments in order to
determine values for parameters that are of interest in a practical application.
For example, we generated over 1000 trajectories using a map of Chicagoland
and analyzed their average size—approximately 7.25 line segments/mi. Thus,
for fleets of thousands of vehicles the trajectories database can indeed be stored
in main memory. We also experimented with some implementation alternatives
and we conducted real-drive testing of the (impact of the) uncertainty model
on the updates of the trajectory. Thus, we demonstrated that our approach can
be implemented on top of off-the-shelf ORDBMSs and gained some beneficial
practical experiences.

Throughout this article we address both “sides of the coin”—the theoretical
aspects of the impact of the uncertainty of the moving object’s whereabouts,
as well as some practical aspects of incorporating it in a real application. Our
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main contributions can be summarized as follows:

(1) We introduce a trajectory model and its construction based on electronic
maps.

(2) We present a model of the uncertainty associated with the moving object’s
trajectory.

(3) We introduce a set of operators for querying trajectories with uncertainty.
We provide both linguistic constructs and processing algorithms, and we
analyze the complexity of each algorithm.

(4) We address the issues of incorporating our model in a real system and we
present some experimental observations of practical significance for appli-
cations which deal with moving objects management.

The rest of the article is structured as follows. In Section 2 we define the
model of a trajectory and show how it can be constructed based on electronic
maps. Section 3 defines the uncertainty concepts for a trajectory. In Section 4
we present the impact of incorporating the uncertainty in the trajectory model.
We give the syntax and the semantics of the new operators for querying tra-
jectories with uncertainty and illustrate the relationships that exist among
them. Section 5, the longest one of this article, is the procedural counterpart of
Section 4 and it provides the theoretical analysis of the algorithms for process-
ing our operators. In Section 6, on the other hand, we discuss practical imple-
mentation issues and present some experimental observations for the database
server part of the DOMINO system. Section 7 positions the article with respect
to the relevant works and Section 8 gives the concluding remarks and outlines
the directions for future work. For clarity of presentation, we have moved the
lengthier proofs and calculations to the Appendix.

2. REPRESENTING AND CONSTRUCTING THE TRAJECTORIES

In this section we define our model of a trajectory, and we describe how to
construct it from the data available in electronic maps. We also introduce the
basic terminology which will be used in the rest of this article.

2.1 Basic Definitions

In order to capture the spatio-temporal nature of a moving object, we use the
following:

Definition 2.1. A trajectory of a moving object is a polyline in three-
dimensional space (two-dimensional geometry, plus time), represented as a
sequence of points (x1, y1, t1), (x2, y2, t2), . . . , (xn, yn, tn) (t1 < t2 < · · · < tn).
For a given trajectory T , its projection on the XY plane is called the route of
T . The object is at (xi, yi) at time ti, and during each segment [ti, ti+1], it is
assumed to move along a straight line from (xi, yi) to (xi+1, yi+1) at a constant
speed.

A trajectory defines the location of a moving object as an implicit function of
time, and the speed of the moving object along the line segment between (xi, yi)
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and (xi+1, yi+1) can be calculated as

vi =
√

(xi+1 − xi)2 + ( yi+1 − yi)2

ti+1 − ti
.

Definition 2.2. Given a trajectory T , the expected location of the object at a
point in time t between ti and ti+1 (1 ≤ i < n) is obtained by a linear interpolation
between (xi, yi) and (xi+1, yi+1).

Note that a trajectory can represent both the past and future motion of ob-
jects. As far as future time is concerned, one can think of the trajectory as a
set of points describing the motion plan of the object. Namely, we have a set of
points that the object is going to visit, and we assume that between the points
the object is moving along the shortest path. Given an electronic map, along
with the beginning time of the object’s motion, we construct a trajectory as a
superset of the set of the given—“to-be-visited”—points. In order to explain how
we do so, we need to define an electronic map (or a map, for brevity).

Definition 2.3. A map is a graph, represented as a relation where each
tuple corresponds to a block with the following attributes:

—Polyline: Each block is a polygonal line segment. Polyline gives the sequence
of the endpoints: (x1, y1), (x2, y2), . . . , (xn, yn).

—Length: Length of the block.
—Fid: The block id number.
—Drive Time: Typical drive time from one end of the block to the other, in

minutes.
—Level: An integer value denoting a relative level of a block.
—Plus, among others, a set of geo-coding attributes which enable translating

between a (x, y) coordinate and an address, such as “1030 North State St.”:
(e.g., – L f add: Left side from street number.)

Such maps are provided by, among others, Geographic Data Technology1

(GDT) Co. [2000]. An intersection of two streets corresponds to the endpoint of
the four block-polylines. On the other hand, the intersections among blocks in
points different from the blocks’ endpoints can only occur if the blocks are at
different levels (e.g., a highway overpassing a regular street). In other words,
if two blocks intersect, then they are at different levels.

The concepts are illustrated in Figure 1, which gives an example of four blocks
and their respective attributes. Observe that three of the blocks intersect at the
point C and they are all at Level 0. On the other hand, the block MN at Level
1 overpasses the block ABC.

The route of a moving object O is specified by giving the starting address or
(x, y) coordinate, namely, the start point; the starting time; and the destina-
tion address or (x, y) coordinate, namely, the end point. An external routine,
available in most Geographic Information Systems, which we assume is given
a priori, computes the shortest cost (distance or travel-time) path in the map

1Website: www.geographic.com.
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Fig. 1. Blocks in a map.

Fig. 2. Trajectory and its construction based on a route and speed profiles.

graph. This path, denoted P (O), is a sequence of blocks (edges), that is, tu-
ples of the map. Since P (O) is a path in the map graph, the endpoint of one
block polyline is the beginning point of the next block polyline. Thus, the route
represented by P (O) is a polyline denoted by L(O). Given that the trip has a
starting time, we compute the trajectory by computing for each straight line
segment on L(O) the time at which the object O will arrive to the point at the
end of the segment (cf. Trajcevski et al. [2002b]). For this purpose, the only rele-
vant attributes of the tuples in P (O) are Polyline and Drive Time. However, the
Drive Time attribute in the available maps is static, in the sense that it does
not consider the different speed patterns within a period of time, say, a day.
Clearly, the objects will move more slowly during the rush hours as opposed to
nonrush hours. Therefore, we need to take into consideration an attribute like
Speed Profile, the values of which can be obtained by monitoring the traffic.
The only modification is that now we need to employ a time-dependent version
of the shortest cost routine, similar in spirit to the one presented in Dreyfus
[1969] (essentially, an A∗ extension of Dijkstra’s algorithm), where the cost of
an edge in a graph depends on the start time to travel along that edge.

The concepts are illustrated in Figure 2. Observe how the moving object
enters two different speed profiles while traveling along the route segments BC,
CD, and DE. Thus, a trajectory may have more than one segment corresponding
to a given route segment.
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Fig. 3. Components of the DOMINO system.

Observe that a trajectory can be constructed based on past motion. Specif-
ically, consider a set of 3D points (x1, y1, t1), (x2, y2, t2), . . . , (xn, yn, tn) which
were transmitted by a moving object periodically, during its past motion. One
can construct a trajectory by first “snapping” the points on the road network,
then simply connecting the snapped points with the shortest path on the map.

Finally, let us point out that the proposed model of the trajectory can be repre-
sented as a user-defined type (UDT) in an ORDBMS. We define the trajectory
as a row type LIST of point, which is another row type having X,Y, and T at-
tributes. Thus, we have a schema for representing moving objects trajectories

MOD(oid,trajectory,...other static attributes),

where the oid is a unique identifier assigned for each moving object and the tra-
jectory attribute is as described above. The “...other static attributes...”
may include, for example, year, make, model, mileage, etc.

Figure 3 gives a “birds-eye” view of the main modules of the DOMINO system
[Trajcevski et al. 2002a; Wolfson et al. 2002]. There are two basic categories of
users of the system: the mobile ones, which are assumed to have some minimal
processing power on-board the moving vehicle (e.g., a PDA); and “static” ones,
which access the system through a Web browser. Each user can specify the start-
time, the start-location, and the end-location for the trip either by entering
the address on the PDA or by clicking the locations on the map (for a Web
browser interface), and the server will generate the trajectory, as we already
explained, which will be transmitted to the user. The trajectories are stored
in the MOD server module, which constitutes the database that is used for
answering queries. The DOMINO Application Server provides several services
(e.g., an interface for the query specification for the users, regeneration of the
future portion of the trajectories upon updates, etc.). As illustrated in Figure 3,
the operators that we introduce in this article are part of the MOD server.
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Fig. 4. Uncertainty area of a trajectory.

3. UNCERTAINTY CONCEPTS FOR TRAJECTORIES

In this section we give a formal presentation of the uncertainty model of a
trajectory.

An uncertain trajectory is obtained by associating an uncertainty threshold
r with each line segment of the trajectory. For a given motion plan, the line
segment together with the uncertainty threshold constitutes an “agreement”
between the moving object and the server. The agreement specifies the follow-
ing: the moving object will update the server if and only if it deviates from its
expected location (according to the trajectory) by r or more. How does the mov-
ing object compute the deviation at any point in time? Its on-board computer
receives a GPS update every 2 s, so it knows its actual location. Also, it has
the trajectory, so by interpolation it can compute its expected location at any
point in time. The deviation is simply the distance between the actual and the
expected location.

Observe that, due to the inherent imprecision of the GPS, the uncertainty can
be associated with the past trajectories of the moving objects, when constructing
them as specified in Section 2.

Definition 3.1. Let r denote a positive real number and T denote a trajec-
tory between the times t1 and tn. An uncertain trajectory UTr is the pair (T, r).
r is called the uncertainty threshold.

For each point (x, y , t) along T , its r-uncertainty area (or the uncertainty
area for short) is a horizontal disk (i.e., the circle and its interior) with radius
r centered at (x, y , t), where (x, y) is the expected location at time t ∈ [t1, tn].

Definition 3.1 is illustrated in Figure 4.
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Fig. 5. Possible motion curve and trajectory volume.

Note that our model of uncertainty is a little simpler than the one proposed
in Pfoser and Jensen [1999]. There, the uncertainty associated with the location
of an object traveling between two endpoints of a line segment was an ellipse
with foci at the endpoints.

Definition 3.2. Let UTr = (T, r) be an uncertain trajectory between t1 and
tn. A Possible Motion Curve PMCT of T is any continuous function fPMCT :
Time → R2 defined on the interval [t1, tn] such that for any t ∈ [t1, tn], the
3D point ( fPMCT (t), t) is inside the uncertainty area of the expected location at
time t.

Intuitively, a possible motion curve describes a possible route with its associ-
ated times, which a moving object may take, without generating an update. In
other words, a moving object need not update the database as long as it is on
some possible motion curve of its uncertain trajectory (see Figure 5). We will
refer to the XY projection of a possible motion curve as a possible route.

Definition 3.3. Given an uncertain trajectory UTr = (T, r) and two end-
points (xi, yi, ti), (xi+1, yi+1, ti+1) ∈ T , the trajectory volume of UTr between ti
and ti+1 is the union of all the disks with radius r centered at the points along
the line segment (xi, yi, ti), (xi+1, yi+1, ti+1). The XY projection of the trajectory
volume between ti and ti+1 is called an uncertainty segment. The trajectory vol-
ume of UTr is the union of all the trajectory volumes between t1 and tn, where
t1 and tn denote the begin and end time-values of T , and the uncertainty zone
of UTr is the union of all the uncertainty segments between t1 and tn.

Definitions 3.2 and 3.3 are illustrated in Figure 5.

ACM Transactions on Database Systems, Vol. 29, No. 3, September 2004.



472 • G. Trajcevski et al.

Viewed in 3D, a trajectory volume between t1 and tn is a sequence of volumes,
each bounded by a sheared cylinder. The axis of each sheared cylinder coincides
with the respective straight line segment of the trajectory, and the bases are
the disks with radius r in the horizontal planes ti and ti+1 (1 ≤ i < n). Observe
that the sheared cylinder is different from a tilted cylinder. The intersection
of a tilted cylinder with a horizontal plane (parallel to the XY plane) yields
an ellipse, whereas the intersection of our sheared cylinder with such a plane
yields a circle. Let vx

i and v y
i denote the x and y components of the velocity of

a moving object along the ith segment of the route (i.e., between (xi, yi) and
(xi+1, yi+1)). Given the Definitions 3.1 and 3.3, the ith segment of the trajectory
volume can be characterized by the following set of inequalities:

ti ≤ t ≤ ti+1, (1)
(
x − (

xi + vx
i · t

))2 + (
y − (

yi + v y
i · t

))2 ≤ r2. (2)

As a straightforward consequence of the Definitions 3.2 and 3.3, we have the
following:

THEOREM 3.4. Let UTr(T,r) denote an uncertain trajectory and let VTr denote
its trajectory volume. If PMCT is a possible motion curve of T, then PMCT ⊂ VTr.

We conclude this section with the observation that all we need to represent
the uncertain trajectories in an ORDBMS is to extend the schema given in
Section 2 with one more attribute uncertainty of type real. Thus, we have:

MOD(oid,trajectory,uncertainty,...other static attributes...).

4. QUERYING MOVING OBJECTS WITH UNCERTAINTY

In this section we introduce two categories of operators for querying moving
objects with uncertainty. The first category, discussed in Section 4.1, deals with
point queries and consists of two operators which pertain to a single trajectory.
The second category, discussed in Section 4.2, is a set of six (Boolean) predicates
which give a qualitative description of a relative position of a moving object
with respect to a region, within a given time interval. Thus, each one of these
operators corresponds to a spatio-temporal range query.

4.1 Point Queries

The two operators for point queries are defined as follows:

—Where At(trajectory T, time t)—returns the expected location on the route of
T at time t.

—When At(trajectory T, location l)—returns the times at which the moving ob-
ject whose trajectory is T, is expected to be at location l. The answer may be
a set of times, in case the moving object passes through a certain point more
than once. If the location l = (xl , yl ) is not on the route of the trajectory T ,
we find the set of all the points C on this route which are closest to l . The
function then returns the set of times at which the object is expected to be at
each point in C. Let us point out that, in case the object is stationary during
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some time-interval, its trajectory is a vertical line segment. In such case(s),
the When at operator may also return time-interval(s).

The algorithms which implement the point query operators are straightfor-
ward. The Where at operator can be implemented in O(log n) by a simple binary
search (note that, by Definition 2.1, the points of the trajectory T are sorted on
their time dimension), where n is the number of line segments of the trajectory.
As for the When at operator, it can be implemented in linear time—O(n), by
examining each line segment of a trajectory.

As we will demonstrate in Section 6, any reasonable trajectory has no more
than several thousand line segments and it can be stored in main memory
which, in turn, implies that the processing time of each one of the above oper-
ators is acceptable.

4.2 Operators for Spatio-Temporal Range Queries

The second category of operators is a set of conditions (i.e., Boolean predicates).
Each condition is satisfied if the moving object is inside (which is the prop-
erty/predicate of interest) a given region R, during a given time-interval [tb, te].
Clearly, this corresponds to a spatio-temporal range query. But then, why more
than one operator? The answer is twofold: (1) The location of the object changes
continuously; hence one may ask if the condition is satisfied sometime or al-
ways within [tb, te]; (2) due to the uncertainty, the object may possibly satisfy
the condition or it may definitely do so, at a particular time-point t ∈ [tb, te].
If there exists some possible motion curve PMCT which at the time t is inside
the region R, there is a possibility that the moving object will take PMCT as
its actual motion and will be inside R at t. However, this need not be the case,
since the moving object may have chosen another possible motion curve as its
actual motion. Similarly, if every possible motion curve PMCT is inside the re-
gion R at the time t, then regardless of which one describes the actual object’s
motion, the object is guaranteed to be inside the region R at time t. Given the
trajectory volume VTr of the trajectory T as a domain (recall that, by Theorem
1, VTr is, in a sense, the closure of all the possible motion curves of T ), the
meaning of possibly corresponds to ∃PMCT ⊂ VTr and the meaning of definitely
corresponds to ∀PMCT ⊂ VTr.

Thus, we have two domains of quantification, with two quantifiers in each.
Combining all of them, since the order of quantification matters, yields 22·2! = 8
operators.

Now we proceed with the declarative specifications of the operators. Through-
out this section, we will assume that the region R is a connected, closed, and
bounded subset of the XY plane.

In what follows, we let PMCT denote a possible motion curve, of a given
uncertain trajectory UTr = (T, r).

—Possibly Sometime Inside(T, R, tb, te). This is true iff there exists a possible
motion curve PMCT and there exists a time t ∈ [tb, te] such that PMCT , at
the time t, is inside the region R. In other words:

(∃PMCT )(∃t)Inside(R, PMCT , t).
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Fig. 6. Possible positions of a moving point with respect to region Ri .

Intuitively, the truth of the predicate means that the moving object may
take a possible route, within its uncertainty zone, such that the particular
possible route will intersect the query region R between the times tb and te.

—Sometime Possibly Inside(T, R, tb, te). This is true iff there exists a time
t ∈ [tb, te] and a possible motion curve PMCT of the trajectory T which, at
the time t, is inside the region R.

Observe that this operator is semantically equivalent to the Possi-
bly Sometime Inside one, that is, (∃PMCT )(∃t)Inside(R, PMCT , t) ≡ (∃t)
(∃PMCT )Inside(R, PMCT , t). Similarly, it will be clear that the predicate
Definitely Always Inside is equivalent to Always Definitely Inside. There-
fore, in effect, we have a total of six operators for spatio-temporal range
queries with uncertainty.

—Possibly Always Inside(T, R, tb, te). This is true iff there exists a possible
motion curve PMCT of the trajectory T which is inside the region R for every
t in [tb, te]. In other words:

(∃PMCT )(∀t)Inside(R, PMCT , t).

Now, the motion of the object is such that it may take (at least one) specific
possible route, which is entirely contained within the region R, during the
whole query time interval.

—Always Possibly Inside(T, R, tb, te). This is true iff for every time value t ∈
[tb, te], there exists some (not necessarily unique) PMCT which is inside (or
on the boundary of) the region R at t. In other words:

(∀t)(∃PMCT )Inside(R, PMCT , t).

Figure 6 illustrates the XY projection of a plausible scenario for each of the
three predicates that we introduced. Dashed lines indicate the possible motion
curve(s) due to which the predicates are satisfied; solid lines indicate the routes
and the boundaries of the uncertainty zone.

Recall that, in First-Order Logic2 [Genesereth and Nilsson 1987], given
a predicate P , a constant A and the variables x and y , regardless of the

2For clarity of presentation, we have slightly abused the standard terminology of Logic Program-
ming where lower case letters denote variables and Upper case letters denote constants. In our
settings, it should be clear that the region R is a constant given in the query, and that PMCT and
t are variables from their respective domains.
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interpretation domains, the following is a tautology:

(∃x)(∀ y)P (A, x, y) ⇒ (∀ y)(∃x)P (A, x, y). (3)

Thus, the predicate Possibly Always Inside is stronger than Always Possibly
Inside, in the sense that whenever Possibly Always Inside is true, Always
Possibly Inside is guaranteed to be true.

Note that the converse, in general, is not true. As illustrated in Figure 6,
the predicate Always Possibly Inside may be satisfied due to two or more pos-
sible motion curves, none of which satisfies Possibly Always Inside by itself.
However, as the next theorem indicates, this situation cannot occur when the
region R is convex.

THEOREM 4.1. Let UTr = (T, r) denote an uncertain trajectory, and tb and te
denote two time values. If R is convex, then Possibly Always Inside(T,R,tb,te) is
true iff Always Possibly Inside(T,R,tb,te) is true.

PROOF. (⇒) A straightforward consequence of (3) (R need not be convex for
this case).

(⇐) Assume now that the predicate Always Possibly Inside is satisfied. Let
(xI , yI , tI ) denote the first trajectory point after tb. In other words, the uncer-
tainty area centered at (xI , yI , tI ) is the ending base of (the portion of) the first
segment of the trajectory volume between tb and te and the beginning base of
the next (second) segment of the trajectory volume between tb and te. Let Sb
denote the set of all the possible motion curves of T such that fPMC(tb) ∈ R.
Since Always Possibly Inside is satisfied, Sb is not empty and it may have un-
countably many elements. Let PMCT

b denote one possible motion curve from Sb

and let (xSb, ySb, tb) be a point on PMCT
b . For similar reasons, there must exist a

set, denote it SI , of possible motion curves, such that fPMC(tI ) ∈ R. Let PMCT
I

denote one of those curves (again, there may be uncountably many of them)
and let (xSI , ySI , tI ) be a point on PMCT

I .
Since R is convex, and both (xSb, ySb) ∈ R and (xSI , ySI ) ∈ R, it follows

that the line segment (xSb, ySb)(xSI , ySI ) will be entirely in R. Also, since each
segment of the trajectory volume is a convex 3D body, it follows that the 3D line
segment (xSb, ySb, tb)(xSI , ySI , tI ) is entirely in the segment of the trajectory
volume between tb and tI . This straight line segment is the desired possible
motion curve between tb and tI . By repeating the argument for every segment
between tI and te we can construct a possible motion curve which is the witness
of satisfying the Possibly Always Inside predicate.

The other three predicates are specified as follows:

—Always Definitely Inside(T, R, tb, te). This is true iff at every time t ∈ [tb, te],
every possible motion curve PMCT of the trajectory T is in the region R. In
other words:

(∀t)(∀PMCT )Inside(R, PMCT , t).

Thus, no matter which possible motion curve the object takes, it is guaranteed
to be within the query region R throughout the entire interval [tb, te]. Note
that this predicate is semantically equivalent to Definitely Always Inside,
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Fig. 7. Definite positions of a moving point with respect to region Ri .

that is:

(∀t)(∀PMCT )Inside(R, PMCT , t) ≡ (∀PMCT )(∀t)Inside(R, PMCT , t).

—Definitely Sometime Inside(T, R, tb, te). This is true iff for every possible
motion curve PMCT of the trajectory T , there exists some time t ∈ [tb, te] in
which the particular motion curve is inside the region R. In other words:

(∀PMCT )(∃t)Inside(R, PMCT , t).

Intuitively, no matter which possible motion curve within the uncertainty
zone is taken by the moving object, it will intersect the region at some time t
between tb and te. However, the time of the intersection may be different for
different possible motion curves.

—Sometime Definitely Inside(T, R, tb, te). This is true iff there exists a time
point t ∈ [tb, te] at which every possible route PMCT of the trajectory T is
inside the region R. In other words:

(∃t)(∀PMCT )Inside(R, PMCT , t).

Satisfaction of this predicate means that no matter which possible motion
curve is taken by the moving object, at the specific time t the object will be
inside the query region.

The intuition behind the last three predicates is depicted in Figure 7.
Again we observe that the predicate Sometime Definitely Inside is stronger

than Definitely Sometime Inside, as a consequence of the properties of First-
Order Logic (c.f. (3)). However, the above two predicates are not equivalent when
the region R is convex. An example demonstrating this is given in Figure 7(b)—
R2 satisfies Definitely Sometime Inside, but it does not contain an entire un-
certainty area for any time point and, consequently, it does not satisfy Some-
time Definitely Inside.

The relationships among the predicates are depicted in Figure 8, where the
arrow denotes an implication.

Given the set of operators that we defined, one can use an extension of SQL
in an ORDBMS to pose the queries that we presented in Section 1. Recall, for
example:

Q3: “Retrieve the squad cars which will possibly be inside the region R, always
between 2:30AM and 2:40AM.”
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Fig. 8. Relationships among the spatio-temporal predicates.

If we assume that the dispatcher has a MOD available, the query can be stated
as

SELECT oid
FROM MOD
WHERE Possibly_Always_Inside(MOD.trajectory,R,2:30,2:40)

Even more complex query conditions can be expressed by composition of the
operators. Consider, for example:

Q4: “Retrieve all the objects which are possibly within a region R, always between
the earliest3 time when the object A arrives at locations L1 and the latest time
when it arrives at location L2.”

This query can be expressed as

WITH Earliest(times) AS
SELECT When_At(trajectory,L_1)
FROM MOD
WHERE oid = A

WITH Latest(times) AS
SELECT When_At(trajectory,L_2)
FROM MOD
WHERE oid = A

SELECT M1.oid
FROM MOD as M1
WHERE Possibly_Always_Inside(M1.trajectory,R,

MIN(Earliest.times),
MAX(Latest.times))

In real-life applications, one cannot expect that a casual user will be familiar
with the SQL syntax and it is natural to expect that there will be some form of
a user interface available. We defer that discussion to Section 6.

3Observe that a given object may pass through a given point along its route more than once.
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5. PROCESSING OF THE OPERATORS

In this section, for each of the operators introduced in Section 4, we identify the
topological properties which are necessary and sufficient conditions for their
truth. Subsequently, we use these topological properties to devise the process-
ing algorithms and we analyze their complexity. It turns out that, for most of
the algorithms, we can use concepts which are well studied in Computational
Geometry and Motion Planning. Thus, we first present the preliminaries in the
next subsection. Then we address each particular operator (and respective al-
gorithm) in separate subsections. Finally, we conclude this section with some
observations about the applicability of the processing algorithms for a special
class of spatio-temporal range queries.

For clarity of presentation, we slightly change the order of the algorithms
which implement the operators with respect to the order of their defini-
tions, as given in Section 4, which was based on their “declarative similarity.”
Their order in this section reflects the similarity of the ideas used in their
processing.

5.1 Preliminaries

We now present two important and well-known problems from computational
geometry—the red-blue intersection [Basch et al. 2003; Bentley and Ottmann
1979; Chazelle and Edelsbrunner 1992; Palazzi and Snoeyink 1994] and the
Minkowski sum [Agarwal et al. 2002; O’Rourke 2000], and we discuss how
their instances apply to our particular problem domain. Subsequently, we in-
troduce the concept of the Minkowski difference, which will be used in two of
the algorithms for processing the operators.

5.1.1 Red-Blue Intersection Problem. The red-blue intersection problem is
a variant of the problem to detect and report the set of all intersections among
a given set of straight line segments, one of the oldest studied problems in
Computational Geometry (cf. O’Rourke [2000]). In the red-blue intersection
setting, the set of line segments is divided into two disjoint subsets red and
blue, and one is interested only in intersections among line segments of different
colors (i.e., the “purple” points [Basch et al. 2003]). One of the features that is
common for all line segment intersection problems is that the complexity of the
algorithms for solving them is output-sensitive, that is, besides the size of the
input, it also depends on the number of the intersections. There are several
known variations of the red-blue intersection problem, based on the properties
of the segments in each of the input sets (e.g., allowing self-intersections among
the segments of same color or not) and based on whether counting or actual
reporting of the purple intersections is required. Each variation yields different
complexity bounds on the processing algorithms [Agarwal 1990a, 1990b; Basch
et al. 2003; Mairson and Stolfi 1988; Chazelle and Edelsbrunner 1992; Palazzi
and Snoeyink 1994].

In our settings, one can clearly separate the segments of the (route of a) given
trajectory, say, blue ones, from the edges of the query polygon R, say, red ones,
and apply appropriately modified versions of the existing results when needed.
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Fig. 9. Minkowski sum of a convex polygon with a disk.

5.1.2 Minkowski Sum. Given two sets in R2, say P1 and P2, their
Minkowski sum, denoted by P1 ⊕ P2, is defined as P1 ⊕ P2 = {p1 + p2 | p1 ∈ P1,
p2 ∈ P2}, where the summation is of vector p1 with vector p2 [Agarwal et al.
2002].

In our setting P1 corresponds to the query region R and P2 corresponds to
the uncertainty disk with center at the origin and radius r, denote it dr , which
is illustrated in Figure 9.

—If R is a convex polygon having k vertices, then we can construct the
Minkowski sum R ⊕ dr in linear time O(k) by translating/shifting each edge
of R toward R ’s exterior, in a direction perpendicular to their original posi-
tions, and connecting the segments by circular arcs with radius r, centered
at the vertices of R. Clearly, the border of the Minkowski sum will consist of
an alternating sequence of k straight line segments and k circular arcs.

—If R is a simple, nonconvex polygon (subsequently also called a concave poly-
gon), the Minkowski sum R ⊕ dr is not necessarily simply connected any
more. As the example in Figure 10 shows, extending the border of a concave
polygon might lead to self-intersections of the border, which, in turn, might
create holes in the extended polygon.

Before we discuss the construction of Minkowski sum for the case when R is
concave, we reiterate another well-known problem of computational geometry—
the triangulation (cf. O’Rourke [2000]). This is a special instance of the problem
of convex partitioning, where the goal is to partition a given concave polygon
into convex polygons. Quite a few algorithms have been proposed and, for the
most part, the tradeoffs are between the upper-bound on the complexity versus
the ease of implementation (e.g., the data structures needed) versus the mini-
mization of the size of the output. Triangulation, on the other hand, attempts
to partition a given polygon into triangles. If the polygon is convex, an obvious
O(k) approach is to draw the k −3 diagonals from a given vertex. However, this
is not feasible for concave polygons. Chazelle [1991] developed an algorithm
which achieves triangulation in O(k) time, but for our purposes we can use
a simple algorithm which runs in O(k log k) time (cf. O’Rourke [2000]). Es-
sentially, the algorithm sorts the vertices of the polygon according to one of the
axes, which takes O(k log k) time. Then, using the sorted vertices, we draw lines
perpendicular to the sorting axis to achieve trapezoidalization of the polygon.
Trapezoidalization is used to identify the monotone portions of the polygon,
each of which can be triangulated in linear time, with a total of O(k) triangles.
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Fig. 10. Minkowski sum of a concave polygon with a disk.

Now, one can compute the Minkowski sum for each of the triangles with dr
in a straightforward manner and their boundaries are simple Jordan curves,
which have the nice property that two of them intersect each other in at most two
points. Consequently, the number Inti

p of possible intersections of the boundary
curves in the union of the Minkowski sum of each triangle with dr , which exactly
corresponds to the boundary of R ⊕ dr , is Inti

p ≤ max(2, 6k − 24). Using the
results in Kedem et al. [1986], one can compute the contour (boundary) of the
union of the Minkowski sum of each triangle with dr in O(k log2 k).

Thus, in case R is bounded by a concave polygon, the Minkowski sum R ⊕dr
can be calculated in O(k log2 k).

5.1.3 Minkowski Difference. Now we introduce the “complementary opera-
tion” of the Minkowski sum, which we call the Minkowski difference of a polygon
R and a disk dr with radius r, and denote it by R  dr .

The set R ′ = R dr consists of the portion of the interior of R obtained after
removing from R the region “swept” by the disk dr as its center traverses along
the edges of R. One can describe the process of constructing the Minkowski
difference as moving each edge ei of R with the same speed in a direction
perpendicular to itself toward R ’s interior, and stopping the motion when it is
at distance r from its initial position. The adjacent edges which share a reflex
vertex will be connected with a circular arc with radius r, centered at their
common vertex.
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Fig. 11. Minkowski difference.

Figure 11 illustrates the process of constructing the Minkowski difference
and the deformations that can occur during the process, depending on the poly-
gon’s structure and the magnitude of r:

(1) Empty region. As illustrated by the right portion of Figure 11, in an extreme
case, for the polygon Rc the Minkowski difference may result in an empty
region.

(2) Split-event. As illustrated by the left portion of Figure 11, the Minkowski
difference of a region and a disk may result in two (or more) disjoint regions.
This occurs when a reflex vertex, like A3 in Figure 11, “splits” an edge, like
A8 A9, during the motion toward R ’s interior.

(3) Edge-event. Again, as illustrated by the left portion of Figure 11, some edges
may “vanish” during the process. This is the case with the edge A10 A1. The
reason is that the radius r of the disk dr is larger than the perpendicu-
lar distance between the edge A10 A1 and the point of intersection of the
bisectors of the angles at A10 and A1 (point B1 in Figure 11).

The boundary of the Minkowski difference Rdr of a nonconvex simple poly-
gon consists of a sequence of line segments and circular arcs. As the example in
Figure 12 shows, the boundary points between these segments and arcs (illus-
trated with thiner solid line) lie on the edges of the Voronoi-diagram computed
for the vertices and open edges of the given polygon. This Voronoi-diagram is a
superset of the well-known medial axis of the polygon, as illustrated with the
dashed segments in Figure 12. The edges of the Voronoi-diagram are formed by

—bisectors between pairs of reflexive vertices of the given polygon,
—bisectors between pairs of edges of the given polygon,
—parabola segments determined by a reflexive vertex and an edge of the given

polygon.

The Voronoi-diagram and the medial axis of a simple (not necessarily convex)
polygon with k vertices can be computed in O(k) time, as has been shown by
Chin et al. [1999]. From the Voronoi diagram, one can extract in O(k) time the
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Fig. 12. Medial axis and the construction of the Minkowski difference.

Minkowski difference R  dr and also determine whether it is empty. Let us
point out that the algorithm presented in Chin et al. [1999] is interesting from
a theoretical point of view and, as the authors themselves mentioned, is not
practical. A more practical algorithm would require O(k log k) time.

If R is convex, the Minkowski difference can be constructed in a straightfor-
ward way in linear time.

5.2 Algorithms

Let tb and te be two time values denoting the begin and the end time-points
of the query. Taking time as a third dimension, the region R along with the
query time-interval [tb, te] can be represented as a prism PR in 3D space: PR =
{(x, y , t) | (x, y) ∈ R ∧ tb ≤ t ≤ te}. PR is called a query-prism. We will use VTr
to denote the trajectory volume of a given uncertain trajectory UTr = (T, r)
between tb and te and VTint to denote the 3D intersection of the trajectory volume
with the query prism—VTint = VTr ∩ PR . Let TXY denote the projection of the
trajectory T between tb and te on the XY plane (i.e., its route). Assume that
the trajectory (respectively its route) has n segments4 in the interval [tb, te] and
that the query polygon R has k edges and is represented as a sequence of its
vertices in a counter-clockwise order.

For the purpose of query processing, we assume that a 3D indexing scheme
is provided by the underlying ORDBMS, similar to the ones proposed in Pfoser
et al. [1999], Tayeb et al. [1998], and Vazirgiannis et al. [1998]. The insertion
of a trajectory is done by enclosing, for each trajectory, the respective trajectory

4Observe that this is a slight abuse of terminology since, as specified in Section 2, when constructing
a trajectory one may actually obtain more segments than its corresponding route.
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Table I. List of Symbols Used

T Trajectory between tb and te
TXY Route of the trajectory T
r Uncertainty radius
UTr(T, r) Uncertain trajectory of T
VTr Trajectory volume of UTr(T, r)
UZ Uncertainty zone of UTr(T, r)
R Query region (simple polygon)
PR Query prism (based in R)
VTint Intersection: VTr ∩ PR
VTsd Set-difference: VTr\PR
dr Disk with center in the origin and radius r
R ⊕ dr Minkowski sum
R  dr Minkowski difference

volume between ti and ti+1 in a minimum bounding box (MBB). During the fil-
tering stage we retrieve the trajectories which have at least one of their MBBs
intersecting with PR . Throughout the rest of this work we focus on the refine-
ment stage of the processing. For convenience, we summarize the terms that
we use and their definitions in Table I.

Now we proceed with algorithms for each of the operators. As it turns out,
if the query polygon R is convex, the complexities of many algorithms can be
significantly improved.

5.2.1 Possibly Sometime Inside. As a consequence of the definitions of the
predicates (cf. Section 4) and VTint introduced above, we have the following:

CLAIM 5.1. The predicate Possibly Sometime Inside is true iff VTint �= ∅
Based on Claim 5.1 the algorithm for processing the Possibly Sometime

Inside predicate can be specified as follows (recall that dr denotes a disk with
radius r):

Algorithm 5.2. (Possibly Sometime Inside(T, R, tb, te))
1. If TXY ∩ (R ⊕ dr ) = ∅
2. return false;
3. else
4. return true;

In other words, VTint is nonempty if and only if TXY intersects R ⊕ dr . Step 1
can be verified as follows. If some arbitrary endpoint (xi, yi) of the route is inside
R ⊕ dr , then clearly the intersection is not empty. Otherwise, one can simply
check whether any line segment of the route intersects a side of R ⊕ dr . If so,
the intersection is not empty.

For a concave polygon R having k vertices, the Minkowski sum R ⊕ dr can
be computed in O(k log2 k) time, and the endpoints as well as the line segments
of the route can be checked in O(n ·k) time, resulting in a total time complexity
of O(n · k + k log2 k).

If one can guarantee that the segments of the route do not intersect in interior
points, this time complexity can be improved to O((n+ k) log (n+ k) + k log2 k) =

ACM Transactions on Database Systems, Vol. 29, No. 3, September 2004.



484 • G. Trajcevski et al.

O(n log n+k log2 k), by using a plane-sweep algorithm.5 Nonintersection among
the blue segments can be guaranteed using the value of the Level attribute. If all
the segments have the same value for the Level attribute (as is the case, e.g.,
if none is an overpass), then they are guaranteed not to intersect in interior
points.

In the case where R is a convex polygon, its Minkowski sum R ⊕ dr does not
have to be computed beforehand, but parts of it can be constructed on the fly,
as needed. Then an endpoint or a line segment of the route can be checked in
O(log k) time, resulting in an O(n log k) total time complexity.

5.2.2 Always Possibly Inside. The satisfaction of the Always Possibly
Inside predicate can be determined based on the following:

CLAIM 5.3. Always Possibly Inside(T, R, tb, te) is true if and only if VTint �=
∅ for every t ∈ [tb, te].

The proof of Claim 5.3 is, again, a straightforward consequence of the definition
of the predicate.

Following is the algorithm for evaluating the predicate Always Possibly
Inside:

Algorithm 5.4. (Always Possibly Inside(T, R, tb, te))
1. If TXY lies completely inside R ⊕ dr

2. return true;
3. else
4. return false;

Checking if the route is entirely within R ⊕ dr between tb and te amounts to
checking whether

(1) there are no intersections between the segments of TXY and R ⊕ dr , and
(2) an arbitrary endpoint of TXY segments is in R ⊕ dr .

Again, the brute-force approach would yield a complexity of O(n·k+k log2 k),
and if the segments of the route are guaranteed not to intersect in interior
points, this time complexity again can be improved to O((n + k) log (n + k) +
k log2 k) = O(n log n+ k log2 k). If the polygon R is convex, all we need to verify
is that each end-point of TXY is inside R⊕dr and, due to convexity, it follows that
each segment is guaranteed to be entirely within R⊕dr . An observation similar
to the one used in the analysis of the predicate Possibly Sometime Inside is
applicable—detecting whether a point is inside R ⊕dr can done in O(log k), and
R⊕dr can partially be constructed on the fly, as needed. Thus, the complexity of
the algorithm for processing the Always Possibly Inside predicate is O(n log k)
when R is convex.

5One may observe that the algorithms in Agarwal [1990a, 1990b], Basch et al. [2003], Chazelle
and Edelsbrunner [1992], and Palazzi and Snoeyink [1994] assume that each of the inputs (red
and blue) consists of straight line segments only, and in our case the red set consists of both line
segments and circular arcs. The crucial observation is that there are no intersections among the
same color segments. In such settings, the worst-case complexities can be retained [Basch 2004].
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5.2.3 Definitely Always Inside. Recall that VTint = VTr∩ PR . Based on the
definition of the predicate, we have the following:

CLAIM 5.5. The predicate Definitely Always Inside(T,R,tb,te) is true if and
only if VTint = VTr, that is, VTr ⊆ PR.

As for the implementation of the predicate, we have the following:

Algorithm 5.6. Definitely Always Inside(T, R, tb, te)
1. For each line segment of TXY
2. If the uncertainty zone of the segment is not entirely contained in R;
3. return false and exit;
4. return true.

Step 2 above can be processed by checking if each segment of the route is
entirely contained within R ′ = R  dr . As we explained in Section 5.1.3, the
time complexity of the construction of Minkowski difference R ′ = R  dr is
O(k) (recall that R ′ may be empty). Thus, the time complexity of this algorithm
is O(n · k).

In case the polygon R is convex, R  dr is a convex polygon too, if it exists.
Hence, it suffices to check if each of the endpoints of the segments of TXY is
inside a convex polygon with O(k) edges. Thus, we get that the time complexity
is O(n log k + k).

5.2.4 Sometime Definitely Inside. The truth of this predicate can be veri-
fied by using the following:

CLAIM 5.7. Sometime Definitely Inside(T, R, tb, te) is true if and only if
VTint contains an entire horizontal disk with radius r, centered at some point
(x, y , t) ∈ T (t ∈ [tb, te]).

The proof of Claim 5.7 is a straightforward consequence of the definition
of the predicate and Theorem 1. An equivalent condition is that PR contains
an entire horizontal disk with radius r, centered at some point (x, y , t) ∈ T
(t ∈ [tb, te]).

The implementation of the predicate Sometime Definitely Inside is specified
by the following:

Algorithm 5.8. Sometime Definitely Inside(T, R, t1, t2)
1. For each straight line segment of TXY

2. If R contains a circle with radius r centered at some point on the segment;
3. return true and exit
4. return false

Execution of step 2 of the Algorithm 5.8 again requires construction of the
Minkowski difference R ′ = R  dr . If R ′ is “empty,” we know that the output
of Algorithm 5.8 is false. Otherwise, we need to check for the existence of an
intersection between R ′ and TXY. Checking every segment of TXY against every
segment of R ′ requires O(nk). If no intersection is found, it may be the case
that the entire TXY is contained within R ′, for which it suffices to check if at
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least one endpoint of an arbitrary segment of TXY is inside R ′. Thus, the time
complexity is O(n · k).

In case R is convex, the complexity of Algorithm 5.8 becomes O(n log k + k).
Again, in a manner similar to Algorithm 1 and Algorithm 2, we observe that

the respective complexities of Algorithms 3 and 4 can be improved even when R
is concave using the Level attribute. Specifically, if all the route segments have
the same value for the Level attribute, then the complexities of Algorithms 3
and 4 become O((n + k) log (n + k)).

5.2.5 Definitely Sometime Inside. Let VTsd denote the set-difference of
VTr and PR . Based on the definition of the predicate, we have the following:

CLAIM 5.9. Definitely Sometime Inside(T, R, tb, te) is true if and only if
VTsd = VTr\PR does not contain a possible motion curve between tb and te.

Before we proceed with presenting the algorithm for processing the predicate
Definitely Sometime Inside, we review some topological facts.

Connectivity of a topological set is commonly viewed as an existence of some
path between every pair of points in the set, using the following definition (c.f.
[Sutherland 1978]):

Definition 5.10. Given any two points a and b in a topological space S, a
path from a to b in S is any continuous map f : [0, 1] → S such that f (0) = a
and f (1) = b.

In order to apply these observations in our settings and toward derivation
of the algorithm for processing the Definitely Sometime Inside predicate, we
make use of the following theorem:

THEOREM 5.11. VTsd = VTr\PR is path-connected between tb and te, if and
only if there exists a possible motion curve PMCT between tb and te which is
entirely in VTsd.

PROOF. (See Appendix.)

The important consequence of Theorem 5.11 is that in order to ensure that
the predicate Definitely Sometime Inside is true, it suffices to demonstrate that
VTsd is not path-connected. This is what we use in the algorithm which pro-
cesses the Definitely Sometime Inside predicate.

Let UZ denote the uncertainty zone (the XY projection of VTr) between tb and
te. Let Cb and Ce denote the circles which form the boundaries of the uncertainty
areas at tb and te, respectively. Let UZin denote UZ with the interior of Cb and Ce
removed, and the outer half-circles of Cb and Ce also removed. Let C′

b and C′
e de-

note the inner half-circles of Cb and Ce. Also, let l1 and l2 denote the left and right
boundaries of UZin, with respect to the direction of the object’s motion along
the route. Clearly, each of l1 and l2 will consist of a “polyline-like” sequence of
line segments and circular arcs. The concepts are illustrated in Figure 13.

An important observation is that VTsd is path-connected between tb and te
if and only if there exists a path in UZ connecting a point of C′

b with a point of
C′

e which only consists of parts of the boundary of the query polygon R lying in
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Fig. 13. Processing of the Definitely Sometime Inside predicate.

the interior of UZ and/or parts of either l1 or l2 which are not contained in the
interior of R. Such a path cannot contain parts of both l1 and l2! This fact is
used in the following algorithm for processing the Definitely Sometime Inside
predicate.

Algorithm 5.12. Definitely Sometime Inside(T, R, tb, te)
1. If l1 or l2 do not intersect the interior of R

return false and exit
2. Else If

there exists a path in UZ between C′
b and C′

e which consists of either
2.1 part of the boundary of R contained in the interior of UZ

or
2.2 an alternating sequence of parts of the boundary of R contained in the interior

of UZ and parts of l1 not contained in the interior of R
or

2.3 an alternating sequence of parts of the boundary of R contained in the interior
of UZ and parts of l2 not contained in the interior of R

return false end exit
3. return true

The correctness of Algorithm 5.12 follows from Theorem 5.11 and the above
mentioned observation. The condition in line 2.1 covers the case when both l1
and l2 are contained in R, but there is a “channel” between them in UZ \R
which connects C′

b and C′
e. This implies an existence of a possible route com-

pletely inside UZ \R which, in turn, implies an existence of a possible motion
curve inside VTsd = VTr\PR . If l1 (respectively l2) is contained in R, but not l2
(respectively l1), and there is a path in UZ \R which connects C′

b and C′
e, then

this case is covered by the condition in line 2.3 (respectively 2.2).
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Figure 13 gives an illustration of the conditions stated in Algorithm 5.12.
Observe that in both examples, the regions marked as Q do not satisfy the
Definitely Sometime Inside predicate because there exists a path consisting of
parts of l1 and parts of the boundary of Q connecting C′

b and C′
e. The dashed

polyline in the right portion of Figure 13 illustrates a possible route which inval-
idates the conditions for the Definitely Sometime Inside predicate. However, in
both examples, the regions denoted by R satisfy the Definitely Sometime Inside
predicate.

Now we turn to the complexity analysis of the Algorithm 5.12. As usual, let n
denote the number of trajectory segments and k the number of vertices/edges of
R. Let q denote the total number of intersections between the boundaries of UZ
and R. The main difference from the previously analyzed algorithms is that now
we need to detect the actual locations of the (purple) intersection points, instead
of simply checking if some exist. Since l1 and l2 can contain line segments
and circular arcs that intersect themselves, the complexity of detecting the
intersections of UZ with R now becomes O((n + k + q)2α(n+k+q) log3(n + k)),
where α() denotes the very slowly growing inverse of the Ackermann-function
(cf. Theorem 4.1 in Basch et al. [2003] and Sharir and Agarwal [1995]).

The detected intersection points can be inserted as additional vertices into
l1, l2 and R at no extra cost. However, after detecting the intersection points
between the boundaries of UZ and R, some extra verification needs to be done.

If l1 (respectively l2) does not contain any intersection point, one can check
in O(k) time whether one of the endpoints of l1 (respectively l2) is outside R. If
this is the case, l1 (respectively l2) does not intersect the interior of R, and the
condition of line 1 of Algorithm 5.12 is satisfied.

If C′
b (respectively C′

e) does not contain any intersection point, one can check
in O(k) time whether one of the endpoints of C′

b (respectively C′
e) is inside R.

If this is the case, C′
b (respectively C′

e) is contained in R and therefore no path
which satisfies one of the conditions 2.1–2.3 can exist, that is, the predicate is
true.

If R intersects both l1 and l2, and C′
b and C′

e both are not contained in R, we
try to incrementally construct a path connecting C′

b with C′
e which satisfies one

of the conditions 2.1–2.3. We check initially whether the common endpoint of C′
b

and l1 (respectively l2) is outside R. If so, the path starts at this endpoint and
follows l1 (respectively l2) until the next intersection point with the boundary
of R. If both endpoints of C′

b, one common with l1 and the other common with l2,
lie within R, there must exist at least one intersection of C′

B with the boundary
of R. In this case, the path starts at such an intersection point, and we look
ahead along l1 and l2 for the next intersection points with the boundary of R.
If no such intersection points exist, we follow the boundary of R inside UZ and
try to reach C′

e, that is, we check whether condition 2.1 is satisfied. If we reach
C′

e, we have found a path and the predicate returns false, otherwise it returns
true. If we find one (or two) intersection points when looking ahead along l1
and l2, we still follow the boundary of R inside UZ, until we reach one of the
intersection points, say on l1. Then the path continues along l1 (and outside R)
until the next intersection point of l1 with the boundary of R.

ACM Transactions on Database Systems, Vol. 29, No. 3, September 2004.



Managing Uncertainty in Moving Objects Databases • 489

Fig. 14. Continuous curve which is not a possible motion curve.

When walking along l1 (respectively l2) and reaching an intersection point
with the boundary of R in segment i, we look ahead along l1 (respectively l2)
for the next intersection with the boundary of R. If such an intersection does
not exist, we continue walking along the part of the boundary of R inside UZ
and try to reach C′

e. If before reaching C′
e we encounter an intersection point

with l2 (respectively l1) which belongs to a segment s ≥ i and at which we
would leave the uncertainty segment s, we know that no path can exist which
satisfies one of the conditions 2.1–2.3, that is, the predicate is true. If we reach
C′

e, we have found a path and the predicate returns false. If the look ahead
along l1 (respectively l2) returns an intersection point I j for the j th segment of
the trajectory’s route, we continue walking along the part of the boundary of R
inside UZ and try to reach I j . If before reaching I j we encounter another inter-
section point with l2 (respectively l1) which belongs to a segment s, i ≤ s ≤ j ,
and at which we would leave the uncertainty segment s, we know that no path
can exist which satisfies one of the conditions 2.1–2.3, that is, the predicate is
true. If we reach I j , our walk continues on l1 (respectively l2) until the next
intersection point with the boundary of R.

In the worst case, we have to spend for each of the n segments of the trajec-
tory’s route an O(k + q) time to traverse the boundary of R once. Hence, the
cost of the construction of the path can cost O(n · (k + q)).

Based on the above discussion, the time complexity of Algorithm 5.12 is
O(n · (k + q) + (n + k + q)2α(n+k+q) log3(n + k)).

5.2.6 Possibly Always Inside. Observe that, due to Theorem 4.1, in the
case where the query region R is bounded by a convex polygon, we can readily
apply Algorithm 5.4 to process the Possibly Always Inside predicate. However,
it turns out that the ease of processing the convex case has a “multiple penalty”
for the case when R is concave.

The main problem which occurs when R is concave is that we may have con-
tinuous 3D curves (i.e., paths) completely inside VTint = VTr ∩ PR all through-
out the query time [tb, te], which are not possible motion curves. This subtlety
is due to the definition of a path as a map, whereas possible motion curves are
defined as functions.

An illustration in the XY plane is given by Figure 14. The query polygon is
indicated with the thicker, and the uncertainty zone is shown with the thiner
solid line. The dashed curve indicates a possible route. However, a careful ob-
servation will reveal that any moving object which “obeys” the restriction of its
uncertainty area cannot follow the route indicated by the dashed curve. The
reason is that, even with the tolerance of the uncertainty area, the latest time
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Fig. 15. Critical times of the sides of prism and a trajectory volume.

at which the object can be at point B is much earlier than the earliest time at
which the object can reach point A.

In 3D terms, this means that the volume VTint = VTr ∩ PR is connected by
a 3D curve which has two (or more) points (xi, yi, t) and (x j , y j , t) which, as
mentioned, violates the very definition of a possible motion curve as a function
fPMCT : Time → R2. Although there may be a path from the start to the desti-
nation point, the object may need to travel “back in time” to follow that path.

To develop a criterion which we will use for evaluating the Possibly Always
Inside predicate, we need to introduce some notation. Let vi denote the ith
vertex of the region R, and let ei denote the edge between vi and vi+1 (modulo k).
Also, let si denote the ith side of the query prism PR . The critical times of the
segment of a trajectory volume between t j and t j+1 with respect to the side si
of the prism PR , based in a polygon R at t = t j and with height (t j+1 − t j ), is
defined as follows:

Definition 5.13. τij—begin intersection time is the time value in [t j , t j+1]
such that for every t ∈ [t j , τij) the uncertainty area of the trajectory at t and si
have no intersection points and at τij they have exactly one intersection point.
If the uncertainty area at t j intersects si, then τij = t j . If the uncertainty area
does not intersect si for any t ∈ [t j , t j+1], we set τij to some large positive value,
say τij = ∞.

ϕij—end intersection time is the time value in [t j , t j+1] such that for every t ∈
(ϕij, t j+1] the uncertainty area of the trajectory at t and si have no intersection
points and at ϕij they have exactly one intersection point. If the uncertainty area
at t j+1 intersects si, then ϕij = t j+1. If the uncertainty area does not intersect si
for any t ∈ [t j , t j+1], we set ϕij to some large negative value, say ϕij = −∞.

We will use τ j to denote the minimal τij and ϕ j to denote the maximal
ϕij. Thus, τ j and ϕ j correspond to the “global” begin intersection and end
intersection times of the prism with respect to the j th segment of the trajectory
volume. The concepts introduced in Definition 5.13 are illustrated in Figure 15.
Observe that the τ -times are the same for the sides ABB1 A1 and BCC1 B1 of the
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Fig. 16. Triangulation of the concave polygon and its dual graph.

prism, and this is the global τ value for the prism. However, they have different
ϕ-times. On the other hand, the side DAA1 D1 has τ = ∞ and ϕ = −∞. Mean-
while, the side CDD1C1 has its definite τ value, but ϕ = t j+1, and that is the
global ϕ for the entire prism. Observe that, as a consequence of Definition 5.13,
a particular side of the prism will have ϕij = −∞ if and only if τij = ∞. Also, let
us point out that, as a special case, we may have τij = t j and ϕij = t j+1 when
the side si is tangent to the segment of VTr between t j and t j+1

The calculations used in obtaining the critical times are presented in the
Appendix.

Our algorithm for processing the Possibly Always Inside predicate first tri-
angulates the query polygon R into O(k) triangles. As we have seen in
Section 5.1.2, triangulation of a simple polygon can be achieved in O(k) time
[Chazelle 1991], but a more practical approach would use O(k log k) (c.f.
O’Rourke [2000]).

The concepts are illustrated in Figure 16, where the thick solid lines indicate
the polygon and the thin solid lines depict the diagonals used for the triangles.
Since each triangle has three edges, it follows that each node in the dual graph
will have at most three edges incident to it. Clearly, the vertical prism based in
triangle 10 will have τ = ∞ and ϕ = −∞ for all three of its sides.

Observe that for each triangle, we can always label its edges in such a manner
that the edge which is shared among two adjacent triangles has the same label
in both triangles.

Now we can specify the algorithm for processing the Possibly Always Inside
predicate when the region R is a concave polygon.

Algorithm 5.14. – Possibly Always Inside(T, R, tb, te)
1. Triangulate the polygon R and construct its dual graph, denote it DR .
2. Label each edge of DR with the label of the side that is common

to the triangles in R corresponding to edge’s endpoints in DR .
3. Let S1 denote the set of nodes of DR whose corresponding triangles

intersect the uncertainty area at tb.
4. For each segment j of the trajectory, between tb and te
5. For each triangle �i from R
6. Calculate the critical times for each side of the prism based in �i
7. Label the vertices of the dual graph with the triplet ((τl1 j , ϕl1 j ), (τl2 j , ϕl2 j ),

(τl3 j , ϕl3 j )) denoting the critical times of each side of the prism based in an
edge of the triangle, where l1, l2 and l3 are the labels of each edge of the
corresponding triangle in R.

8. end for
9. If at t j (the beginning time of the segment)

the uncertainty area is outside the polygon
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10. return false and exit.
11. Let Sj+1 be the set of all the nodes that can be reached

by a path in the graph such that :
11.1 it starts at a node in Sj and ends at a node with ϕ j ≥ t j+1 AND
11.2 each next node along the path has τ j ≤ ϕ j of the previous node AND
11.3 for each edge along the path with label lk , its end-points (nodes in the

graph) have τlk j �= ∞ (equivalently, ϕlk j �= −∞)
12. If Sj+1 is empty, return false and exit.
13. end for
14. return true.

The correctness of Algorithm 5.14 can be demonstrated as follows. If the
condition in line 9 is satisfied, then we cannot have a possible motion curve
which is inside PR at the beginning of the j th segment of the trajectory volume.
Hence, the output is false. Otherwise, we can have (possibly) uncountably many
of them which are inside PR at the t j . The condition in line 11.1 simply states
that the motion in the j th uncertainty segment has to continue at t j at the same
triangle where it has ended in the previous uncertainty segment and its motion
has to finish in the uncertainty area of t j+1. If this cannot be achieved, then the
object cannot have a possible motion curve throughout the entire [t j , t j+1]. The
condition in the second conjunct (line 11.2) states that the transition should
occur between prisms which have adjacent sides and without having a need to
“travel back in time.” In other words, one can construct a curve which intersects
the sequence of prisms, each consecutive pair of which has adjacent side, in
a manner which is monotonically increasing in time. The last conjunct, line
11.3 states that, if one needs to be able to “travel” from one triangular prism
within PR to an adjacent one, it should be in a “smooth” manner, by entering
the next one via its common side with the previous one. Otherwise, we have
a discontinuity in the possible motion curves which exists between the two
consecutive triangular prisms and, consequently, such a path is not allowed.
Thus, if the set Sj+1 is not empty, it means that there exists a path monotonic
in t which starts at tb and enters every next triangular prism through the side
which is common with the previous one along the way, until t j+1.

As for the complexity of Algorithm 5.14, we observe that line 11 is the most
expensive one. We may have O(k2) pairs of nodes to check for the existence of a
path, the length of which is also O(k), which yields O(k3). If the trajectory has
n segments between tb and te, this brings a bound of O(nk3). The penalty for
calculating the critical times per segment of a trajectory volume is O(k), which
yields overall of O(nk). However, this is dominated by O(nk3) which, in turn,
dominates the O(k log k) spent for the triangulation. Thus, the upper bound of
the running time of Algorithm 5.14 is O(nk3).

5.3 Circular Query Regions

We now present a special case when the query region R is bounded by a
circle.6 There is nothing challenging about the processing algorithms, as we

6A circle is a one-dimensional set of points. We use the term disk to denote the two-dimensional
closed region bounded by a circle.
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Fig. 17. Minkowski sum of two circles.

will demonstrate shortly. However, the reason that we address this case is that
it may have (declarative) practical significance. One may now pose a variant
of spatio-temporal range queries like:

“Retrieve all the objects that will be possibly/definitely WITHIN DISTANCE of
2 miles from the hospital H, sometime/always between tb and te.”

Observe that the answer to this query will consist of all the trajectories
which will possibly/definitely intersect the disk centered at the (location of the)
hospital H with radius 2 miles, sometime/always between tb and te. Thus, for
this syntactic variant we can apply our operators, and the only modification
is that the query region will now be bounded by a circle instead of a closed
polyline.

There are two main observations with respect to the processing of the oper-
ators. First, the disk is a convex entity and, viewed in 3D within some time-
interval [tb, te], it yields a vertical cylinder. Second, we do not have the notion
of a side of a polygon. This affects the complexity of the processing algorithms.

Let D(O, rd ) denote the disk centered at O with the radius rd representing
the query region R. As before, we use r to denote the uncertainty radius of the
trajectory. If we construct the Minkowski sum of R = D(O, rd ) with the disk
centered at the origin and having the same radius r as the uncertainty, the
result is another disk D(O, (rd +r)). However, this is now done in constant time.

As illustrated in Figure 17, if a trajectory satisfies Possibly Sometime Inside
between the times tb and te, with respect to the disk D(O, rd ), its route will
intersect the disk centered at O with radius rd + r.

Observe that each variant of the Within Distance queries with respect to a
point-location can be processed by using the algorithms for the predicates that
we already described. Following are the complexity results when R is a disk.

—Possibly Sometime Inside(T, R, tb, te). The algorithm still needs to verify if
TXY ∩ D(O, (rd + r)) �= ∅. However, now we only consider each of the route
segments once per query circle, which yields a complexity of O(n). Clearly,
using this predicate, one can verify if a given trajectory T satisfies Possi-
bly Sometime Within Distance (T, O, rd , tb, te), where O is the center and rd
is the distance from the center.
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—Possibly Always Inside(T, R, tb, te). Due to the “convexity” of the circle,
the algorithm needs to verify whether each of the segments’ endpoints be-
tween tb and te is inside D(O, (rd + r)), which can be done in O(n) time.
Recall that, due to Theorem 4.1, this is also sufficient for verifying the
Always Possibly Inside predicate. Thus, we can use it to evaluate both Pos-
sibly Always Within Distance (T, O, rd , tb, te), and Always Possibly Within
Distance (T, O, rd , tb, te).

—Definitely Always Inside(T, R, tb, te). It suffices to check if the circle with
radius r (the uncertainty) centered at the endpoint of each segment of the
trajectory is contained within R = D(O, rd ). The complexity is, once again,
O(n). Obviously, we can use this to evaluate whether the trajectory T with the
given uncertainty r is Definitely Always Within Distance rd from the circle
centered at O.

—Sometime Definitely Inside(T, R, tb, te). This predicate is true if and only if
TXY ∩ D(O, rd − r) �= ∅. Thus, in order to satisfy the predicate, we need
to check if there exists a segment of TXY which intersects D(O, rd − r),
which can be done in O(n) time. This can be used to process the Some-
time Definitely Within Distance (T, O, rd , tb, te) predicate.

As for the last predicate, we have the following interesting observation, as a
specific property of the disk query region:

THEOREM 5.15. If the query region is a disk, then Sometime Definitely
Inside is true if and only if Definitely Sometime Inside is true.

PROOF. Assume that the query region R is bounded by a disk D(O, rd ). Ob-
serve that if rd < r, the theorem is trivially true because none of the predicates
is satisfied.

(⇒) If Sometime Definitely Inside is satisfied then it follows, from the def-
initions of the predicates and the tautology (3) (cf. Section 4), that Definitely
Sometime Inside is also satisfied.

(⇐) Assume that Definitely Sometime Inside is satisfied. Let CQ denote the
query cylinder, based at the query disk D(O, rd ) at the vertical plane t = tb,
and with a height te − tb.

Assume that VTr ∩ CQ does not contain a full disk with radius r for any
t ∈ [tb, te]. Then we can construct a possible motion curve between tb and te
which “walks” around the outer boundry of CQ and is entirely within VTr\CQ .
This, however, contradicts the assumption that Definitely Sometime Inside is
satisfied. Hence, there must exist some t ∈ [tb, te] at which VTr ∩ CQ con-
tains a full disk with radius R, which is sufficient to satisfy the Sometime
Definitely Inside predicate.

One last observation is that the Within Distance variant can be readily used
for a generalization of the query point to a region. Our operators can be easily
extended to process queries of the type:

“Retrieve all the objects which will possibly/definitely be within distance of 1 mile
from the region R, sometime/always between 3:00 and 3:15 PM.”
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Table II. Complexity Results

Operator Complexity of algorithm Type of region

Possibly Sometime Inside O(n · k + k log2 k) Concave
O(n log k) Convex

O(n) Disk
Possibly Always Inside O(nk3) Concave

O(n log k) Convex
O(n) Disk

Always Possibly Inside O(n · k + k log2 k) Concave
O(n log k) Convex

O(n) Disk
Definitely Sometime Inside O(n · (k + q) + (n + k + q)2α(n+k+q) log3(n + k)) Concave

O(n · (k + q) + (n + k + q)2α(n+k+q) log3(n + k)) Convex
O(n) Disk

Sometime Definitely Inside O(n · k) Concave
O(n log k + k) Convex

O(n) Disk
Definitely Always Inside O(n · k) Concave

O(n log k + k) Convex
O(n) Disk

5.4 Summary of the Complexity Results

We conclude this long section with the summary of the complexity results for our
operators, presented in Table II, grouped by the “nature” of the query region
R. As usual, n is the number of the trajectory segments in the query time-
interval, k is the number of the vertices/sides of the query region R, and q
denotes the number of intersections. We reiterate that in the case where the
segments of the TXY do not intersect each other, the factor O(nk) can be reduced
to O((n + k) log (n + k)).

6. SYSTEM ASPECTS

In this section we present some of the implementation issues related to the
database server that are of practical interest when designing a system for mod-
eling, tracking, and querying moving objects. Describing the software architec-
ture and all the implementation details of such a system is beyond the scope of
this work. Instead, we present some experimental observations that are rele-
vant to the work presented in the previous sections, based on our experiences
with the DOMINO project [Trajcevski et al. 2002a; Wolfson et al. 2002].

As we indicated in Section 3, one cannot expect a casual user of the system
(e.g., a dispatcher in a transportation company) to be familiar with the SQL
syntax and to enter queries, to be familiar with translating points into the
map-based reference coordinate systems, etc.

Figure 18 illustrates the GUI part of the DOMINO project which implements
our operators. It represents a visual tool which, in this particular example,
shows the answer to the query: “Retrieve the trajectories which possibly inter-
sect the region sometime between 12:15 and 12:30.” The figure shows three tra-
jectories in Cook County, Illinois, and the query region (polygon) represented by
the shaded area. The region was drawn by the user on the screen when entering
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Fig. 18. Visualization of Possibly Sometime Inside.

the query, simply by drag-and-drop of the mouse. The query itself was selected
from a pull-down menu, and the user entered the relevant time-parameters
in the text boxes. Each trajectory shows the route with planned stops along
it (indicated by dark squares). It also shows the expected time of arrival and
the duration of the job (i.e., the stay) at each stop. Observe that only one of
the trajectories satisfies the predicate Possibly Sometime Inside with respect
to the polygon. It is the one with the circle labeled 12:20, the earliest time at
which the object could enter the query polygon. The other two trajectories fail
to satisfy the predicate, each for a separate reason. One of them will not inter-
sect the polygon ever (i.e., the polygon is not on the route). Although the other
trajectory’s route intersects the polygon, the intersection will occur at a time
which is not within the query time-interval [12:15, 12:30].

As a part of the DOMINO project, we wanted to get some realistic estimates
about the size of the trajectory. Following the procedure presented in Section 2,
we constructed 1141 trajectories based on the electronic map of 18 counties
around Chicagoland. The map size is 154.8 MB and has 497,735 records, each
representing a city-block.

The trajectories were constructed by randomly choosing a pair of endpoints,
and connecting them by the shortest path in the map (shortest in terms of the
Drive Time). Our results are depicted in Figure 19. The length of the routes
was between 1 and 289 miles, and the left graph represents how many routes
were within a given mileage range. The right graph represents the number
of segments per trajectory, as a function of the length of the route and one
can notice the linear dependency between the “storage requirements” (number
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Fig. 19. Number of segments in real-map trajectories.

of segments) and the length of a route. The average number of segments per
mile turned out to be 7.2561. An important observation is that, assuming that
a trajectory point (x, y , t) uses 12 bytes and that each vehicle from a given
fleet (e.g., a metropolitan delivery company) drives a route of approximately
100 miles, we need ≈10 kbytes of storage per trajectory. Thus, the storage
requirements for all the trajectories of a fleet of 1000 vehicles is ≈10 MB which
means that the trajectories of the entire fleet can be kept in main memory.

As for the uncertainty aspect, as part of our experiments, we have conducted
three actual drive-tests on the trajectories generated form the Chicagoland
maps. Each of the vehicles was equipped with a GPS connected to a PDA.
Initially, the team members in each vehicle entered the addresses of the start-
point, stop-points, and endpoint of the trip. After transmitting them to the
server, each PDA was returned the sequence of the trajectory segments. The
approximate length of the trajectories was 25 miles and they were tailored to
partially enter periods of both regular traffic and rush hour. The uncertainty
threshold r and the update policy were stored in each PDA. Along the trip,
whenever the GPS-reported point was further than r from the expected loca-
tion, a location-update was generated and sent to the server. Subsequently, the
server would generate the new future-portion of the trajectory and transmit it
back to the PDA in the vehicles. We observed7 that, for the value of r = 0.2mi,
the average number of updates per mile was approximately 5. For a company
like Federal Express, which monitors its fleet based on a region, there are ap-
proximately 100 vehicles in the downtown Chicago area. If the average speed is
30 miles/h then each vehicle takes about 2 min/mile, which is five updates every
2 min. For the total fleet of 100 vehicles, this means that the server receives

7A methodology for generating realistic pseudotrajectories and an extensive set of experiments for
comparing different update policies is presented in Wolfson and Yin [2003].
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Fig. 20. Experimental comparison of implementation alternatives.

approximately 4.2 updates/s which, if all the trajectories are kept in main mem-
ory, is an acceptable load.

We conclude this section with a set of experimental observations which illus-
trate some more tradeoffs involved and their impact on the choices that one has
to make, when incorporating data management into a real application. Namely,
when implementing the operators, we had a choice of using the host language
for implementing the processing algorithms (cf. Section 5) and relying on the
ORDBMS for the storage (and other queries) or using the advanced features
that the commercially available ORDBMSs offer. We compared a C++ based im-
plementation with the one using the PL/SQL of Oracle and its spatial extender
(e.g., MDSYS.SDO GEOMETRY).

The platform used for the performance evaluation was Win2000 Professional
on Intel Pentium 4, 1.90-GHz processor, with 512 MB of RAM, Service Pack 2.
We used Oracle 9.0.1 with DBMS PROFILER Package as an ORDBMS. Since
we did not use any index, the experiments consisted of simply selecting three
to four trajectories and a convex query region, and executing the operators.
To measure the execution time in the C++ implementation, the API high-
resolution timers available for Win2000 through Kernel32.dll (available via
http://msdn.microsoft.com/library/) were used.8 The external processes in C++
used OCCI to connect to Oracle.

Figure 20 illustrates the average values of three experimental comparisons.
We have separately monitored two time values: (1) Ts + Tc—the time it takes to
complete the process of retrieving the selected trajectory and filtering the points
between begin time and end time of the query and to complete the processing
of the predicate; and (2) Tc—the actual computational time of determining if a
particular operator is true or false for the given set of trajectory points and the
query polygon.

As can be observed, the Ts portion is a major overkill for an implementation
which uses C++ based processing. Having an index will only improve the Ts
factor for the Oracle-based implementation. Even for the Tc component, the
Oracle implementation performed better than the C++ one, for three (i.e., four,
since Possibly Always Inside is equivalent to Always Possibly Inside for convex

8We did not consider the overhead of the calls to this API per se, as it was not significant and did
not have an impact on the conclusions.
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query regions) out of six predicates. One of the reasons for it is the time spent
in constructing the instances of the necessary data types in C++ used in the
algorithms. When the operators provided by the Oracle ORDBMS are used,
these are subject to internal optimization by the database engine.

It seems that a very promising avenue and, at the same time, a very chal-
lenging topic, would be to actually incorporate existing code like, for example,
the CGAL library of computational geometry algorithms (http://www.cs.ruu.nl/
CGAL) as an extender to the commercially available ORDBMSs. At this time,
we view it as a future goal.

7. RELATED WORK

Linguistics, modeling, and querying issues in moving objects databases have
been addressed from several perspectives. Sistla et al. [1997] introduced the
MOST model for representing moving objects (similar to Saltenis et al. [2000])
as a function of (location, velocity vector). The underlying query language is
nonstandard, and is based on the Future Temporal Logic (FTL). Similar issues
are addressed in [Vazirgiannis et al. 1998]. A trajectory model similar to ours
was given in [Vazirgiannis and Wolfson 2001], where the authors extended
range queries with new operators for special cases of spatio-temporal range
queries. However, there was no treatment of the uncertainty aspect of the mov-
ing object’s location. A series of works [Erwig et al. 1998; Forlizzi et al. 2000;
Güting et al. 2000, 2003] addressed the issue of modeling and querying moving
objects by presenting a very comprehensive framework of abstract data types
and a rich algebra of operators. The works were targeted toward providing a
formal foundation for modeling and querying known motions in the past. Since
the uncertainty is more important for future trajectories, it was not addressed
in these works.

Uncertainty issues in moving object databases have been addressed before.
[Wolfson et al. 1998, 1999] introduced a cost-based approach to determine the
size of the uncertainty area (r in this article). However, linguistic issues and
querying aspects were not addressed in these articles. A formal quantitative
approach to the aspect of uncertainty in modeling moving objects was presented
in Pfoser and Jensen [1999]. The authors limited the uncertainty to the past
of the moving objects and the error may become very large as time approaches
now. It was a less “collaborative” approach than ours in the sense that there
is no clear notion of the motion plan is given by the trajectory. Uncertainty of
moving objects was also treated in Sistla et al. [1998] in the framework of modal
temporal logic. The difference from the present work is that here we treat the
uncertainty in traditional range queries. A recent result [Cheng et al. 2003]
gave probabilistic estimates of the answer to a few categories of queries over
uncertain values of dynamic data. However, in terms of range queries, the work
was limited to one-dimensional intervals.

A large body of work in moving objects databases has been concentrated on
indexing in primal [Pfoser et al. 1999; Saltenis et al. 2000; Saltenis and Jensen
1999, 2002; Tayeb et al. 1998] or dual space [Agarwal et al. 2000; Kollios et al.
1999a, 1999b; Pasquale et al. 2003]. Theodoridis et al. [1999a, 1999b] presented
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specifications of what an indexing of moving objects needs to consider, and
generation of spatial datasets for benchmarking data. Along these lines was the
recent work presented in Wolfson and Yin [2003]. These results will be useful
in studying the most appropriate access method for processing the operators
introduced in this article.

On the commercial side, there is a plethora of related GIS products [ESRI
1996; Geographic Data Technology Co. 2000; U.S. Dept. of Commerce 1991];
maps with real-time traffic information [Intelligent Transportation Systems
2000] and GPS devices and management software. IBM’s DB2 Spatial Exten-
der [Davis 1998], Oracle’s Spatial Cartridge [Oracle Corporation 2000], and In-
formix Spatial DataBlade [Team 1999] provided several 2D spatial types (e.g.,
line, polyline, polygon, . . . ), and included a set of predicates (e.g., intersects,
contains) and functions for spatial calculations (e.g., distance). However, the
existing commercial products still lack the ability to model and query spatio-
temporal contexts for moving objects.

8. CONCLUSIONS AND FUTURE WORK

We have proposed a model for representing moving objects under realistic as-
sumptions of location uncertainty. We also introduced a set of operators which
can be used to pose queries in that context. The model and the operators com-
bine spatial, temporal, and uncertainty constructs, and have been implemented
as part of our DOMINO project. We presented the processing algorithms for the
proposed operators and analyzed their complexity. We also outlined some impor-
tant practical observations, based on our experience with the DOMINO system.
Let us point out that an interesting approach that we explored is to model the
location uncertainty as a rectangle. This would capture the scenario where the
moving object is known to be on the highway, but its exact lane is not known.

In terms of future work, an interesting problem is the management of the
storage space needed for the trajectories. Namely, one can apply ideas similar
to line simplification (cf. [Weibel 1997]) to reduce the size of a given trajec-
tory. However, this will impose some extra imprecision when processing spatio-
temporal queries and a choice of an appropriate metric is essential in guarantee-
ing bounds on the query errors [Cao et al. 2003]. Currently, we are investigating
the problem of optimizing the simplification when updates to the motion plan
(future trajectories) are present.

Another important problem is related to automatic updates of the trajecto-
ries which are affected by abnormal traffic conditions [Trajcevski et al. 2002b].
Consider, for example, the following query: “Retrieve all the objects which will
possibly be within 2 miles from the United Center, sometime between 7:00 PM
and 7:20 PM.” If the query was posed at 6:00 PM and an accident occurred on
some road segment at 6:30 PM, certain trajectories will have to be updated
and, consequently, the answer set for the query may have to be recalculated.
Currently, we are utilizing triggers to automatically update the answer set to
such queries.

A particularly challenging problem is the one of query processing for spatio-
temporal databases. We will investigate how to incorporate an indexing schema
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within the existing ORDBMSs (cf. Chen et al. [1999]; Kornacker [1999]), and
develop and experimentally test a hybrid indexing schema which would pick
an appropriate access method for a particular environment. Along the lines of
the recent results in Prabhakar et al. [2002], we will also tackle the problem
of query optimization. For example, for Boolean combinations of the operators
introduced in this work, one can process each operator separately and combine
the results at the end. However, it can be shown that often this procedure can
be significantly improved by considering the global query.

APPENDIX

A.1 Proof of Theorem 5.11

PROOF. (⇒) If there exists some PMCT between tb and te which is entirely
inside VTsd, then that PMCT is the witness of path-connectedness of VTsd.

(⇐) The proof is “by construction,” that is, it demonstrates how to construct a
possible motion curve, from a given (existing) path. Without loss of generality,
we will restrict our discussion to one segment of the trajectory (respectively,
one segment of trajectory volume).

Assume that VTsd = VTr\PR is path-connected, between tb and te. Then,
there must exist some 3D curve, call it C, which is entirely in VTsd = VTr\PR ,
for every t ∈ [tb, te]. If C is monotonic in the time-dimension, then it is the
desired possible motion curve.

Assume not. Then, there must exist some point on C, denote it A(xA, yA, tA),
at which C has a local extremum with respect to the time-dimension (i.e., all the
points of C within some ε-neighborhood of A have their time values smaller than
tA) and tA < te. Since VTsd is path-connected, there must exist another point
on C, call it B(xB, yB, tB), such that tB > tA. Let A1(xA, yA) and B1(xB, yB)
denote the XY projections of A and B, respectively, and denote by A1 B1 the
line-segment between A1 and B1. Also, let �X ,Y (C) denote the XY projection of
C. Clearly, both A1 and B1 are on �X ,Y (C). �X ,Y (C) is inside the uncertainty
zone of the trajectory’s route, but outside the region R. The construction of the
portion of the possible motion curve between A and B can now be explained as
follows.

Let N (xN , yN ) denote a point on A1 B1. Draw the line lN which is perpen-
dicular to A1 B1 through N and let M1(xM , yM ) denote the closest point of
intersection of lN with �X ,Y (C). The vertical line (perpendicular to the XY
plane) through M1 will intersect C at some M (xM , yM , tM ). Consider the point
Mc(xM , yM , tMN) for which

tMN = tA +
√

(xN − xA)2 + ( yN − yA)2
√

(xB − xA)2 + ( yB − yA)2
· (tB − tA). (4)

Clearly, tA ≤ tMN ≤ tB. Thus, from the points of C between A and B, we can
construct a curve which will be inside VTsd (recall that �X ,Y (C) is in the uncer-
tainty zone but outside R), and the time values of its points will monotonically
increase between tA and tB. Since we assumed that between tb and tA the time
values of the points along C are monotonically increasing too, we have actually
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Fig. 21. Construction of a possible motion curve from a path.

constructed a possible motion curve which is entirely within VTsd between tb
and tB. By repeating the construction in a recursive manner from the point B
on C, we will obtain the desired possible motion curve between tb and te.

The concepts that we introduced and used in this proof are illustrated in
Figure 21. Let us point out that the reason we needed the closest point of inter-
section between lN and �X ,Y (C) is the uniqueness of the constructed possible
motion curve (i.e., we want to handle situations like the ones depicted in the
right portion of Figure 21).

As a last comment, observe that as an extreme case, two points along the
path, say W and Z , may be connected by some curve which is entirely in some
horizontal plane. In this case, one can always find an ε-neighborhood around
W which has a point, say S, on the path, with a lower time value, and apply
the same argument as above between S and Z . This completes the proof.

A.2 Calculating the Critical Times

When evaluating the Possibly Always Inside predicate for a nonconvex, simple
polygon as query region, we need to identify the set of critical points.

Let B11 B12 B21 B22 denote a vertical rectangle corresponding to a side of some
prism. Let Aj and Aj+1 denote the endpoints of the j th trajectory segment
between the times t j and t j+1.

The general case of the time t ∈ [t j , t j+1] being a critical time in the j th
trajectory segment, occurs when the intersection of the uncertainty area at t
with the rectangle B11 B12 B21 B22 is a single 3D point.

Part (a) of Figure 22 illustrates the concepts introduced in Definition 5.13
in Section 5. Observe that we have two critical time values, t1 and t2. Also note
that the time t3(t1 < t3 < t2) is not a critical one because at t3 the uncertainty
area has more than one intersection point with B11 B12 B21 B22 (infinitely many
of them). For a given vertical rectangle and a segment of a trajectory volume, the
number of significant times may be 0, 1, 2, or infinitely many, as we demonstrate
below.

Since the query region is represented as a polygon in the XY plane, each edge
of the polygon is part of a line. with an equation of the form a · x + b · y + c = 0.
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Fig. 22. Computing the times of intersection.

Hence, each edge of the polygon, when considered for a given time interval will
represent a vertical 3D rectangle.

As we stated in Section 3, at each time t, the horizontal circle which is the
boundary of the trajectory volume is defined as: (x − (xi + vx

i · t))2 + ( y − ( yi +
v y

i · t))2 = r2.
Substituting for y (or for x, if b = 0) from the equation of the line defining

the edge, we have
(
x − (

xi + vx
i · t

))2 + (
(m · x + b) − (

yi + v y
i · t

))2 = r2. (5)

This yields an equation in x and t of the form

K · x2 + x · (R + S · t) + U · t2 + V · t + W = 0, (6)

where K , R, S, U, V , W are constants (in terms of the other constants from
Equation (5)). Solving for x, as a parameter of t, we get

x1,2 = −(R + S · t)
+−

√
(R + S · t)2 − 4 · K · (U · t2 + V · t + W )

2 · K
. (7)

According to Definition 5.13, a time t is critical iff we have a unique solution
of Equation (7) in x. In order to achieve it, all we need is to set the discriminant
to 0,

(R + S · t)2 − 4 · K · (U · t2 + V · t + W ) = 0, (8)

and solve it for t. Equation (8) is quadratic in t and, in general, it will have two
solutions. However, several cases may arise with respect to the values of the
solutions (and, implicitly, due to the different possibilities for the values of the
constants in the Equation 7):

—If both of them are complex, that is, the discriminant of Equation (7) does
not change its sign, then
(1) if the discriminant is positive, we always have two solutions for x in

Equation 7 and, therefore, there is no unique time;
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(2) if the discriminant is negative, then we have no real solution for x in
Equation (7) and, again, we do not have any critical times.

—If both of the solutions of the Equation (8) are real, then
(1) both of them are in the interval [ti, ti+1], which yields two critical times;
(2) one of them is outside the interval [ti, ti+1], which yields only one critical

time;
(3) both of them are outside the interval [ti, ti+1], which yields no critical

times.
—If the left-hand side of Equation (8) is identically equal to zero, for every

t ∈ [ti, ti+1], then we have infinitely many critical times. The geometric in-
terpretation of this case is that the 3D vertical rectangle is tangential to the
trajectory volume.

Part (b) of Figure 22 illustrates another issue which needs to be considered.
The actual time in which the trajectory volume will “touch” the vertical plane
defined by the line MN is t1. However, since the valid edge is between M and
N , we need to take t2 as the significant time point, because the intersection
at t1 is outside the XY boundaries of the segment MN. Thus, when calculating
the significant times, we need to substitute the values obtained as solutions to
Equation (8) back into Equation (7), and check if the solutions for x are within
the bounds of the particular line segment. If not, we have to substitute the
boundary values for x back into Equation (3), and solve it for t (in which case,
again, we may get zero, one, or two critical times).
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