
The VLDB Journal (2006) 15(3): 211–228
DOI 10.1007/s00778-005-0163-7

REGULAR PAPER

Hu Cao · Ouri Wolfson · Goce Trajcevski

Spatio-temporal data reduction with deterministic error bounds

Received: 26 March 2004 / Revised: 22 January 2005 / Accepted: 20 March 2005 / Published online: 28 April 2006
c© Springer-Verlag 2006

Abstract A common way of storing spatio-temporal infor-
mation about mobile devices is in the form of a 3D (2D
geography + time) trajectory. We argue that when cellular
phones and Personal Digital Assistants become location-
aware, the size of the spatio-temporal information gener-
ated may prohibit efficient processing. We propose to adopt
a technique studied in computer graphics, namely line-
simplification, as an approximation technique to solve this
problem. Line simplification will reduce the size of the tra-
jectories. Line simplification uses a distance function in
producing the trajectory approximation. We postulate the
desiderata for such a distance-function: it should be sound,
namely the error of the answers to spatio-temporal queries
must be bounded. We analyze several distance functions,
and prove that some are sound in this sense for some types
of queries, while others are not. A distance function that is
sound for all common spatio-temporal query types is intro-
duced and analyzed. Then we propose an aging mechanism
which gradually shrinks the size of the trajectories as time
progresses. We also propose to adopt existing linguistic con-
structs to manage the uncertainty introduced by the trajec-
tory approximation. Finally, we analyze experimentally the
effectiveness of line-simplification in reducing the size of a
trajectories database.

Keywords Data reduction · Line simplification ·
Uncertainty · Moving objects database

This research is supported by NSF Grants 0326284, 0330342, ITR-
0086144, 0513736, 0209190, and partly supported by the NSF
grant IIS-0325144/003 and the Northrop-Grumman Corp. grant PO
8200082518.

H. Cao (B) · O. Wolfson
Department of Computer Science, University of Illinois at Chicago,
Chicago, IL 60607, USA
E-mail: hcao2@cs.uic.edu

G. Trajcevski
Department of Electrical Engineering and Computer Science,
Northwestern University, Evanston, IL 60208, USA

1 Introduction

In this paper we consider lossy compression of spatio-
temporal information, particularly trajectories (i.e., motion
traces) of moving objects databases. The compression is
done by approximating each trajectory, but in contrast to
traditional compression methods, we are interested in ap-
proximations that guarantee a bound on the error, i.e., in
which the distance between the approximation and the origi-
nal trajectory is bounded. We employ line-simplification for
this type of compression. Next, we consider various types
of queries on the approximations database, e.g., range and
joins. It turns out that even though the error of each approxi-
mation is bounded, the error of the query may be unbounded.
Whether or not this is so depends on the query type, and the
distance function used in the approximation. We determine
the pairs (query-type, distance function) for which the query
error is bounded. We identify a distance function for which,
if the error of the approximation is bounded, then the error
of the common query types on the approximations database
is also bounded.

Now consider the background of this paper. The manage-
ment of transient location1 information is an enabling tech-
nology for location-based service applications [1–3]. In this
paper we address the problem of managing a set of spatio-
temporal points of the form (x, y, t). Such a point indicates
that a moving object m was or will be at the geographic loca-
tion with coordinates (x, y) at time t . These spatio-temporal
points may be generated, for example, by a GPS receiver
on board m. We will call such point a GPS point, although
it may be generated by other means (e.g., PCS network tri-
angulation [4]). The GPS points will be transformed to a
unique chosen (X, Y, T) coordinate system2 [6].

1 In telecom literature, the term location sometimes refers to the cell
or base station associated with the position of a mobile user. In contrast,
in this paper, the term location refers to the x , y coordinates.

2 Global Positioning System (GPS) produces points of the form
(x, y, z, t), where (x, y, z) is the 3D position with respect to the earth
center. However, we assume, as is common in GIS applications, that an

212 H. Cao et al.

Consider that a GPS receiver usually generates a new
(x, y, t) point every second or two. Furthermore, delivery
companies such as Fedex and large municipal transportation
agencies own tens of thousands of vehicles that need to be
tracked for performance monitoring (e.g., answering a query
such as: how many times was bus number 5 late by more
than 5 min at a stop) and auditing (e.g., whether the Fedex
employee delivered the package at 10: a.m.); and large cellu-
lar service companies may soon have hundreds of millions of
subscribers whose motion patterns may be subject to statis-
tical analysis for capacity planning. Remember also that one
is interested in the historical GPS points that may need to be
mined for personal activity pattern analysis (see Offloading
Your Memories, NY Times, December 14, 2003; and extend
the idea to location tracking), transportation planning and
auditing, and cellular network capacity planning.

Of course, storage of motion information may raise im-
portant privacy issues. These can be addressed differently
in various scenarios. Employers can track their employees
during working hours, and this can be, and is made part of
existing employment contracts. For example shipments and
delivery companies such as Fedex already track delivery em-
ployees regularly.3 In many cases, the issue is access control.
For example, a person may be interested in accessing her
historical traces, and she may allow access to others. Peo-
ple may want to track their kids or their dementia-stricken
parents, owners are allowed to track their pets (pet track-
ing companies have emerged). Cellular subscriber privacy
can be protected by variety of anonymization techniques [7],
e.g., removal of personal identification information from the
traces. Furthermore, introduction of uncertainty by data re-
duction, as proposed in this paper, may be a mechanism
for addressing privacy concerns, so that the data cannot be
traced back to the owner.

Spatio-temporal data mining applications face a severe
storage-space problem, as well as a problem in efficiently
accessing the motion data. For example, assuming that a
GPS point takes 12 bytes and a GPS point is generated
(i.e., sampled) every minute for 24 hours a day, 10M cel-
lular subscribers4 will generate a daily volume of over 160
GB. More frequent samplings will only increase this num-
ber. Spatio-temporal data reduction is an attractive solution
to the storage and processing performance problems. If the
size of spatio-temporal data is reduced by one or two or-
ders of magnitude, the data or the index may become main-
memory resident. Furthermore, in online tracking partial tra-
jectories are transmitted periodically from moving objects to
central servers [8], and data reduction can save power and
wireless bandwidth.5

appropriate projection is applied (e.g., Mercator [5]) to transform each
(x, y, z) point into (x, y) for the chosen coordinate system.

3 http://www.fedex.com/ca_english/about/overview/technology/
techinnovation2.html?link=4

4 Recall that such a point may be generated by PCS network trian-
gulation, not necessarily GPS.

5 However, throughout this paper, we only consider whole trajecto-
ries and do not address the problem of data reduction applied to partial
trajectories beyond treating them as full trajectories.

A key observation that lies at the foundation of the data
reduction method proposed in this paper is that a GPS point
(x, y, t) can be eliminated, and its space saved, if (x, y, t)
can be approximated with a reasonable accuracy by inter-
polating the adjacent (i.e., before and after) GPS points. We
formalize this intuition by employing a mechanism based on
line simplification [9–14], that has been studied in compu-
tational geometry, cartography, and computer graphics. Ba-
sically, line simplification approximates a polygonal line by
another that is “sufficiently close” (the term will be precisely
defined), and has less straight-line segments (or points) and
thus takes less storage-space. One may be tempted to pro-
pose to decrease the GPS sampling frequency to address the
above problems. However, compared with line simplifica-
tion, this simplistic approximation solution has no quality
guarantees in terms of error bounds.

Our experimental results indicate that the storage-
savings using line simplification is very significant. Specif-
ically, when we used real datasets of moving objects trajec-
tories as GPS traces6, our experiments indicate that storage-
size decreases in an exponential-like manner as the allowed
imprecision increases. The trajectories dataset was obtained
from the trace of GPS-points recorded by the shuttle buses
of the UCLA campus (we elaborate on our experimental set-
tings and results in Sect. 6.). We also conducted experiments
on a trajectories dataset that consists of 1,000 trajectories
describing the “expected” future motion plans of objects in
Chicagoland.

The attractiveness of line simplification (compared to
other lossy data compression techniques such as wavelets
[15, 16]) stems from the fact that the approximation carries
a given error bound. Namely, the distance between the origi-
nal trajectory and the approximation is bounded by a param-
eter of the simplification called the error-tolerance. How-
ever, we discovered that although the approximation error
is bounded, the error of the answers to queries7 may not be
bounded. Whether or not it is bounded, depends on the com-
bination of the distance function (or distance for short) used
in the approximation, and the spatio-temporal query type. In
other words, for some combinations (query-type, distance)
the answer-error is bounded (in this case we call the distance
function sound8 for the query type), for others it is not. For
example, the Euclidean distance function is not sound for
the query “where was moving object m at time t .” Broadly
speaking, the reason for unsoundness is that the temporal di-
mension is treated by the Euclidean distance as a third spatial
dimension. It turns out that when considering many types of
queries, it is inappropriate to do so. We provide a compre-
hensive analysis of the soundness of the distance functions
for query types.

6 The trajectory of a moving object is the sequence of (x, y, t) points
that represent a trip of the object.

7 i.e., the distance between the answers on the original trajectory and
the approximation.

8 Our notion of soundness should not be confused with the mathe-
matical logic notion by the same name (usually paired with complete-
ness). Our notion is different.

Spatio-temporal data reduction with deterministic error bounds 213

Then, we considered linguistic constructs for querying
a database of simplified trajectories using a sound combi-
nation. Since a simplified trajectory is an approximation,
the operators must contain, in addition to spatio-temporal
constructs, uncertainty constructs. Thus, we adopt a set of
operators proposed in [17] to deal with location uncertainty,
and interpret them for the uncertainty introduced by data re-
duction. Some examples of these operators are: “Retrieve the
moving objects that Possibly intersect a region R Sometime
in the time interval T ”, “Retrieve the moving objects that
Definitely intersect a region R Always in the time interval
T ”.

Then, we considered an aging mechanism by which a
trajectory is represented by increasingly coarser approxima-
tions as time progresses. For example, initially, when the tra-
jectory is stored, it is approximated by a polyline with dis-
tance at most 0.1 mile from the original, after 2 months it is
approximated by a polyline (which is smaller in size than the
first) at distance at most 0.2 miles from the original trajec-
tory, etc. We show that some simplification algorithms are
“aging-friendly” (e.g., the Douglas–Peucker heuristic), and
some are not (e.g., the optimal simplification algorithm). By
aging friendliness we mean that even though the original tra-
jectory is not saved, at every stage we obtain a trajectory that
could have been obtained using the larger tolerance from the
original trajectory.

We also analyzed experimentally various simplification
algorithms. One of the conclusions is that the Douglas–
Peuker (DP) algorithm achieves near-optimal savings at a
far superior performance.

In summary, the main contributions of this paper are as
follows:

• We introduce the concept of soundness of a data com-
pression mechanism.

• We analyze the soundness of several (distance, spatio-
temporal query) combinations.

• We quantify experimentally the power of line simplifi-
cation using different distances and simplification algo-
rithms.

• We analyze the behavior of approximation (simplifica-
tion) algorithms with respect to data aging, and show that
some are well behaved whereas others are not.

• We introduce a set of operators that enable querying of
the location database and take into consideration the un-
certainty of location modeling.

Before discussing the structure of the paper, let us ob-
serve that the proposed data reduction mechanism does not
rely on the knowledge of the topology of the road network,
as represented e.g., in a digital map. It is possible that when
it is known that the motion occurs on a network, this knowl-
edge can enhance the power of line simplification. However,
there are many cases in which motion does not occur on a
network, e.g., pedestrians, animals, military units in a bat-
tlefield. And even if it is known that the motion occurs on a
network, line simplification can be used in conjunction with
map matching (i.e., snapping the GPS points onto the net-
work; see [18, 19]). For example, line simplification can be

used after map matching to eliminate a timestamp that can
be inferred by the ones before and after it. The combination
of line simplification and map matching is the subject of fu-
ture work.

The rest of this paper is divided into two parts. Sections
2–5 provide a theoretical/conceptual analysis of trajectory
reduction by line-simplification in terms of distance func-
tions used in the simplification, query errors that result from
the approximation and the related linguistic issues, and data
aging. And Sect. 6 provides an experimental analysis of tra-
jectory reduction by line-simplification. The experimental
analysis concentrates on the two distance functions deemed
viable (i.e., sound) in the first part of the paper, namely Eu
and Et ; however, the reduction power of these functions is
compared with that of the more traditional Euclidean dis-
tance.

More specifically, the structure of the paper is as fol-
lows. Section 2 discusses the concept of a trajectory and in-
troduces the problem of trajectory reduction/simplification.
Section 3 introduces the concept of soundness and ana-
lyzes it with respect to (distance, query type) combinations.
Section 4 discusses uncertain queries, and Sect. 5 analyzes
simplification algorithms with respect to aging. Section 6
presents our experimental results of trajectory simplifica-
tion using different distances, tolerances, and algorithms. In
Sect. 7 we position our paper with respect to the relevant
works, and in Sect. 8 we provide concluding remarks and
directions for future work.

2 Trajectory reduction

Representing the (location, time) information of the moving
object as a trajectory is a typical approach (c.f. [17, 20, 21]):

Definition 1 A trajectory is a function T : [1, n] → R
3 with

n ∈ N that satisfies the following conditions: (1) T (1) =
(x1, y1, t1), T (2) = (x2, y2, t2), . . ., T (n) = (xn, yn, tn),
such that ti < ti+1 for all i ∈ {1, . . . , n −1}; each (xi , yi , ti)
is called a vertex of the trajectory T ; (2) For each 0 ≤ λ ≤ 1
and for each i ∈ {1, . . . , n − 1}, T (i + λ) = (1 − λ)T (i) +
λT (i + 1). For every point (x, y, t) on the trajectory we say
that (x, y) is the expected location at time t . The projection
of T on the X–Y plane is called the route of T .

Intuitively, a trajectory defines the location of a moving
object in the X-Y plane as an implicit function of time t .
The object is at (xi , yi) at time ti . The vertices of a trajec-
tory represent the location and time of the moving object in
the chosen coordinate system. During each segment [ti , ti+1]
we assume that the object moves along a straight line, at
constant speed, from (xi , yi) to (xi+1, yi+1). Thus the lo-
cation of the moving object at a point in time t between ti
and ti+1, (1 ≤ i < n), called the expected location at time
t , is obtained by a linear interpolation between (xi , yi) and
(xi+1, yi+1).

An illustration of a trajectory and its route is shown in
Fig. 1.

214 H. Cao et al.

Fig. 1 A trajectory and its two-dimensional route

The (location, time) vertices are obtained from a loca-
tion technology such as GPS. The location technology may
have errors. However, in this paper we assume that the ver-
tices provide the best available estimate of the actual loca-
tions and do not attempt to correct or manage the errors.
When discussing errors we refer to the errors introduced
by line simplification rather than the location technology
errors.

Trajectories may impose tremendous storage require-
ments when the location is sampled frequently. To address
this problem, we propose to tradeoff accuracy for efficiency
using line simplification. The subject of line simplification
has been extensively studied in computational geometry and
in many practical applications such as cartography, com-
puter graphics, image processing [9–14] since the 1970s.
The goal was similar to ours: given a polygonal curve, ap-
proximate it by another one which is “not very far” from
the original, but has fewer points. In contrast to our present
work, these references considered spatial data, whereas we
consider spatio-temporal data. As we will demonstrate in
Sect. 3, the temporal dimension has a different impact on
queries and cannot be treated simply as a third spatial di-
mension.

Now we precisely define the “not very far” statement
in the context of trajectories. Let M be the distance be-
tween a 3D point and a 3D line. The distance dM (p, T) be-
tween a point p and a trajectory T is the minimum (among
all line segments of T) M-distance between p and a line
segment of T . The distance between two trajectories is the
Hausdorff distance [22] between them. The Hausdorff M-
distance from a trajectory T to another trajectory T ′ is de-
fined as

D̃M (T, T ′) = max
p∈T

dM (p, T ′)

i.e., the Hausdorff distance from T to T ′ is the maximum
distance from a point of T to T ′.

The symmetric Hausdorff distance between T and T ′ (or,
for short, the Hausdorff distance between two trajectories)
is defined as DM (T, T ′) = max(D̃M (T, T ′), D̃M (T ′, T));
i.e., it is the maximum of the distances from T to T ′ and
from T ′ to T .

Fig. 2 A simplification (solid line) of trajectory in Fig 1.

Now we define one of the central concepts of this paper,
the simplification of a trajectory.

Definition 2 Let {p1, p2, . . . pn} denote the set of vertices
of a given trajectory T . For a subset {p′

1, p′
2, . . . , p′

s} ⊆
{p1, p2, . . . pn}, denote by T ′ the trajectory with these
vertices. Let ε be a real number. We say that T ′ is an ε-
simplification of T with respect to M (equivalently, T ′ is
a simplification of T with an M-tolerance ε), denoted by
T ′ = S(T, ε, M), if DM (T, T ′) ≤ ε.

Figure 2 shows a simplified trajectory corresponding to
the original trajectory depicted in Fig. 1.

For a given trajectory T and a tolerance ε, an opti-
mal ε-simplification is an ε-simplification with a minimum
number of vertices. For a given trajectory, the optimal ε-
simplification need not be unique. For example, the trajec-
tory abcde of Fig. 7(a) has three optimal 2.6-simplifications,
abe, ace, and ade. An optimal ε-simplification can be found
using dynamic programming techniques straightforwardly
in O(n3) time, or in quadratic running time using improved
algorithms [9, 10, 13]. For better performance, heuristic-
based approaches are often used in practice, especially in
GIS. Among them, the best known and studied algorithm is
Douglas and Peucker’s (DP) [11].

The DP algorithm recursively approximates a given
polyline by a “divide and conquer” technique, where the far-
thest distance vertex is used to select the divide point in the
polyline. Given a begin_vertex pi and an end_vertex p j , if
the greatest distance from some vertex pk to the line seg-
ment pi p j is greater than the tolerance ε, break the trajec-
tory into two pieces at pk and recursively call the proce-
dure on each of the subchains pi pk and pk p j ; Otherwise,
the vertices between pi and p j are removed from trajec-
tory and this segment is simplified as a straight line pi p j .
The pseudo-code of DP is shown in Algorithm 1. Assuming
that the trajectory T has n vertices, the algorithm is initially
called with the parameters (T , ε, 1, n).

The DP and optimal algorithms use the distance between
a point and a line (denoted M above) and different variants
of the algorithms result from using different distance func-
tions. For a comparison of the time complexities of the DP
and optimal algorithms, see Table 3 in Sect. 6.

Spatio-temporal data reduction with deterministic error bounds 215

Algorithm 1 DP algorithm—LineSimpDP (T , ε, i , j)

Input: Trajectory T , tolerance ε, start vertex index i and
end vertex index j .

Output: Simplified trajectory T ′.
1: for k = i to k = j do
2: Find the first vertex pk farthest from the line pi p j

(i.e., among the ones with the largest distance, select
the first). Denote its distance from the line by dist.

3: end for
4: If dist > ε then
5: LineSimpDP (T , ε, i , k)
6: LineSimpDP (T , ε, k, j)
7: else
8: Remove all vertices from i + 1 to j − 1.
9: return.
10: end if

Observe that the DP algorithm selects in line 2 the first
farthest vertex. As a result, the simplification obtained by the
algorithm is unique.

3 Bounded error queries on simplified trajectories

In this section we will analyze the impact of trajectory
simplification on the error in the query answers. We fo-
cus on the choice of simplification distance functions that
have bounds on the error produced when answering spatio-
temporal queries.

In the first subsection we introduce the types of spatio-
temporal queries that we analyze in the rest of this section
and define the functions to measure the query-answer errors
caused by trajectory simplification. In the second subsection
we define the notion of soundness for a (query-type, dis-
tance) pair, which guarantees a bounded-error answer to the
query, on a bounded error according to the distance; then
we study the soundness of individual (query-type, distance)
pairs. In the third subsection we study the sound distances
for the spatial joins.

3.1 Spatio-temporal queries and their error

When querying simplified trajectories, the answers may de-
viate from those on the original trajectories. To incorporate
trajectory reduction technique in MOD systems, the impre-
cision introduced by line simplification must be managed.
We measure this imprecision by the error of the query an-
swer on the simplified trajectory, compared to that on the
original trajectory. In this subsection, the common spatio-
temporal queries and the corresponding answer-error func-
tions are introduced.

We consider the following five types of spatio-temporal
queries, where_at, when_at, intersect, nearest_neighbor,
and spatial_join. We introduce the semantics of each one
of the operators on a trajectory T = (x1, y1, t1), (x2, y2, t2),
. . ., (xn, yn, tn), as follows:

• where_at (T , t)—returns the expected location (c.f. Def-
inition 1) at time t . If t < t1 or t > tn then the operator
is undefined.

• when_at (T, x, y)—returns the time t at which a mov-
ing object on trajectory T is expected to be at location
(x, y). If (x, y) is not on the route of the trajectory, or the
moving object leaves the location and later returns to it,
then the operator is undefined9. If the object is stationary
at the location, then the operator returns a time interval
[t1, t2]. We envision that the user will enter a when_at
query by clicking a point on a map displayed on the
user’s monitor. The point will become the (x, y) param-
eter to when_at. Intuitively, since there will always be
round-off errors and approximations, if (x, y) input by
the user is not on the route of the trajectory, it is snapped
by the system to the closest point on the route. Alterna-
tively, the system does so only if the input point is closer
than some threshold to the route.

• intersect (T, P, t1, t2)—is true if the trajectory T inter-
sects the polygon10 P between the times t1 and t2. (This
is also called a spatio-temporal range query).

• nearest_neighbor (T, O, t)—The operator is defined for
an arbitrary set of trajectories O , and it returns a trajec-
tory T1 from O . The object moving according to T1, at
time t , is closer than any other object of O to the object
moving according to T .

• spatial_join (O , th)—O is a set of trajectories and the
operator returns the trajectory pairs (T1, T2) such that
their distance (according to some distance functions) is
less than the threshold th. The distance used in the join
may be different than the distance used for simplifica-
tion. This operator will be further discussed in the last
subsection.

Clearly, the composition of these query types can express
more complex queries. For example “Retrieve the 2:p.m. lo-
cation of the moving objects which will intersect the Parks
Pa and Pb between noon and 5:p.m.” (assuming that the
parks are represented as polygons).

Now we define the notion of query answer error bound-
edness for a query type on a trajectory T . Intuitively, the
error of query type q on T is bounded by δ if the difference
between the answer of q on T and the answer of q on a ε-
simplification of T is bounded by δ. The definition of the
difference depends on the query type.

Definition 3 Let T be a trajectory, E be a distance function,
ε be a positive number. For T ′ = S(T, ε, E) we say that
the error of query type q is bounded by δ, if the following
condition is satisfied (the condition depends on the query
type)11:

9 If when_at is defined for a location visited more than once, then it
returns a finite set of time intervals. In this case, the definitions of Et
and soundness become very complex. For simplicity, we omit consid-
eration of this case.

10 For simplicity of exposition we will assume throughout this paper
that the polygons are convex.

11 The spatial_join is separately discussed in the following subsec-
tion.

216 H. Cao et al.

• where_at—For every t for which both T and T ′ are de-
fined, let (x, y) = where_at(T, t) and let (x ′, y′) =
where_at(T ′, t). Then,

√
(x ′ − x)2 + (y′ − y)2 ≤ δ.

Intuitively, this means that for every time t, the Eu-
clidean distance between the locations on T and T ′ at
t is bounded by δ.

• when_at—For a (x ′, y′) for which when_at(T ′, x ′, y′) is
defined, let [t ′b, t ′e] = when_at(T ′, x ′, y′)12. Let t1 be the
time of the trajectory vertex of T ′ immediately before t ′b.
Let t2 be the time of the trajectory vertex of T ′ immedi-
ately after t ′e. Then, for the trajectory point (x, y, t) on
the partial trajectory of T between t1 and t2 for which
(x, y) is closest to (x ′, y′) in terms of the 2D Euclidean
distance, |t − t ′e| ≤ δ and |t − t ′b| ≤ δ; if there are multi-
ple (x, y, t) points for which (x, y) is closest to (x ′, y′),
then |t − t ′e| ≤ δ and |t − t ′b| ≤ δ are satisfied for each
one of them.
Intuitively, this means for every location on T ′ and its
most probable “actual” location (i.e., the closest one)
on the original trajectory, the visiting time difference is
bounded.

• intersect—For any polygon P , if intersect (T ′, P, t1, t2)
is true, then there exists a time t ∈ [t1, t2] such that
the expected location of the original trajectory T at time
t is no further than δ from P ∪ interior of P . Con-
versely, if intersect (T ′, P, t1, t2) is false, then for every
t ∈ [t1, t2], the expected location of the original trajec-
tory T at time t is either outside P , or, if inside, it is
within δ of a side of P (i.e., it does not penetrate P by
more than δ).
Intuitively, this means that if the simplification T ′ inter-
sects P, then T is not further than δ from P; and if T ′
does not intersect P, then T does not intersect P, or in-
tersects it “very little.” Thus, the user, knowing that the
query addresses approximate trajectories, may decide to
adjust the polygon P accordingly.

• nearest_neighbor–Let O be an arbitrary set of trajec-
tories and let o = nearest_neighbor(T, O, t) and let
o′ = nearest_neighbor(T ′, O, t). Let do be the Eu-
clidean distance between o and T at time t , and let do′
be the Euclidean distance between o′ and T at time t .
Then |do − do′ | ≤ δ.
Intuitively, it means that the difference between the dis-
tances (o to T) and (o′ to T) is bounded by δ. In other
words, for any set of trajectories (or moving objects) O,
at any time t, the error of the nearest neighbor query is
at most δ. �	

Given T ′ = S(T, ε, E), we denote by diff (q(T), q
(T ′)) the minimum δ such that the error of query type q is
bounded by δ. The error of a query type q is unbounded if for
some ε0 there is no number δ such that for every trajectory
T , diff(q(T), q(T ′)) ≤ δ; in other words, for ε0, for every δ
there exists a trajectory T such that diff(q(T), q(T ′)) > δ.

12 If T ′ is at (x ′, y′) at a single time instance (i.e., it is not stationary
at the location), then t ′b = t ′e.

The following theorem indicates that the errors of the
intersect and nearest_neighbor query types are bounded if
and only if the error of where_at is bounded.

Theorem 1 For a trajectory T , a real number ε, and a
distance function M, let T ′ = S(T, ε, M). If for every
trajectory T , diff(where_at(T), where_at(T ′)) ≤ δ; then
for every trajectory T diff(intersect(T), intersect(T ′)) ≤ δ
and diff(nearest_neighbor(T), nearest_neighbor(T ′)) ≤ 2δ.
Furthermore, if the query error of where_at is unbounded,
then the query errors of intersect and nearest_neighbor are
also unbounded.

Proof For an arbitrary trajectory T and an arbitrary toler-
ance ε, let T ′ be an ε-simplification of T with respect to M .
Assume that diff (where_at(T), where_at(T ′)) ≤ δ. Then
for every point (x ′, y′, t) ∈ T ′, there is a point (x, y, t) ∈ T
such that the Euclidean distance between (x, y) and (x ′, y′)
is less than δ.

Let P be a polygon. Consider the intersect (T ′, P, t1, t2)
query. If it returns true, then there exists a point (x ′, y′, t ′)
such that (x ′, y′) ∈ P ∩ T ′ and t ′ ∈ [t1, t2]. Due to
diff (where_at (T), where_at (T ′)) ≤ δ, there is a point
(x, y, t ′) ∈ T such that (x, y) is δ-close to (x ′, y′).
This means that (x, y) is no further than ε from {P ∪
interior of P}. Now, suppose that the intersect (T ′, P, t1, t2)
query returns false. That means that T ′ is outside of P .
Therefore, every point of T is either outside of P or at most
within δ of a side of P .

Consider now the nearest_neighbor query. Let O be an
arbitrary set of trajectories. Let l(o, T, t) denote the Eu-
clidean distance between some trajectory o ∈ O and the tra-
jectory T at time t . Let o′ and o be the nearest_neighbors of
T ′ and T , respectively. Based on the fact diff (where_at(T),
where_at(T ′)) ≤ δ and the triangle inequality, we have:
(1) |l(o′, T, t) − l(o′, T ′, t)| ≤ δ and (2) |l(o, T ′, t) −
l(o, T, t)| ≤ δ. Due to the fact that o′ is the nearest
neighbor of T ′ at time t and o is the nearest neighbor of T :
(3)l(o′, T ′, t) ≤ l(o, T ′, t) and (4) l(o, T, t) ≤ l(o′, T, t).
Based on (3), we can open the absolute value in inequality
(2) and obtain l(o′, T ′, t) ≤ l(o, T, t) + δ. Similarly to this
deduction, we obtain l(o, T, t) ≤ l(o′, T ′, t) + δ. Putting
them together, we obtain |l(o, T, t) − l(o′, T ′, t)| ≤ δ.

In the above paragraph we assumed that the trajectories
of O are not simplified. If they are, a similar methodology
can be used to prove that error of the nearest neighbor query
answer is at most 2δ.

Now, assume that the error of where_at is unbounded.
We will show that the errors of the intersect and near-
est_neighbor query types are also unbounded. By definition
of unboundedness, there exists some ε0 such that for every δ
there exists a trajectory T and a time t such that the error of
where_at at time t is bigger than δ. Thus, we can easily find
a polygon P such that T ′ is inside P at time t , but T is more
than δ away from P . Thus, the difference between the inter-
sect query answers on T and on T ′ is bigger than δ. Thus the
error of the intersect query type is unbounded. Similarly, we

Spatio-temporal data reduction with deterministic error bounds 217

can prove that the error of the nearest_neighbor query type is
also unbounded. �	

Now we define two distance functions between trajecto-
ries that will be used extensively in the rest of this paper.

Let pm = (xm, ym, tm) denote a point, and pi , p j de-
note the straight line segment between the vertices pi =
(xi , yi , ti) and p j = (x j , y j , t j) of a trajectory T . The Eu
and Et distances between the pm and the straight line seg-
ment pi , p j are defined formally as follows:

• Eu—The three-dimensional time_uniform distance is
defined when tm is between ti and t j , as follows:
Eu(pm, pi p j) = √

(xm − xc)2 + (ym − yc)2 where
pc = (xc, yc, tc) is the unique point on pi p j which has
the same time value as pm (i.e., tc = tm). In other words,
the time_uniform distance is the 2D Euclidean distance
between pm and the 3D point on pi p j at time tm .

• Et —The time distance is defined as: Et (pm, pi p j) =
|tm − tc|, where tc is the time of the point on p′

i p′
j (which

is the X-Y projection of pi p j) that is closest in terms of
the 2D Euclidean distance to p′

m (the X-Y projection of
pm); if the closest point on p′

i p′
j has more than one time

point, choose the one that maximizes |tm−tc|. Intuitively,
to find the time distance between pm and the line seg-
ment proceed as follows. First project both on the X-Y
plane, then find the point p′

c on the projected segment
which is closest to p′

m , and finally find the difference be-
tween the times of pc and pm .

It is easy to see that for a trajectory T and its simplifica-
tion T ′, the error of where_at is bounded by δ if and only if
DEu (T, T ′) ≤ δ. Similarly, the error of when_at is bounded
by δ if and only if DEt (T, T ′) ≤ δ.

3.2 Soundness of the distances

In this subsection we introduce a scheme of managing the
query error introduced by the trajectory simplification, based
on the following observation. If the users can predict a pri-
ori, namely before data reduction, the maximum error δ of
answers to queries for each given simplification tolerance ε,
then the simplification can be restricted to tolerances ε for
which the error is acceptable. Therefore, the scheme is to
simplify trajectories by a distance that allows an acceptable
error in queries. In this scheme the maximum error depends
on the simplification tolerance, but not on the individual tra-
jectory. This scheme is possible only if the distance is sound.
We say that distance function E is sound for q when there
exists a bound δ on the error function between the two an-
swers. The formal definition of soundness is as follows:

Definition 4 A distance function E is sound for the re-
spective query q if it satisfies the following: For every
simplification tolerance ε, there exists a positive number
δ, called the answer error bound, such that for every tra-
jectory T and for every simplification T ′ = S(T, ε, E),
diff(q(T), q(T ′)) ≤ δ.

In addition to the Eu and Et distances, the generic Eu-
clidean distance is of interest since it is more efficient in
terms of data reduction, as we will demonstrate shortly (and
by experiments later). We consider two possibilities. One
possibility is to simplify the 3D trajectory using the Eu-
clidean distance. Another possibility is to use a 2D simpli-
fication by projecting the trajectory onto its 2D route, and
then raising back to 3D by considering the time of the ver-
tices in the simplified route. Formally, let pm = (xm, ym, tm)
denote a point, and pi , p j denote the straight line segment
between the vertices pi = (xi , yi , ti) and p j = (x j , y j , t j)
of a trajectory T . The distances, denoted as E2 and E3, are
formally defined as follows:

• E2—The two-dimensional Euclidean distance, defined
as: E2(pm, pi p j) = √

(x ′
m − x ′

c)
2 + (y′

m − y′
c)

2, where
p′

c = (x ′
c, y′

c) is the point on the 2D straight line segment
p′

i p′
j (i.e., the 2D projection of pi p j) which is closest in

terms of Euclidean distance to p′
m = (x ′

m, y′
m) (the 2D

projection of pm = (xm, ym, tm)).
• E3—The three-dimensional Euclidean distance, defined

as: E3(pm, pi p j)

= √
(xm − xc)2 + (ym − yc)2 + (tm − tc)2 where pc =

(xc, yc, tc) is the point on pi p j which is closest to pm =
(xm, ym, tm).

The distance functions E2, E3, and Eu are illustrated in
Fig. 3. As a consequence of their respective definitions, the
relationships among E2, E3, and Eu , are expressed by the
following claim:

Property 1 Given a 3D point pm and a line segment pi p j
between two vertices of a trajectory, if tm is between ti and
t j , then E2(pm, pi p j) ≤ E3(pm, pi p j) ≤ Eu(pm, pi p j).

Et does not have a straightforward relationship to the
other distances. It can be shown that Et is smaller than the
Eu divided by the average speed between pi and p j .

Property 1 implies that when E2 is used in a simplifica-
tion with a given tolerance ε, more vertices of a trajectory
will be eliminated than when E3 is used with ε. Similarly,

Fig. 3 The relationship among the distances

218 H. Cao et al.

when using the E3 distance more vertices will be eliminated
than when using the Eu distance with the same tolerance.
More formally, as a consequence of Property 1, we have (Let
‖T ‖ denote the “size”, i.e., the number of vertices of a tra-
jectory T):

Corollary 1 Let T be a trajectory and ε a tolerance. Let
T ′

2 = S(T, ε, E2), T ′
3 = S(T, ε, E3), and T ′

u = S(T, ε, Eu)

denote the respective optimal ε-simplifications. Then ‖T ′
2‖≤ ‖T ′

3‖ ≤ ‖T ′
u‖.

The order relationship in the Property 1 can be extended
on generic distances. Consider two distances M1 and M2.
Suppose that for every pair of trajectories T and T ′, if
M1(T, T ′) ≤ ε, then M2(T, T ′) ≤ ε. In this case, we say
that distance M1 is weaker than M2, denoted as M1 ≤ M2.

The following relationship among distances is also a
consequence of Property 1.

Corollary 2 Eu ≤ E3 ≤ E2

The following subsumption relationships hold among
distances with respect to soundness.

Theorem 2 For two distances M1 and M2, if M1 ≤ M2,
then for every query type Q for which M2 is sound, M1 is
also sound.

Proof Given two distances M1 ≤ M2, for every trajec-
tory T and every tolerance ε1, if T ′ is a ε-simplification
of T with respect to M1, i.e., T ′ ∈ S(T, ε, M1), then
T ′ ∈ S(T, ε, M2). So, if M2 is sound for Q with error bound
δ = f (ε), M1 is also sound for Q with the same error bound
δ. �	

Throughout the rest of this section we inspect the sound-
ness of the distances E2, E3, Eu , and Et with respect to the
query types. There are 16 possible combinations of distances
and query types (four distances and four types). However,
we can reduce the number of combinations to inspect by the
subsumption relationships among query types and among
distances. In this section, we only prove the soundness or
unsoundness of some necessary combinations individually.
It turns out that no single distance introduced is sound for
all the query types. Thus, we introduce simplification with
multiple distances and prove that the distance combining Eu
and Et is sound for all query types.

We begin with E3 and where_at.

Theorem 3 The E3 distance function is not sound for the
where_at query type.

Proof Consider the following counterexample. Assume that
an object m moves along the x-axis. For every tolerance ε
and every answer error bound δ, suppose that the start loca-
tion and time is (0, 0, 0) and since then m moves 10δ miles
in ε min then stops there in next ε min. Then we have trajec-
tory that represents the motion of m as T = 〈p1(0, 0, 0),
p2(10δ, 0, ε), p3(10δ, 0, 2ε)〉. T can be simplified by E3

Fig. 4 Counter examples. (The original trajectories are drawn in solid
lines and the simplifications in dashed lines)

and ε as T ′ = 〈 (0,0,0), (10δ,0,2ε)〉. However, diff (where_at
(T, ε), where_at (T ′, ε)) = diff (10δ, 0), (5δ, 0)) = 5δ >
δ. Figure 4(a) shows an instance of this counterexample with
ε = 1 and δ = 1. �	

Together with Corollary 2 and Theorem 2, the above the-
orem implies that

Corollary 3 The E2 distance function is not sound for the
where_at query type.

However:

Theorem 4 The Eu distance is sound for the where_at
query type. Furthermore, for any simplification tolerance ε,
the answer-error-bound of where_at is equal to ε.

Proof Straightforward. �	
Together with Theorem 1, the above theorem implies

Corollary 4 The Eu distance function is sound for the in-
tersect and nearest_neighbor query types.

It can also be shown that for the distance Eu , for any
simplification tolerance ε, the answer-error-bound of the in-
tersect query type is equal to ε. The bound of the near-
est_neighbor query type depends on whether or not the set
of trajectories O is simplified; it is ε if O is not simplified,
and 2ε if it is.

Theorem 5 The Eu distance function is not sound for the
query type when_at.

Proof A counterexample is as follows. Assume that an
object m moves along the x-axis. For every tolerance ε and
every answer error bound δ, there exists a trajectory T with
three vertices 〈p1(0, 0, 0), p2(ε, 0, 10δ), p3(2ε, 0, 11δ)〉.
Figure 4(b) shows an instance of this counterexample with
ε = 1 and δ = 1. Consider an Eu ε-simplification T ′
which consists of the two vertices p1 and p3. If we query
when_at(T ′, ε, 0), then the answer is 5.5δ. Observe that
(ε, 0) is also on the route of T and when_at(T ′, ε, 0) = 10δ.
So, the error between two when_at query answers is
4.5δ > δ. �	
Theorem 6 The Et distance function is sound for the
when_at query type. Furthermore, for any simplification tol-
erance ε, the answer-error-bound of when_at is equal to ε.

Spatio-temporal data reduction with deterministic error bounds 219

Table 1 The soundness of the distances for spatio-temporal query
types

Where_at When_at Intersect Nearest Neighbor

E2 No No No No
E3 No No No No
Eu Yes No Yes Yes
Et No Yes No No

Proof Straightforward. �	
Theorem 7 The Et distance function is not sound for the
where_at query type.

Proof We prove this theorem using the counterexample of
Theorem 3. Clearly, that simplification is also an Et simplifi-
cation. However, the answer error is unbounded, as we have
illustrated in the proof of theorem 3. �	

We can summarize the above results in Table 1.
Table 1 indicates that, of the distances defined previ-

ously, there is not a single one that is sound for the four
spatio-temporal query types that we have studied. To ob-
tain a distance that is sound for the four spatio-temporal
queries, we proceed as follows. Given two distance func-
tions between trajectories M1 and M2, we define the com-
bined distance, denoted M1 ∧ M2, as: M1 ∧ M2(T, T ′) =
max {M1(T, T ′), M2(T, T ′)}.

The following is easy to prove based on the definitions:

Property 2 M1 ∧ M2 ≤ M1, M1 ∧ M2 ≤ M2

Consequently:

Property 3 For a distance M1 and a distance M2, let the set
of sound operators of M1 be SO(M1) and the set of sound
operators of M2 be SO(M2). Then the distance M1 ∧ M2 is
sound for all the query types in set SO(M1) ∪ SO(M2).

Thus:

Corollary 5 The distance Eu ∧ Et is sound for all the
spatio-temporal query types. For any simplification toler-
ance ε, the answer-error-bound is ε for where_at, when_at,
and intersect, and 2ε for nearest-neighbor.

In conclusion, the appropriate distance to use in a sim-
plification depends on the type of queries expected on the
database of simplified trajectories. If all spatio-temporal
queries are expected, then Eu ∧ Et should be used. If only
where_at, intersect, and nearest_neighbor queries are ex-
pected, then a more concise approximation with the same
answer-error-bound can be achieved by using the Eu dis-
tance. If only when_at queries are expected, then the Et dis-
tance should be used.

3.3 Spatial Join

The spatial join between trajectories is separately discussed
in this section. As mentioned in Sect. 3.1, the definition of

spatial join depends on the distance function between tra-
jectories. For example, two of the most common distance
functions are the Hausdorff distance (defined in Sect. 2) and
the mean square root error(MSRE) defined as

MSRE(T, T ′)= 1
te−ts

∫ te
ts

√
(x(t) − x ′(t))2 + (y(t) − y′(t))2dt

where ts and te are the start time and the end time of the
comparison time period. Intuitively, MSRE is the average
distance between the trajectories.

Definition 5 Let D(T1, T2) be a distance function between
two arbitrary trajectories T1 and T2. A spatial join with dis-
tance function D is called a D-join.

The soundness for the spatial join operation is defined as
follows.

Definition 6 Let D be a distance function. A distance M
is sound for the D-join if it satisfies the following. For ev-
ery real positive number ε, there exists a real number δ
such that for every trajectory T1 and every simplification
T ′

1 = (T1, ε, M) and for every trajectory T2 and every sim-
plification T ′

2 = S(T2, ε, M), |D(T1, T2) − D(T ′
1, T ′

2)| ≤ δ.

Intuitively, this means that if the approximation is
bounded, then the difference between the D-distances is
bounded. So if two original trajectories join, then their ε-
approximations will join, provided that the join distance is
increased by δ.

Theorem 8 Consider a distance function D that is a metric.
Let M be a distance function which is weaker than D (i.e.,
for every pair of trajectories T and T ′, if M(T, T ′) ≤ ε,
then D(T, T ′) ≤ ε). Then M is sound for the D-join.

Proof Let ε be an arbitrary positive real number. Consider a
D-join between two arbitrary trajectories T1 and T2. Let T ′

1
and T ′

2 be the ε-simplifications of T1 and T2 with respect
to M , i.e., M(T1, T ′

1) ≤ ε and M(T2, T ′
2) ≤ ε. We will

show that M is sound, i.e., that |D(T1, T2) − D(T ′
1, T ′

2)| ≤
2ε , by showing that D(T1, T2) − D(T ′

1, T ′
2) ≤ 2ε and

D(T ′
1, T ′

2) − D(T1, T2) ≤ 2ε, which will prove the theorem.
First, D(T1, T ′

1) ≤ ε and D(T2, T ′
2) ≤ ε because M ≤ D.

Meanwhile, since D is a metric, D(T ′
1, T ′

2) ≤ D(T1, T ′
1) +

D(T1, T ′
2) ≤ D(T1, T ′

1) + D(T1, T2) + D(T2, T ′
2), where

both inequalities are based on the triangle inequality. Thus,
D(T ′

1, T ′
2)−D(T1, T2) ≤ D(T1, T ′

1)+D(T2, T ′
2) ≤ 2ε. Sim-

ilarly, we have D(T1, T2)−D(T ′
1, T ′

2) ≤ 2ε. Thus, if we take
δ = 2ε the theorem follows. �	

Together with Corollary 2, Theorem 8 implies

Corollary 6 Eu is sound for E2-join, E3-join, and Eu-join.

Based on Theorem 8, we get

Theorem 9 Eu is sound for MSRE-join.

Proof To prove that Eu is sound for MSRE-join, we need to
prove that:

220 H. Cao et al.

1. MSRE is a metric; and
2. Eu ≤ MSRE.

(1) It is easy to see that MSRE is reflexive and symmet-
ric. We will prove MSRE satisfies the triangle inequality.
Let D(T, T ′) denote the MSRE function between two
arbitrary trajectories. Consider the MSRE distance be-
tween three arbitrary trajectories T1, T2, and T3. Without
loss of generality, we only need to show D(T1, T2) ≤
D(T1, T3) + D(T3, T2). D(T1, T3) + D(T3, T2) =

1
te−ts

∫ te
ts

√
(xT1(t) − xT3(t))

2 + (yT1(t) − yT3(t))
2dt

+ 1
te−ts

∫ te
ts

√
(xT2(t) − xT3(t))

2 + (yT2(t) − yT3(t))
2dt

= 1
te−ts

∫ te
ts

(

√
(xT1(t) − xT3(t))

2 + (yT1(t) − yT3(t))
2

+
√

(xT2(t) − xT3(t))
2 + (yT2(t) − yT3(t))

2)dt

≥ 1
te−ts

∫ te
ts

√
(xT1(t) − xT2(t))

2 + (yT1(t) − yT2(t))
2dt

= D(T1, T2).
(2) We prove Eu ≤ M S RE as follows. For two tra-

jectories T and T ′, Eu(T, T ′) is the maximum distance
between the same-time points on the two trajectories, and
MSRE(T,T’) is the average distance between two such
points. Thus, if Eu(T, T ′) ≤ ε, then clearly MSRE(T,T’)
≤ ε. Therefore, by definition, Eu ≤ MSRE. �	

In summary, Eu is sound for the spatial join with E2, E3,
Eu , or MSRE functions.

4 Uncertainty and possibility queries

In the previous section we considered the same spatio-
temporal queries applied to both, the original trajectories,
and their simplification. The type of answer was also identi-
cal in both cases. When applied to the simplified trajectories,
the user knows that there may be an error and, if the distance
function used in the simplification is sound, that the error
is bounded. But there is no support in the query language
for dealing with this error. In this section we consider how
to introduce such support. In other words, we propose con-
structs in the query language and in the format of answers,
which take into consideration the uncertainty introduced by
the possible error.

Consider spatio-temporal queries that pertain to the orig-
inal trajectories, posed after the original trajectories have
been deleted, and when only the simplifications according to
some sound distance M are available. For example, consider
the query where_at(T,t) on the original trajectory T , and sup-
pose that only the simplification T ′ is available. Then, we
propose that the query returns an “uncertainty disc” around
the point-location where_at(T’,t). In other words, the query
can be computed on the simplified trajectory, and an uncer-
tainty disc with M-radius δ (the answer-error-bound) can be
wrapped around the answer to the query where_at(T’,t); the
answer to the query where_at (T,t) is guaranteed to be within

Fig. 5 The results of possibly_where_at and possibly_when_at

this uncertainty disc.13 Observe that this scheme works only
if the distance M is sound. Observe also that the answer
to the query is uncertain, i.e., instead of a point location
it provides a region. Then the proper name of the query is
“Possibly_where_at.” In other words, the semantics of the
query Possibly_where_at includes uncertainty. The same ar-
guments apply to Possibly_when_at. The result will be a line
segment on the time axis.

Now consider range queries. We will define a set of
query operators that pertain to the original trajectories, but
will be processed on the simplified trajectories. For this we
need the notion of a possible-original-trajectory. Given a tra-
jectory T and a distance M , a Possible-Original-Trajectory
POT is a trajectory whose ε-simplification with respect to
M is T . The computation of the set of possible original tra-
jectories of a given trajectory T depends on the distance M ,
and will be discussed later in this section.

We define a set of intersect operators. The location
of a moving object changes continuously, hence one may
ask if the intersect condition is satisfied sometime or al-
ways within a time interval [t1, t2]; due to the uncer-
tainty, the object may possibly satisfy the condition or it
may definitely do so. Thus it can be shown that, in ef-
fect, we have a total of six operators for spatio-temporal
range queries(Sometime_Possibly_Intersect is equivalent to
Possibly_Sometime_Intersect, Definitely_Always_Intersect
is equivalent to Always_Definitely_Intersect). They are de-
fined as follows for a given simplified trajectory T , polygon
(region) R, and time interval [t1, t2]:
• Possibly_Sometime_Intersect (T , R, t1, t2)—is true iff

there exist a possible original trajectory P OT and there
exists a time t ∈ [t1, t2] such that P OT at the time t is
in the region R.

• Possibly_Always_Intersect (T , R, t1, t2)—is true iff
there exists a possible original trajectory P OT of the tra-
jectory T which is in the region R for every t in [t1, t2].

• Always_Possibly_Intersect (T , R, t1, t2)—is true iff for
every time point t ∈ [t1, t2], there exists a P OT which
intersects the region R at t (for different t’s the POT’s
may be different).

13 For the uncertainty disk of the vertices this is “too safe,” since we
know the actual location. For simplicity of the presentation we do not
elaborate on this caveat.

Spatio-temporal data reduction with deterministic error bounds 221

• Always_Definitely_Intersect (T , R, t1,t2)—is true iff at
every time t ∈ [t1, t2], every possible original trajectory
P OT of the trajectory T , is in the region R.

• Definitely_Sometime_Intersect (T , R, t1, t2)—is true iff
for every possible original trajectory P OT of the trajec-
tory T , there exists some time t ∈ [t1, t2] in which P OT
is in the region R.

• Sometime_Definitely_Intersect (T , R, t1, t2)—is true iff
there exists a time point t ∈ [t1, t2] at which every pos-
sible route P OT of the trajectory T is inside the region
R.

The evaluation algorithms for the above operators de-
pend on the distance M , and the development of efficient al-
gorithms for a distance may involve extensive future work.
However, for the distance Eu efficient algorithms were de-
veloped previously (see [17]), in a different context, specif-
ically, uncertain trajectories. There, for a trajectory T and an
uncertainty ε (which can be interpreted as the simplification
tolerance), we defined a geometric 3D body called the trajec-
tory volume. This corresponds to the set of possible original
trajectories of an ε-simplification T . Then we discussed the
equivalence and containment of operators (e.g., it turns out
that for convex regions Possibly_Always_Intersects is true
if and only if Always_Possibly_Intersects), and this discus-
sion carries over verbatim to the present case of querying
simplified trajectories. Similarly, we discussed storage of the
trajectory volume in a spatial access method, and then pro-
cessing of the operators via a filter and refinement strategy.
Then we provided computational geometry algorithms for
the refinement stage for each one of the operators. These re-
sults also carry over verbatim to the present case of querying
simplified trajectories.

5 Aging of the trajectories

Often, the older the information gets, the less precision may
be necessary. Thus it is possible that the coarseness of the
trajectory approximation is allowed to increase as time pro-
gresses. In this case a data aging mechanism can be intro-
duced.

Assume, for example, that the error tolerance of the tra-
jectories is to be ≤ 0.1 mile after the first month; ≤ 0.2
after the second month; ≤ 0.3 after the third month; etc.
Then, one can simplify the original trajectory T to T ′ =
S(T, 0.1, M) after the first month, to T ′′ = S(T, 0.2, M)
after the second month, etc. See Fig. 6 for an illustration.
However, a problem arises. At the beginning of the second
month one needs to generate T ′′ = S(T, 0.2, M), but the
original trajectory T does not exist anymore, only T ′ =
S(T, 0.1, M). By further simplifying the simplified trajec-
tory T ′ can one obtain the trajectory T ′′, or a same-size tra-
jectory? It turns out that the answer to this question depends
on the simplification algorithm. Surprisingly, we have not
found a paper that addresses this issue in the existing line
simplification literature (e.g., [9–14]).

Fig. 6 The aging of a trajectory. The sold lines represent the origi-
nal trajectory T . The dashed lines represent a DP simplified trajectory
T ′ = S(T, 0.1, M). The dashed-dot line represents a coarser DP sim-
plification T ′′ = S(T, 0.2, M). Note that T ′′ can also be obtained by
DP simplifying T ′ with tolerance 0.2

Various levels of precision are also used in Geographic
Information Systems when generating maps of different
scales ([14, 23]) and in surface modeling ([24]). In this sec-
tion, we address the problem of obtaining a lower level of
precision from a higher one. We call this data aging.

Now we define this notion precisely. Denote by SA the
line simplification produced by a simplification algorithm A.

Definition 7 A simplification algorithm A is aging friendly
with respect to a distance function M if for every ε1 and
every ε2 such that ε1 < ε2, and for every trajectory T ,
SA(T, ε2, M) = SA(SA(T, ε1, M), ε2, M)

Now suppose that the error tolerances are ε1 < ε2 <
ε3 < . . . for periods of time P1 < P2 < P3 < If an al-
gorithm is aging friendly, then the simplification for period
Pi (namely the Pi trajectories) can be obtained by simpli-
fying the Pi−1 trajectories using the tolerance εi . The result
will be the same as if the original trajectories were simplified
by the algorithm using the tolerance εi .

An optimal line simplification algorithm is an algorithm
that produces an optimal line simplification for every input
trajectory.

Theorem 10 An optimal line simplification algorithm is not
aging-friendly with respect to the E2 distance.

Proof (By construction) Consider the example shown in
Fig. 7. The original trajectory T consists of vertices abcde.
The coordinates of the trajectory vertices are a = (0,0, 0),
b = (0.5,2,1), c = (6,3,2), d = (11.5,2, 3), e = (12,0, 4).
The 2D projection of this trajectory is shown in Fig. 7a. Let
ε1 = 1, ε2 = 1.6, and the distance M be E2. The Euclidean
distances from the (X, Y) locations of the vertices to the 2D
lines are listed in Fig. 7b. The optimal ε1-simplification is
T ′ = abde. If we continue to simplify T ′ optimally with
ε2 = 1.6, the resulting trajectory T ′′ is still abde (connected

Fig. 7 Counter example to the aging friendliness of the optimal sim-
plification with respect to E2

222 H. Cao et al.

by the double lines in Fig. 7a). However, the optimal ε2-
simplification of T is ace. Thus, T ′′ is not an optimal ε2-
simplification of T . �	

Similarly, we can prove that the optimal algorithm is not
aging friendly with respect to Eu by constructing a simi-
lar example shown in Fig. 8. Assume that the object moves
along the X-axis and the original trajectory T consists of
vertices abcde. The coordinates of these trajectory vertices
are a = (0,0,0), b = (2,0,.5), c = (3,0,6), d = (2,0, 11.5),
e = (0,0, 12). This trajectory is shown in Fig. 8(a). Let
ε1 = 1, ε2 = 1.8, and the distance M be Eu . In this ex-
ample, S(T, ε2, Eu) is ace whereas S(S(T, ε1, Eu), ε2, Eu)
is abde. Therefore,

Theorem 11 An optimal line simplification algorithm is not
aging-friendly with respect to the Eu distance.

The previous theorems indicate that T ′′ in the proofs is
not an optimal ε2-simplification of T . In fact, it is easy to
see that T ′′ is not even an optimal (ε1 + ε2)-simplification
of T . Furthermore, Soptimal(Soptimal(T, ε1, M), ε2, M) may
not even be an ε2-simplification of T (let alone an opti-
mal one). To see this, let the original trajectory T , shown in
Fig. 9, consist of vertices abcdefghi, where a = (0,0,0), b =
(0,1,1), c = (1,1,2), d = (1,2.2,3), e = (2,2,4), f = (3,2.2,5),
g = (3,1,6). h = (4,1,7), i = (4,0,8). Let ε1 = 0.85, ε2 = 2,
and the distance M be E2. Now, consider simplifying T with
ε1. The resulting trajectory T ′ has vertices aei . Further sim-
plifying T ′ with ε2 = 2, we get T ′′ = ai . T ′′ is not a ε2-
simplification of T since the distance from vertex d to the
line ai is larger than ε2.

Now consider the DP algorithm [12].

Theorem 12 The DP algorithm (Algorithm 1) is aging
friendly with respect to any distance function.

Proof Let M be a distance function, let ε1 < ε2 be two pos-
itive real numbers, and let T be a trajectory. We will prove
the theorem by total induction on the number of vertices of
T .

Fig. 8 Counter example to the aging friendliness of the optimal sim-
plification with respect to Eu

Fig. 9 An example of T ′′ which is not an ε2-simplification of T

1.) (Base Case:) For a trajectory T with one or two ver-
tices the simplification is identical to the original trajec-
tory. Consider a trajectory T = 〈P1, P2, P3〉 (n = 3).
If the distance from P2 to P1 P3 is shorter than ε1,
then S(T, ε1, M) = 〈P1, P3〉. Obviously S(T, ε2, M) and
S(S(T, ε1, M), ε2, M)) are 〈P1, P3〉 too; If the distance
from P2 to P1 P3 is larger than ε1, then S(T, ε1, M) = T ,
so = S(S(T, ε1, M), ε2, M)) = S(T, ε2, M).
2.) (Hypothesis:) Assume that the proposition is true for ev-
ery trajectory T which has n or less vertices.
3.)(Step:) Consider a trajectory with n + 1 vertices. Let
dist denote the maximum distance between some vertex
Pi on T and the straight line P1 Pn+1. If dist < ε2, then
S(T, ε2, M) and S(S(T, ε1, M), ε2, M)) are the same
straight line segment—P1 Pn+1.

On the other hand, if dist > ε2 > ε1, let Pi be the first
vertex that is farthest from P1 Pn+1. Regardless whether the
DP algorithm has ε1 or ε2 as a tolerance, it will split the
trajectory T into two segments P1 Pi and Pi Pn+1, each of
which has ≤ n vertices and, consequently, falls into the in-
ductive hypothesis case. �	

6 Experimental study

In this section we give a description of our experimental re-
sults and the conclusions based on them. In the first subsec-
tion we describe the setting for the experiments, namely the
input datasets, the methodology, and the environment. Then,
in the following subsection, we compare the errors of the
line simplification and the wavelet transform. We also an-
alyze the data reduction obtained by the different distances
and by two simplification methods, the DP algorithm and the
optimal one. Finally, We compare the execution times of the
DP algorithm and the optimal one.

6.1 Datasets and methodology

We used two datasets in our experiment, both of which are
generated based on real data. One dataset, denoted D1, rep-
resents the past motion, and the other one, denoted D2, rep-
resents the estimation of future motion. A D1 trajectory is a
sequence of (x, y, t) vertices representing a trace of the GPS
points recorded by the on-board GPS device. A D2 trajec-
tory is a sequence of vertices describing the motion plan of
an object. It is constructed as follows. Suppose that we have
a set of locations that the object is going to visit, and we

Spatio-temporal data reduction with deterministic error bounds 223

assume that in between these locations the object is mov-
ing along the shortest path. Given an electronic map, we
first find the route of future trajectory as the shortest path
along the “to-be-visited” locations. Then, we compute the
arrival time of each vertex in the route using the average
speed in that block(which is provided in the map). The time
of the first trajectory vertex is given as the beginning time
of the trajectory. D1 trajectories are denser than D2 trajec-
tories in the sense that they have more vertices per time
unit.

The D2 trajectory dataset has 1,000 trajectories gener-
ated from real GDT electronic maps of 10 counties around
Chicago, Illinois. Given two random points on the map, for
a start location and a destination, and a random start time
of the trip, we used an Avenue14 script to create a trajec-
tory with optimal drive time, using the construction method
mentioned above. The average number of vertices per tra-
jectory is 418. The average length of a trajectory is 45.13
miles. The longest trajectory is 306.82 miles long, and the
shortest one is 1.7325 miles. The lengths of trajectory seg-
ments also vary. However, Nearly 65% of segments’ lengths
are less then 0.1 mile and only 0.2% of them are larger than
1 mile.

The other dataset consists of 38 D1 trajectories which
are obtained from the on-board GPS receivers on the UCLA
campus shuttle buses. The location was sampled every sec-
ond15. The data was collected on April 24, 2002. Each tra-
jectory represents a continuous trip of a UCLA campus
shuttle-bus on that day. The average number of vertices per
trajectory is 7085 and the average length of a trajectory is
16.352 miles.

The data reduction is expressed by the reduction ratio
(rr), which is number of vertices of the simplified trajec-
tory / number of vertices of the original trajectory (i.e., the
trajectory before simplification). In other words, the stor-
age savings of the simplification is 1 − rr . For each data
reduction experiment we varied the simplification tolerance
ε from 0.05 mile to 1 mile.

However, we cannot compare the reduction ratio be-
tween the line simplification and other data compression
schemes directly. As we mentioned, only line simplifica-
tion can provide deterministic error bounds a priori. For
many other methods, we can only measure the maximum
error and the average error for a given reduction ratio.
To make the comparison fair, we also combined the two
measures as one ratio, producing a normalized figure of
merit FOM = rr × ie. Where ie is the integral error
(IE) between the original trajectory and the simplified tra-
jectory with respect to the distance function used in the
simplification.

All experiments reported were performed on a Pentium
III 866MHz machine with 512MB of SDRAM main mem-
ory, running on Suse Linux.

14 Avenue is the programming environment of the ArcView GIS.
15 For more information about UCLA shuttle-bus trajectories, please

visit http://www.cs.ucla.edu/ cjlai/bustrack/

Table 2 The average MSRE and Eu errors for varying compression
ratios

MSRE Eu

Ratios DP Wavelet DP Wavelet

D1 trajectories
1% 0.0267 0.0410 ≈0.098 0.522
2% 0.0124 0.0203 ≈0.051 0.272
5% 0.0032 0.0076 ≈0.013 0.168
10% 0.0011 0.0035 ≈0.004 0.037

D2 trajectories
1% 0.7182 1.917 ≈2.542 77.61
2% 0.3045 0.944 ≈1.036 23.65
5% 0.1599 0.363 ≈0.564 4.29
10 % 0.0984 0.176 ≈0.350 1.97

6.2 Experimental results

6.2.1 Line simplification vs. wavelet

First, we compared the errors of wavelets and line simpli-
fication as measured by the MSRE and Eu distances. It is
important to observe that wavelets do not provide a bound
on the error, but we measured the error for every compres-
sion ratio obtained by wavelets. We used the Haar wavelets
variant [16] and the DP algorithm in the comparison. The
wavelets method has been shown to outperform others such
as DFT and DCT [16, 25]. The results of this comparison are
shown in Table 2. It shows that the error of the DP algorithm
is consistently lower than that of wavelets. According to the
MSRE, DP is at most 65% of wavelet, and according to Eu
it is at most 20%.

Figure 10 shows the average figures of merit as the
functions of simplification tolerance or maximum error of
wavelet approximation. One can observe that the DP algo-
rithm nearly outperforms the Haar wavelet everywhere ex-
cept the tolerance region between 0 and 0.3 for the future
trajectory dataset. However, a close look at the reduction ra-
tios in that region reveals that the Haar wavelet can only re-
duce the trajectory size to 45–88%. On the contrary, the DP
simplification reduces the trajectories to 10–50%. The haar
wavelet has better FOM in that region just because it nearly
does not reduce those future trajectories.

6.2.2 Douglas–Peucker vs. optimal algorithms

An optimal simplification algorithm, regardless of the dis-
tance functions chosen, yields the most concise simplifica-
tions for trajectories. However, in practice, one is also inter-
ested in the performance (running time) aspect. Using our
datasets, we compared the savings and the performance of
the optimal algorithms and the DP algorithm, with E2 and
Eu , the lower bound distance and upper bound distance on
savings in Corollary 1. We used the algorithm of Chan and
Chin(CC) as given in [10] in the performance comparison,
which is the fastest one for the E2 distance.

Figure 11 presents the comparisons of the average sav-
ings (reduction in size ratio of original/simplified trajectory)

224 H. Cao et al.

 0.00024

 0.00026

 0.00028

 0.0003

 0.00032

 0.00034

 0.00036

 0.00038

 0.0004

 0.00042

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
ig

ur
e

of
 m

er
it

Toleranceε/maximum error

haar wavelet DP

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
ig

ur
e

of
 m

er
it

Toleranceε/maximum error

haar wavelet DP

Fig. 10 The average figures of merit(FOM) of the Haar wavelet and the DP line simplification. Eu distance is used in the comparison

obtained by each of the algorithms. We have observed that
the biggest difference between the savings generated by the
two algorithms is only 6.75%, when the distance is Eu and
tolerance is ε = 0.1 mile for the D2 trajectories.

Next, we compared the time-performance of the optimal
and the DP algorithms. The time complexities of these
algorithms for the various distances are given in Table 3 (al-
gorithms for E2, E3, and Eu were studied more extensively
in the literature, and therefore the time complexities com-
pared with that of the generic algorithm were improved).
The DP algorithm has better performance asymptotically
in all cases. We have also experimentally compared the
running time for the optimal and DP algorithms for the
E2 distance function (for the other distances, the optimal
algorithms will fall farther behind the DP heuristic). The
experiments were carried out on the D1 trajectories dataset
and the results were averaged over all trajectories. The
experimental results are summarized in Table 4. As the
results indicate, the DP algorithm is between 8546 and
67,846 times faster than the optimal algorithm, with the
advantage of DP increasing with the tolerance ε. For the D2
trajectories, the DP algorithm is still at least 35–444 times
faster, according to the given tolerances.

In conclusion, the storage savings of both methods
are close, but the DP algorithm is much faster. For some
trajectories (i.e., the GPS traces in the UCLA bus dataset),
the DP algorithm can even be approximately 104 times faster
than the optimal algorithm.

6.2.3 Reduction performance of distance functions

We also investigated the nature of the savings of each of the
four distances E2, E3, Eu , and Et

16 and the combined dis-
tance Eu ∧ Et . Figure 12 presents the average size of the
reduced trajectory as a percentage of that of the original av-
erage trajectory, for each one of the distances. First, for all
distances, the reduction ratio monotonically decreases as the
value of ε increases. One can also observe that Corollary 1

16 In order to plot Et on the same graph as the other distances, the tol-
erances of Et are normalized to distance by dividing the time-tolerance
ε by the average speed of the trajectory.

Table 3 Time complexities of the DP algorithm and the optimal algo-
rithms

DP Optimal

E2 O(n log n) O(n2)

Eu and E3 O(n2) O(n2 log n)

generic(arbitrary distance) O(n2) O(n3)

is quantified by the experiments. Namely, E2 has more sav-
ings than E3, and E3 has more savings than Eu , for the same
simplification tolerance. Additionally, observe that each of
Eu and Et alone reduces the trajectories more than Et ∧ Eu
for the same tolerance (as indicated by Property 2).

Another observation concerns the comparison of dis-
tance functions in terms of their data reduction. For DP on
the D1 trajectories, Eu achieves a data reduction which is
five to six times higher than Et and Eu ∧ Et for the same
simplification tolerance (see Fig. 12(a)). For the other cases,
the differences are much smaller.

For the D1 trajectories(c.f. Fig. 12(a) and (b)), in all
the cases, the reduction obtained by the optimal algorithm
can be several times higher than the reduction of the DP
heuristic, with the exact value depending on the distance and
the tolerance. However, the savings of both methods is over
90%. Another observation is that the DP heuristic does not
reduce the data as much as the Et and the Eu ∧ Et distances.
Specifically, we see that for the optimal algorithm the sav-
ings for these distances ranges from 98.4–99.6% depending
on the tolerance ε. However, for the DP heuristic, this range
is 90.5–94%.

Table 4 Comparing the per trajectory average running time of the op-
timal(OP) and the DP algorithm(DP), using E2

ε(mile) 0.05 0.1 0.2 0.5 1

D1 trajectories
OP(ms) 13118 32228 42768 42625 42336
DP(ms) 1.535 1.136 0.63 0.641 0.624

D2 trajectories
OP(ms) 35.899 47.347 65.980 116.978 286.273
DP(ms) 1.018 0.935 0.862 0.739 0.644

Spatio-temporal data reduction with deterministic error bounds 225

0

5

10

15

20

25

30

35

40

45

50

0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1

P
er

ce
nt

ag
e

of
 r

ed
uc

ed
 tr

aj
ec

to
ry

/o
rig

in
al

 tr
aj

ec
to

ry

ε

Optimal E2
DP E2

0

10

20

30

40

50

60

70

80

90

100

0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1

P
er

ce
nt

ag
e

of
 r

ed
uc

ed
 tr

aj
ec

to
ry

/o
rig

in
al

 tr
aj

ec
to

ry

ε

Optimal Eu
DP Eu

0

0.5

1

1.5

2

2.5

3

3.5

4

0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1

P
er

ce
nt

ag
e

of
 r

ed
uc

ed
 tr

aj
ec

to
ry

/o
rig

in
al

 tr
aj

ec
to

ry

ε

Optimal E2
DP E2

0

1

2

3

4

5

6

7

8

9

0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1

P
er

ce
nt

ag
e

of
 r

ed
uc

ed
 tr

aj
ec

to
ry

/o
rig

in
al

 tr
aj

ec
to

ry

ε

Optimal Eu
DP Eu

Fig. 11 Comparison of the DP algorithm and the optimal algorithm on reduction savings

Fig. 12(c) and Fig. 12(d) depict the reduction ratios for
the D2 trajectory dataset. Similar reduction patterns to those
for the D1 trajectories are observed. Due to the “sparse” na-
ture of the D2 trajectories (they only use one trajectory ver-
tex to describe the motion on a street block), the savings is
not as large as those for the D1 trajectories. To achieve sig-
nificant savings, for example 9/10 of the original trajectories,
one has to select a tolerance which is between 0.3 miles to
0.4 miles.

7 Related work

Line simplification has been well-studied from various per-
spectives: geographic information systems [11, 14]; digital
image analysis [26]; and computational geometry [9, 10].
There are two variants of the problem: (1). min-# problem—
given a tolerance ε, compute an approximation of original
polygonal chain (polyline) C , with smallest number of ver-
tices kmin ; and (2). min-ε problem—given a number of ver-
tices k (for the reduced polyline), compute an approximation
of the original polyline C with at most k vertices and min-
imal error εmin . Our approach to the trajectory reduction is
a min-# problem, since our goal was to to obtain a reduc-
tion which ensures a bound on the error of the answer to the
important spatio-temporal queries for all the trajectories in a
moving objects database.

Most of the works on line simplification [9, 10] fol-
low the graph-theoretic approach, as introduced by Imai and

Iri [13]. The optimal algorithms for simplifying 2D polyg-
onal chains run in O(n2) time for any Euclidian metric
(O(n4/3+δ) for L1 and L∞ metrics [9]). As we have demon-
strated, for our problem domain Douglas–Peuker algorithm
produces simplification results which are very close to the
optimal ones [10] except for Et , and it has much better run-
ning time.

Unlike previous work, we study line simplification from
the data management perspective for the spatio-temporal do-
main. We focus on the impact that the simplification has
on the errors to query answers, due to combining the spa-
tial and temporal domains. Thus, we propose the concept of
soundness of the data reduction mechanism, and we analyze
the soundness of several (distance-function, query-type)
combinations. Additionally, we analyzed the data reduc-
tion power of line simplification on trajectories of moving
objects.

Data compression is a very popular topic in the database
research (e.g., [27, 28]). The techniques are targeted to-
ward reduced storage requirements and improved I/O per-
formance. When it comes to generating the answers to the
queries, there are two main categories of approaches: 1.
The data is decompressed when answering a query [29];
and 2. The compressed data is used to answer the query,
and the answer contains some errors [15, 30, 31]. Our ap-
proach is lossy (i.e., we do not recover the original trajec-
tories after simplification), and we aim at utilizing the re-
duced/simplified trajectories to get a faster response. Thus,

226 H. Cao et al.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%
 s

im
pl

ifi
ed

 tr
aj

ec
to

ry
/o

rig
in

al
 tr

aj
ec

to
ry

E2
E3
Eu
Et

Eu ∧ Et

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%
 s

im
pl

ifi
ed

 tr
aj

ec
to

ry
/o

rig
in

al
 tr

aj
ec

to
ry

εε

E2
E3
Eu
Et

Eu ∧ Et

 0

 10

 20

 30

 40

 50

 60

.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%
 s

im
pl

ifi
ed

 tr
aj

ec
to

ry
/o

rig
in

al
 tr

aj
ec

to
ry

ε

E2
E3
Eu
Et

Eu ∧ Et

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%
 s

im
pl

ifi
ed

 tr
aj

ec
to

ry
/o

rig
in

al
 tr

aj
ec

to
ry

ε

E2
E3
Eu
Et

Eu ∧ Et

Fig. 12 The reduction ratio with different tolerances

our results cannot be directly compared to the first category
of works above, which decompress the data when answering
the queries. As an example of the second category, wavelets
have recently become a popular paradigm for data reduction
which provides fast and “reasonably approximate” answer
to queries [15, 31]. The original data is reduced to compact
sets of coefficients (wavelet synopses) which are used to an-
swer the queries. The main difference with our approach is
that these works either do not ensure a bound on the error
of the query answers, or ensure an asymptotic/probabilistic
bound on the error. Similar observation holds for the works
which use histograms or sampling to compress the data and
provide a reasonably accurate answer to the queries ([16]
provides a survey of several data reduction techniques). In
contrast, in our approach we address the min-# problem, but
we ensure a deterministic bound on the error of the answers
to spatio-temporal queries. To the best of our knowledge, no
existing papers have done so.

A good survey on location modeling is provided in [32].
Moving objects databases have actively been studied from
several aspects: 1. modeling and querying [33–36]; 2. index-
ing in primal or dual space [37, 38]; 3. uncertainty and its
impact on the queries [17, 39]. A recent collection of arti-
cles addressing various issues in spatio-temporal databases,
also providing a very comprehensive list of references, is
presented in [40]. However, to the best of our knowledge,

none of these works addressed the issue of simplification
from the aspect of storage and processing savings. As we
have demonstrated, the uncertainty can be related to the er-
ror introduced by the simplification and some of the results
[17] can be used to answer spatio-temporal range queries in
our context.

8 Conclusions

In this paper we addressed the problem of spatio-temporal
data reduction, particularly the reduction of sets of (x, y, t)
records aggregated into trajectories. The data reduction is by
line simplification, a technique that guarantees bounds on
the error of the approximated trajectories. Experimental re-
sults have shown that the storage-savings using line simplifi-
cation is very significant. The bounded-error approximation
may produce answers to queries for which the error is un-
bounded. In other words, even though the approximation is
bounded-error, there are query types that when posed on this
approximation produce answers whose error is unbounded.
It turns out that the type of approximations for which this un-
desirable phenomenon, called unsoundness, arises depends
on the distance used to approximate the trajectories and the
type of spatio-temporal query. For example, the Euclidean
distances (in two and three dimensions) are unsound for the

Spatio-temporal data reduction with deterministic error bounds 227

query that asks “where is a particular moving object at a
given time,” i.e., the query, when posed on the simplified tra-
jectory, may produce an answer which is arbitrarily far from
the answer to the same query posed on the original trajec-
tory. In our opinion, soundness is a new important concept
in database research. This paper provides a classification of
(approximation-distance, query-type) pairs into sound and
unsound sets.

Next, we discussed uncertain queries on the database
of approximate trajectories. The uncertainty arises since the
query pertains to the original trajectories, but is processed
on the approximations. We adapted a set of uncertain spatio-
temporal range queries introduced previously (see [17]) for
this purpose. It turns out that the algorithms provided in [17]
work without any change for the range query with the dis-
tance function Eu . Uncertainty operators for other types of
queries is the subject of future work.

We also discussed the aging of trajectories, namely pro-
ducing increasingly compact (but also coarser) approxima-
tions of trajectories over time. Here we discovered that
the optimal simplification algorithm (i.e., the one that pro-
duces minimum-size trajectories for a given error bound)
is “aging-unfriendly” in the sense that it cannot be natu-
rally used in aging. In contrast, the DP heuristic, which pro-
vides good but not optimal approximations, is “friendly.”
This concept of aging-friendliness is explained and defined
in Sect. 5, and we believe that it will also prove important in
other types of approximations. This is the subject of future
work.

Finally, we compared experimentally the performance
of the optimal algorithm versus the DP heuristic. We have
shown that both achieve close storage savings, although
the data-reduction obtained by the optimal algorithm is
several times better. The exact storage saving of each al-
gorithm depends on the distance, on the approximation-
error tolerance, and the type of trajectories. However, ex-
perimental results show that the DP heuristic on trajec-
tories with thousands of (x, y, t) records is also thou-
sands of time faster than the optimal algorithm. We have
also shown that savings of line simplification outperforms
wavelets.

There are several immediate extensions of our present
work. Although we investigated the impact of the uncer-
tainty in the sense of imprecision introduced by the simpli-
fication process, it is interesting to investigate the issues that
arise when the uncertainty of the location technology (e.g.,
GPS) is combined with the one due to the simplification.
Another line of research is how to combine the simplifica-
tion concept with the known constraints of the existing road
networks, and what is the role of the uncertainty in such set-
tings (c.f. [41, 42]). Additionaly, a challenging issue is on-
line simplification, i.e., applying line-simplification before
the whole trajectory becomes available. This is another im-
portant topic of future work.

Acknowledgements We thank the referees and the editor for their in-
sightful comments.

References

1. Hage, C., Jensen, C.S., Pedersen, T.B., Speicys, L., Timko, I.: Inte-
grated data management for mobile services in the real world. In:
Proceedings of the 26th International Conference on Very Large
Data Bases, pp. 1019–1030 (2003)

2. Schiller, J., Voisard, A. (eds.): Location-Based Services. Morgan
Kaufmann (2004)

3. Wolfson, O.: Moving objects information management: The
database challenge. In: Proceedings of the 5th Workshop on Next
Generation Information Technologies and Systems (NGITS’2002)
(2002)

4. Hightower, J., Borriella, G.: Location systems for ubiquitous com-
puting. IEEE Comput. 34(8), 57–66 (2001)

5. Snyder, J.P., Tobler, W.R., Yang, O.H., Yang, Q.H.: Map Projec-
tion Transformations: Principles and Applications. CRC, Boca
Raton, FL (2000)

6. Arctur, D., Zeiler, M.: Designing Geodatabases: Case Studies in
GIS Data Modeling

7. Samarati, P., Sweeney, L.: Generalizing data to provide anonymity
when disclosing information. In: PODS ’98: Proceedings of the
Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, p. 188 (1998)

8. Veijalainen, J., Ojanen, E., Haq, M.A., Vahteala, V.-P.,
Matsumoto, M.: Energy consumption tradeoffs for com-
pressed wireless data at a mobile terminal. IEICE Trans.,
Spec. Issu. Multimedia Commun. E87-B(5), 1123–1130
(2004)

9. Agarwal, P.K., Varadarajan, K.R.: Efficient algorithms for approx-
imating polygonal chains. Discrete Comput. Geom. 23, 273–291
(2000)

10. Chan, W., Chin, F.: Approximation of polygonal curves with min-
imum number of line segments or minimum error. Int. J. Comput.
Geom. Appl. 6, 50–77 (1996)

11. Douglas, D., Peuker, T.: Algorithms for the reduction of the num-
ber of points required to represent a digitized line or its caricature.
Can. Cartographer 10(2), 112–122 (1973)

12. Hershberger, J., Snoeyink, J.: Speeding up the Douglas-Peucker
line-simplification algorithm. In: The 5th International Sympo-
sium on Spatial Data Handling (1992)

13. Imai, H., Iri, M.: Polygonal approximations of a curve-
formulations and algorithms. In: Comput. Morphol., pp. 71–86
(1988)

14. McMaster, R.: Automated line generalization. Cartographica
24(2), 74–111 (1987)

15. Garofalakis, M., Gibbons, P.B.: Wavelet synopses with error guar-
antees. In: Proceedings of ACM SIGMOD, pp. 476–487 (2002)

16. Special issue on data reduction techniques. IEEE Data Eng. 20
(1998)

17. Trajcevski, G., Wolfson, O., Hinrichs, K., Chamberlain, S.: Man-
aging uncertainty in moving objects databases. ACM Trans.
Database Syst. (TODS) 29(3), 463–507 (2004)

18. Greenfeld, J.S.: Matching GPS observations to locations on a dig-
ital map. In: The 81th Annual Meeting of the Transportation Re-
search Board. Washington, DC (2002)

19. White, C.E., Bernstein, D., Kornhauser, A.L.: Some map match-
ing algorithms for personal navigation assistants. Transp. Res. Part
C 8, 91–108 (2000)

20. Pfoser, D., Jensen, C.S., Theodoridis, Y.: Novel approaches in
query processing for moving object trajectories. In: Proceedings
of the 26th International Conference on Very Large Data Bases,
pp. 395–406 (2000)

21. Vlachos, M., Kollios, G., Gunopulos, D.: Discovering similar
multi-dimensional trajectories. In: Proceedings of the 18th Inter-
national Conference on Data Engineering, pp. 673–684. San Jose,
CA (2002)

22. Alt, H., Guibas, L.J.: Discrete geometric shapes: Matching, inter-
polation, and approximation A survey. Technical Report B 96-11
(1996)

228 H. Cao et al.

23. Weibel, R.: Generalization of spatial data: Principles and se-
lected algorithms. In: van Kreveld, M., Nievergelt, J., Roos,
T., Widmayer, P. (eds.) Algorithmic Foundations of Geographic
Information Systems. LNCS Springer-Verlag, Berlin Heidelberg
New York (1998)

24. Veltkamp, R.C.: Hierarchical approximation and localization. Vis.
Comput. 14(10), 471–487 (1998)

25. Hardle, V., Kerkyacharian, G., Picard, D., Tsybakov, A.: Wavelets,
Approximation, and Statistical Applications. Springer, Berlin
Heidelberg New York (1998)

26. Hobby, J.D.: Polygonal approximations that minimize the number
of inflections. In: Proceedings of the Fourth Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 93–102 (1993)

27. Graefe, G., Shapiro, L.D.: Data compression and database per-
formance. In: Proceedings of the ACM/IEEE-CS Symposium on
Applied Computing (1991)

28. Westmann, T., Kossmann, D., Helmer, S., Moerkotte, G.: The
implementation and performance of compressed databases. SIG-
MOD Rec. 29(3), 55–67 (2000)

29. Chen, Z., Gehrke, J., Korn, F.: Query optimization in compressed
database systems. In: Proceedings of ACM SIGMOD Interna-
tional Conference on Management of Data, pp. 271–282. ACM
(2001)

30. Gibbons, P.B., Matias, Y., Poosala, V.: Fast incremental mainte-
nance of approximate histograms. ACM Trans. Database Syst.
27(3), 261–298 (2002)

31. Chakrabarti, K., Garofalakis, M., Rastogi, R., Shim, K.: Approxi-
mate query processing using wavelets. VLDB J. 10(2–3), 199–223
(2001)

32. Pitoura, E., Samaras, G.: Locating objects in mobile computing.
IEEE Trans. Knowledge Data Eng. 13(4), 571–592 (2001)

33. Florizzi, L., Gutting, R.H., Nardelli, E., Schneider, M.: A data
model and data structures for moving objects databases. SIGMOD
Rec. 29, 319–330 (2000)

34. Güting, R.H., Böhlen, M.H., Erwig, M., Jensen, C.S.,
Lorentzos, N., Nardeli, E., Schneider, M., Viqueira, J.R.R.:
Spatio-temporal models and languages: An approach based on
data types. In: Spatio-Temporal Databases: The Chorochronos
Approach (2003)

35. Lema, J.A.C., Forlizzi, L., Güting, R.H., Nardeli, E., Schneider,
M.: Algorithms for moving objects databases. Comput. J. 46(6),
680–712 (2003)

36. Vazirgiannis, M., Wolfson, O.: A spatio-temporal model and lan-
guage for moving objects on road networks. In: SSTD ’01: Pro-
ceedings of the 7th International Symposium on Advances in Spa-
tial and Temporal Databases, pp. 20–35 (2001)

37. Agarwal, P.K., Arge, L., Erickson, J.: Indexing moving points. J.
Comput. Syst. Sci. 66(1), 207–243 (2003)

38. Kollios, D., Gunopulos, D., Tsotras, V.J.: On indexing mobile ob-
jects. In: Proceedings of the Eighteenth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, pp. 261–
272 (1999)

39. Pfoser, D., Jensen, C.: Capturing the uncertainty of moving ob-
jects representation. In: Advances in Spatial Databases, 6th Inter-
national Symposium, SSD’99, pp. 111–132 (1999)

40. Koubarakis, M., Sellis, T., Frank, A.U., Grumbach, S., Güting,
R.H., Jensen, C.S., Lorentzos, N., Manolopoulos, Y., Nardelli, E.,
Pernici, B., Scheck, H.-J., Scholl, M., Theodoulidis, B., Tryfona,
N. (eds.): Spatio-Temporal Databases—The CHOROCHRONOS
Approach. Springer-Verlag, Berlin Heidelberg New York (2003)

41. Ding, Z., Güting, R.H.: Managing moving objects on dynamic
transportation networks. In: International Conference on Scien-
tific and Statistical Database Management (SSDB), pp. 287–296
(2004)

42. Ding, Z., Güting, R.H.: Uncertainty management for networks-
constrained moving objects. In: International Conference on
Database and Expert Systems Applications (DEXA), pp. 411–421
(2004)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

