Demo Abstract: Collaborative Reactive Behavior in
Heterogeneous Wireless Sensor Networks

Jedidiah McClurg *

Goce Trajcevski *

Jesse Yanutola

Dept. of Electrical Engineering and Computer Science
Northwestern University
Evanston, IL, 60208, USA
{jrm807, goce } @eecs.northwestern.edu, jesseyanutola2012@u.northwestern.edu

Abstract

Wireless Sensor Networks (WSN) which contain hetero-
geneous nodes and monitor multiple phenomena present a
unique set of challenges in regards to efficient management
of reactive behavior. The ECA (on Event if Condition then
Action) paradigm from Active Databases offers a solution
via event-based synchronization which provides reduced en-
ergy consumption compared to continuous monitoring. In
our demo, we show how to utilize this approach via compi-
lation of system-level ECA triggers to mote-specific trigger
code. We also demonstrate the practicality of the approach
by constructing a heterogeneous WSN of TelosB/SunSPOT
motes and using our tools to implement reactive behaviors
based on temperature/luminance data.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Net-
work Architecture and Design — wireless communication;
H.2.3 [Database Management]: Languages — query lan-
guages
General Terms

Design, Experimentation, Measurement
Keywords

Heterogeneous Nodes, Meta-trigger, Wireless Sensor

Network, Reactive Behavior, Environmental Monitoring,
Active Database, ECA Trigger, TelosB, SunSPOT

1 Introduction

In many applications, Wireless Sensor Networks (WSN)
play the role of distributed databases, processing both in-
stantaneous and continuous queries of interest. Users ex-
press their queries in an SQL-like declarative syntax while
the (distributed) query processor executes them, transpar-
ently performing optimization tasks on subsets of the nodes.
TinyDB [3] is an example of such a system which provides
(1) event-based behavior, i.e. continuously evaluating a par-
ticular query only upon detection of a certain event, and (2)
actuation queries, i.e. executing a particular action in re-
sponse to the results of a given sampling query.

* Research supported by NSF-CNS: 0910952

Copyright is held by the author/owner(s).

SenSys '12, November 6-9, 2012, Toronto, Canada.
ACM 978-1-4503-1169-4/11/12

389

However, the energy-saving capabilities of traditional Ac-
tive Database triggers conforming to the ECA (on Event
if Condition then Action) paradigm [4] are lacking in the
WSN context. An important aspect of minimizing the en-
ergy consumption when executing a given trigger is collabo-
rative management of composite event detection and evalua-
tion of conditions which may be continuous queries. Another
key problem arises due to the fact that a user may specify a
trigger in which the event and condition pertain to values of
different phenomena in different geographical regions with-
out properly considering the balance between the push-based
vs. pull-based [2] communication between nodes for the pur-
pose of firing needed actions. In many cases, the user would
benefit from tools which bypass this issue by providing a
declarative language for writing triggers and functionality to
generate an efficient execution policy automatically.

To that end, in [5] we presented the concept of a Meta-
trigger, i.e. a construct which offers a translation of the
user’s ECA trigger into a system-aware execution. Specif-
ically, we aimed for efficient management of requests like:
Q1: Whenever the average temperature over the last 30 sec-
onds in Region RI exceeds 90°F, if the average light intensity
in Region R2 is > 80 lumens, then switch the sensors to a fast
sampling mode, and report the average readings to the sink.

Mac Host

Linux Host Windows Host

BaseStation
BaseStation (Te]osB)

9 (SunSPOT)
“-‘ Light/Temp

Motes

BaseStation
(SunSPOT)

@Region R2

Figure 1. Example Monitoring Scenario

Region R7



While our earlier work provided a proof-of-concept re-
garding the benefits of meta-triggers, in this demo we re-
port some significant improvements. As shown in Figure 1,
we have broadened the context to incorporate both hetero-
geneous nodes and multiple sinks/base stations. In addition,
instead of manually programming the motes, we have devel-
oped a compiler which can generate mote-specific code from
system-level triggers written in a simple query language.

2 System Architecture and Implementation

Our toolset consists of two main components: (1) a
declarative interface for specifying the WSN topology and
the system-level triggers, and (2) a compiler which generates
the mote-specific code implementing the trigger behavior.

The user interface is a cross-platform Java application.
It allows the user to conveniently arrange host (sink) and
TelosB/SunSPOT nodes and connect them using arrows to
form the desired topology. Menus allow selection of the par-
ticular phenomena to be monitored, reflecting the available
sensors on a each type of mote. The interface also provides a
text field for specifying the various components of the trigger
(Event, Condition, and Action).

The compiler component is a cross-platform application
written in OCaml. Once the user completes the query/trigger
specification, the compiler is invoked, generating nesC [1]
code for the TelosB motes and Java code for the SunSPOT
motes. Each mote is then successively connected to the host
so that its code can be built and flashed to the device.

As an example of the compilation, we refer to the request
in the introduction. This system-level query Q1 can be writ-
ten in our ECA query language as follows:

ON EVENT (AVG(Rl.temp[-30,0]) > 90)
IF (AVG(R2.1light) >= 80) (
SET {R1,R2}.freq[0,30] = 1.0;

SELECT AVG ({Rl.temp,R2.1light}))

Using this, the compiler generates the corresponding mote-
specific triggers which implement the overall reactive be-
havior (cf. Figure 2). Note that the resulting system-level
implementation generated by the compiler is relatively effi-
cient. All sensors in Region R2 can sleep until reception of
an M_LREQ message from the Region R1 BaseStation, which
indicates that the event (“average temperature over the last
30 seconds in Region R1 exceeds 90°F”) has occurred. Re-
gion R2 then checks the condition (“average light intensity
in Region R2 is > 80 lumens”), and if true, provides R1 with
average data for the action, namely reporting averages back
to the host and temporarily increasing the sample rate.

3 Demo Overview

Our demo environment will correspond to Figure 1, with a
Linux virtual machine replacing the Macintosh host since we
have not yet obtained Mac hardware/software. Specifically,
the setup will consist of a Linux laptop, a Windows laptop,
battery-powered TelosB and SunSPOT motes (10 each), and
battery-powered heat and light sources. The demo will have
three main steps which outline several realistic scenarios:
Phase 1: We will first illustrate the graphical specification of
the network topology, after which the system will discover
the motes and help them obtain the appropriate routing infor-

390

-- R1 BaseStation trigger

ON EVENT RECV(m)

IF (m MATCHES M_TEMP(x)) (

ADD_TO_AVG(temp[@], Xx)

IF (AVG(temp[-30,0]) > 90)
SEND(R2, M_LREQ)

ELSE IF (

m MATCHES M_L(light)

) (
SEND(children, M_INCFREQ);
SEND(parent,

M_TL({temp,light})

~

-- R1 mote triggers

ON EVENT RECV(m)

IF (m MATCHES M_INCFREQ)
SET num_ticks = 30;
SET fast = TRUE

)

ON EVENT ONE_HZ_TICK
IF (fast) (
SEND(parent, M_TEMP(temp));
SET num_ticks -= 1;
IF (num_ticks == @) (
SET fast = FALSE

~

ELSE IF (count == @) (
SEND(parent, M_TEMP(temp));
SET count = 30;

) ELSE (

SET count -= 1;

-- R2 BaseStation trigger
ON EVENT RECV(m)
IF (m MATCHES M_LREQ) (
SEND(children, M_SAMPLE)
) ELSE IF (
m MATCHES M_L(x)

ADD_TO_AVG(light, x);

SET c += 1;

IF (c == LEN(children)) (
IF (light > 80)

SEND(R1, M_L(1light);

SET c = 0

)

)

-- R2 mote triggers

ON EVENT RECV(m)

IF (m MATCHES M_SAMPLE) (
LIGHT_SAMPLING_ON();
SET num_ticks = 30;
SEND(parent, M_L(light))

)

ON EVENT ONE_HZ_TICK
IF (light_sampling_on) (
SET num_ticks -= 1;
IF (num_ticks == @) (
LIGHT_SAMPLING_OFF()
)

) )
Figure 2. Compiled Triggers for Regions R1 and R2

mation. We will then illustrate the specification of particular
triggers, both for “simple” cases pertaining to a single phe-
nomenon and a particular type of motes, as well as “com-
posite” triggers pertaining to both luminosity, temperature
and different types of motes.

Phase 2: In the second step, we will present the compilation
of the triggers and download the generated code onto the in-
dividual motes participating in the respective scenarios.
Phase 3: Finally, we will monitor the actual reactive behav-
ior in the corresponding WSNs. The host laptops (sinks) will
be running our “oscilloscope” application to show the par-
ticular query results for each of the scenarios, along with the
frequency of their measurement and reporting.

4 References

[1] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler.
The nesC Language: A Holistic Approach to Networked Embedded
Systems. In Proceedings of the ACM SIGPLAN 2003 Conference on
Programming Language Design and Implementation, PLDI *03, pages
1-11, New York, NY, USA, 2003. ACM.

[2] A. Hinze. Efficient filtering of composite events. In A. James,
M. Younas, and B. Lings, editors, New Horizons in Information Man-
agement, volume 2712 of Lecture Notes in Computer Science, pages
164—164. Springer Berlin / Heidelberg, 2003.

[3] S.R.Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TinyDB:
An Acquisitional Query Processing System for Sensor Networks. ACM
Trans. Database Syst., 30(1):122—173, Mar. 2005.

[4] N. W. Paton, F. Schneider, and D. Gries, editors. Active Rules in
Database Systems. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, st edition, 1998.

[5] G. Trajcevski, N. Valtchanov, O. Ghica, and P. Scheuermann. A Case
for Meta-Triggers in Wireless Sensor Networks. In Eighth IEEE In-
ternational Symposium on Network Computing and Applications, NCA
2009, pages 171 —178, july 2009.





