
Motion Trends Detection in Wireless Sensor
Networks

Goce Trajcevski∗(1) Besim Avci∗(1) Fan Zhou †(2) Roberto Tamassia‡(3)

Peter Scheuermann∗(1) Lauren Miller§ Adam Barber§
∗Department of Electrical Engineering and Computer Science, Northwestern University

goce,besim,peters@eecs.northwestern.edu
†School of Computer Science and Engineering, University of Electronic Science and Technology

fan.zhou.uestc@gmail.com
‡Department of Computer Science, Brown University

rt@cs.brown.edu
§ Department of Mechanical Engineering, Northwestern University

LaurenMiller,Adam.Barber@u.northwestern.edu

Abstract—We address the problem of efficient detection of
destination-related motion trends in Wireless Sensor Networks
(WSN) where tracking is done in collaborative manner among
the sensor nodes participating in location detection. In addition
to determining a single location, applications may need to detect
whether certain properties are true for the (portion of the) entire
trajectories. Transmitting the sequence of (location, time) values
to a dedicated sink and relying on the sink to detect the validity
of the desired properties is a brute-force approach that generates
a lot of communication overhead. We present an in-network
distributed algorithm for efficient detecting of the Continuously
Moving Towards predicate with respect to a given destination
that is either a point or a region with polygonal boundary.
Our experiments demonstrate that the proposed approaches yield
substantial savings when compared to the brute-force one.

I. INTRODUCTION

Wireless Sensor Networks (WSN) consist of hundreds, or
even thousands, of tiny devices – nodes – each capable of
sensing values of a particular physical phenomena, performing
basic calculations and, most importantly, self-organizing in
a wireless network to communicate observations from dif-
ferent parts of the network to each other. These features
have rendered WSN as a paradigm of choice in a plethora
of applications: scientific, traffic management, environmental
safety/hazardz, infrastructure, health-care and military pur-
poses [10], [17] – to name but a few. One of the canonical
research problems in WSNs is tracking, and various aspects
of it problems have been addressed by the researchers: from
the the accuracy of the tracking process, through trade-off
between the tracking accuracy and the energy consumption,
to adjusting the routing structures that convey the location-in-
time information to a given sink [9]. Typically, the location
of a given object is determined either by a a GPS-enabled
device or by some form of collaborative trilateration among
the tracking sensors. Detecting a sequence of such locations

(1) Research Supported by the NSF: CNS-0910952
(2) Work performed while visiting the EECS Dept. at Northwestern

University, supported by the CSC pre-doctoral fellowship
(3) Research Supported by the NSF:CCF-0830149

generates the information about the moving object’s trajectory,
which is a sequence of points (L1, t1), (L2, t2), . . ., (Lk, tk)
where Li denotes the (detected) location of the tracked object
in some reference coordinate system, at time ti and (∀i, j)
(i < j) ⇒ (ti < tj).

In this work, we aim at detecting whether a trend can be
inferred relating the motion of the tracked object to a given
spatial region in the geographic area covered by sensor nodes,
which is important for different application domains, e.g.,:
• In habitat monitoring scenarios, one may be interested in
detecting that certain type(s) of animals are approaching the
region of a pond or a river.
• In security and defense scenarios, one may be interested in
detecting when an object is approaching the perimeter of a
particular camp or site.

Fig. 1. Motion Trends Predicates

More specifically, we focus on efficient detection of the
predicate specifying whether a moving object moving towards
a given region with a polygonal boundary, as illustrated in
Figure 1. Typically, when detecting certain non-local prop-
erties about the object’s trajectory, the individual (location,
time) data is transmitted from one of the sensors performing
the collaborative trilateration (the tracking principal) to the

2012 13th International Conference on Mobile Data Management

978-0-7695-4713-8/12 $26.00 © 2012 IEEE

DOI 10.1109/MDM.2012.38

232

2012 13th International Conference on Mobile Data Management

978-0-7695-4713-8/12 $26.00 © 2012 IEEE

DOI 10.1109/MDM.2012.38

232

2012 IEEE 13th International Conference on Mobile Data Management

978-0-7695-4713-8/12 $26.00 © 2012 IEEE

DOI 10.1109/MDM.2012.38

232

sink – which can incur a lot of unnecessary communication
overhead. For example, assume that, in the scenario shown in
Figure 1 we are interested in detecting whether the object O1

has been Continuously Moving Towards the region R for a
period of at least 3 consecutive samples. Following the naı̈ve
approach, each of the sensor nodes S1, S4 and S5 will initiate
a transmission of the detected location (and the time-stamp)
data towards the sink. This will cause a lot of intermediate-
hops to transmit the data to the sink which – in this specific
example turns out to be a waste of communication resources,
since the desired predicate is not satisfied by the first three
sampled locations.

In WSN settings, the communication, be it a transmission
of active listening/reception, drains a lot more energy than
sensing and computation [1], hence, avoiding unnecessary
communication is a paramount. Our goal in this work is to
provide distributed approaches that will enable in-network
detection of the predicate, thereby minimizing the commu-
nication overhead towards the sink. The main contributions
of this work is an efficient distributed algorithm for in-
network detection of the predicate pertaining to the trend of a
given trajectory with respect to a spatial region: Continuously
Moving Towards (CMT). In our earlier work [15] we presented
a centralized version of an algorithm for detecting the CMT
predicate, however, in this paper we present in detail both the
distributed algorithm for its in-network processing, as well as
the strategy for efficient dissemination of the query by a given
sink.

Our experiments demonstrate that our proposed approaches
yield substantial savings in terms of communication among the
nodes, when compared to the naı̈ve approach(es) of forwarding
every location sample and its time-stamp to the sink, and
performing the detection of the predicate there.

The rest of this paper is structured as follows. Section
2 gives an overview of the background material needed to
present our main results in Section 3. Experimental observa-
tions are presented in Section 4. Section 5 compares our results
with the related works, summarizes the paper and outlines
directions for a future work.

II. PRELIMINARIES

We assume a sensor network consisting of N nodes,
SN = {sn1, sn2, . . . , snN}, where each node is capable of
detecting an object within its range of sensing, e.g., based
on vibration, acoustics or otherwise [8]. Nodes are aware
of their locations snk = (xk, yk) either via a GPS or by
using some other techniques e.g., collaborative multilateration
[13]. Each node is also assumed to know the locations of
all of its one-hop neighbors, and the nodes are assumed to
be static. We assume that the network is dense enough to
ensure coverage for the purpose of detection and localization
via trilateration using some standard ranging method, e.g.,
acoustic/echo-based, RSS(Received Signal Strength) or TDOA
(Time Difference of Arrival) and, furthermore, to ensure a
selection of a neighbor(s) to whom the task of tracking can be
handed-off [9], [11]. We assume that between two consecutive

location detections, the tracked objects move along straight
line and with a constant speed – hence, the location at any
time instant in-between the sampling times can be obtained
via linear interpolation.

Throughout this work (and in the corresponding implemen-
tation) we did not consider any issues related to the sleeping of
the nodes and the epoch-based synchronization and selection
of tracking principles [7]. We used a simplifying assumption
that the principal is the sensor node from among the ones
that can participate in the trilateration which is closest to the
sink (in terms of the Euclidian distance). Note that a given
sensor node may be a tracking principal for more than one
location-sampling process.

Given a set of points P = {p1, p2 . . ., pM}, their Voronoi
diagram [3] is a planar subdivision (faces, edges and vertices)
induced by the points from P , with the following basic
properties: (1) Each face (Voronoi cell) contains one point
pi ∈ P in its interior and, for all the other pj �= pi, and every
point q inside that face, dist(q, pj) > dist(q, pi, where dist(.,.)
denotes the Euclidian distance between the two points. (2)
Each edge (Voronoi edge) corresponds to a bisector between
two points pk and pl from P .

Voronoi diagrams are one of the most extensively studied
structures in Computational Geometry and algorithms for their
construction in WSNs have also been proposed [4]. Among
the extensions from the original definition (pertaining to a
discrete set of points) are the variants for non-discrete sets
of points (e.g., line-segments and polygons) [3] – and we will
use the concept of a Voronoi diagram for (the exterior of)
convex polygons. As illustrated in Figure 2, the edges of the
Voronoi diagram of a given region R bounded by a convex
polygon are defined by the rays originating at the vertices of
the polygon and emanating perpendicularly to the edges. There
are two basic types of Voronoi cells:
• Edge cells, which is, the set of points in the plane for which
the closest points on the boundary of R are along a given edge
(bounded by parallel half-lines); and
• Vertex cells, which is, the set of points in the plane for which
the closest point on the boundary of R is one of its vertices
(i.e., points within a wedge originating at a vertex);

For a given edge Ai−1Ai from R’s boundary, let
VCell(Ai−1Ai) denote its Voronoi cell with respect to R.
Also, let Edge(Ai, VCell(Ai−1Ai)) denote the edge (i.e.,
the perpendicular half-line to Ai−1Ai) of the VCell(Ai−1Ai)
originating at Ai (similarly for the one originating at Ai−1).
The Voronoi cell belonging to a given vertex Ai is denoted
by VCell(Ai) and its boundary edges will coincide with the
ones corresponding to the boundary edges of the Voronoi cells
belonging to the two adjacent edges to Ai (i.e., Ai−1Ai and
AiAi+1.

III. TRENDS DETECTION ALGORITHMS

We now present our techniques for the efficient in-network
detection of the occurrence of the motion-trend predicate —
Continuously Moving Towards in WSN settings. Before we
provide the algorithmic details, we address two relevant issues:

233233233

Fig. 2. Disseminating a request

(1) the propagation of the request from the sink node to
the rest of the nodes of the network and the creation of
the Voronoi diagram of the region of interest; and (2) the
consumption policies regarding the past locations detected
along the tracking process.

A. Disseminating the Request and Events Consumption

The dedicated sink node, snk, needs to detect the occurrence
of the desired predicate as a consequence of the tracking
process, on behalf of a particular application of interest.
Hence, node snk has to inform the rest of the nodes in the
WSN about all the details of a particular request: (1) Its own
location and node ID; (2) Region R, e.g., specified via the
sequence of its vertices in counter-clockwise order; (3) The
begin-time and the end-time during which the detection of the
predicates is important (e.g., tb and te), along with the duration
of the time interval Δ during which it is important that the
object is moving continuously towards R.

The sink will need to send a message containing quintuple
(Sink, R, tb, te, Δ, PR) throughout the network. One obvious
way to do it is via flooding [1], where every node, upon
receiving the message will: (1) Forward it to its neighbors that
it has not heard from yet (at the time of receiving the message);
(2) Proceed with detecting which Voronoi cell of R it belongs
to. Towards this, the node needs to find the point on R
(along the edges or in a given vertex) which is geographically
closest to its location. This naı̈ve approach of disseminating the
request(s) may incur a significant overhead in terms of energy
consumption, which can be avoided. Namely, we observe that
for the purpose of detecting the corresponding Voronoi cell
to which a given sensor node, snj , belongs to, it need not be
aware of all the vertices of R. Hence, we propose the following
three-phase dissemination protocol, illustrated in Figure 2.
Phase I (P I): In this phase, instead of starting the flooding
process, the sink simply sends the packet containing the
quintuple (Sink, R, tb, te , Δ, PR) to the sensor node on the
boundary of R that is closest to it. This phase is illustrated in
Figure 2, where the sink sends the packet to the sensor node
near edge A1A2.

Phase II (P II): In the second phase, the node that received the
request from the sink will forward the request to its neighbors
along the boundary of R, each of which will recursively
propagate it in the chosen reference-direction.
Phase III (P III): The third phase of the dissemination protocol
can actually be pipelined with the second phase. In this phase,
the moment a particular node along the outer-boundary of R
receives the request, it determines the edge (or vertex) of R
closest to it—implying the Voronoi cell that it belongs to.
Subsequently, that node will selectively notify its neighbors in
the exterior of R about the edge defining the boundaries of its
Vcell. In the example of Figure 2, sensor node B will send
the message (Sink, A2A3, tb, te, Δ, PR) to its neighbors.
Sensor nodes that are closest to a given vertex of R (e.g.,
node C ∈ VCell(A3) in Figure 2) will transmit the two
edges incident to the vertex to its neighbors in R’s exterior.
Thus, node C will send the message: (Sink, (A2A3, A3A4),
tb, te, Δ, PR) to its neighbors. The reason for this approach
is to help the subsequent nodes in the WSN – in particular,
VCell(A3) for the node C – which may receive more than
one such message, disambiguate which VCell they belong to
and, of course, which VCell does a particular location of the
tracked object belong to. As our experiments demonstrate, the
proposed three-phase dissemination protocol yields savings in
terms of communication cost when compared to the naı̈ve
flooding.

There is one more aspect that needs to be determined before
the detection of the predicates can begin – the consump-
tion policy of the individual location-samples. To illustrate
this aspect, consider a scenario where the CMT predicate
has been detected within five consecutive samples. Clearly,
this should initiate a notification sent to the sink. Now the
question becomes: if the 6th location sample indicates that
the object is still moving towards (with respect to the 5th

sample), should another notification be sent to the sink or
not? Clearly, this is something that will need to be decided by
the application which needs the detection of the predicates. A
detailed discussion of consumption policies for the primitive
constituent events upon a detection of a desired composite
event/predicate is beyond the scope of this work (see [5]).
However, we note that the algorithms presented in the rest
of this section will work correctly for both chronicle based
consumption (i.e., only the oldest location-sample participating
in the detection is discarded, the rest are still considered) and
cumulative based consumption (i.e., the moment the composite
predicate is detected, all the participating location-samples are
ignored and the detection starts anew).

B. CMT Predicate

As previously mentioned, when disseminating a given re-
quest, part of the desired predicate must be explicitly specified.
Hence, in the case of predicate Continuously Moving Towards,
the sink, say snk, will start the three-phase protocol with the
message (Sink, R, tb, te, Δ, CMT). Upon completing the pre-
processing stage, the nodes in the WSN can begin combining
the tracking process with detecting whether the CMT predicate

234234234

Fig. 3. Detecting Continuously Moving Towards

Algorithm 1 CMT — executed by the tracking principal
Input: Request parameters (Sink, tb, te , Δ, R, CMT); accumulator
structure containing the previously detected location+time (Lp, tp);
accumulated time TA of continuously moving towards R up to
tp.

1: Detect the location Lc of the tracked object at the current time
tc

// via trilateration with neighboring nodes
2: TCT = TotalTimeTowards((Lc, tc), (Lp, tp), R, TA)
3: if TCT ≥ Δ then
4: notify Sink
5: Update TA in accordance with the consumption policy
6: else
7: Lp ← Lc;
8: tp = tc;
9: TA ← TCT ;

10: end if
11: Send ((Lc, tc), (Lp, tp), TA) to the next tracking principal

has been satisfied upon a current localization. Towards this,
upon trilateration, the node elected to be the principal of the
tracking process, say, snTP , will execute Algorithm 1 (CMT).

The tracking principal, sTP , executing algorithm CMT
receives the accumulated time (TA) of the continuous motion
towards the target R from the previous tracking principal up to,
and including, the previously-observed location. Subsequently,
it calculates the value of variable TCT , which updates TA in
accordance with the object’s motion along segment LpLc. If
the combined values exceed the desired threshold Δ, node
snTP will initiate a notification to the Sink along a shortest-
path route. When the notification is sent, the accumulator
variable TA is either set to 0 (cumulative consumption) or
decremented by the duration of the time-interval corresponding
to the very first localization that initiated the detection of
the CMT predicate. When the value of TA is updated from
0 to some ε > 0, we need to retain a queue (FIFO) that
will maintain all the values following ε throughout the rest
of the tracking process. To calculate value TCT , node sTP

executes procedure TotalTimeTowards, which is specified by
Algorithm 2. We illustrate this procedure with the scenario
of Figure 3, which shows a pentagonal region R ≡ A1, A2,

Algorithm 2 TotalTimeTowards (TTT) — executed by the
tracking principal
Input: Accumulator structure containing the previously detected
location+time (Lp, tp), along with the accumulated time TA of
continuously moving towards R up to tp, and the currently detected
location and time (Lc, tc)

1: if Lc ∈ VCell(Ai−1Ai) (i ∈ {1, 2, . . . , n}) then
2: if Lp ∈ VCell(Ai−1Ai) then
3: if dist(Lc, Ai−1Ai) ≥ dist(Lp,Ai−1Ai) then
4: // the object is moving away
5: TT ← 0;
6: else
7: TT ← TA + (tc − tp);
8: end if
9: else

10: //Lc and Lp are in different VCells
11: LI = IntersectPoint(LcLp, Edge(Ai, VCell(Ai−1Ai));
12: tI = InterpolateTime(LI , LcLp);
13: T ′A = TotalTimeTowards((LI , tI), (Lp, tp), TA, R);
14: TT = TotalTimeTowards((Lc, tc), (LI , tI), T ′A, R);
15: end if
16: return TT

17: else
18: // Lc is inside a VCell of a vertex, say Ai

19: if Lp ∈ VCell(Ai) then
20: if The point Pmin of the minimal distance between Ai and

LcLp is inside LcLp then
21: TT ← 0;
22: // the object switched from MovingTowards
23: // to MovingAway from R at Pmin

24: else if dist(Lc, Ai) ≥ dist(Lp,Ai) then
25: // the object is still moving away
26: TT ← 0;
27: else
28: // the object is strictly moving towards R
29: TT ← TA + (tc − tp);
30: end if
31: else
32: //Lc and Lp are in different VCells
33: LI = IntersectPoint(LcLp, Edge(Ai, VCell(Ai−1Ai)));
34: tI = InterpolateTime(LI , LcLp);
35: T ′A = TotalTimeTowards((LI , tI), (Lp, tp), TA, R);
36: TT = TotalTimeTowards((Lc, tc), (LI , tI), T ′A, R);
37: end if
38: return TT

39: end if

A3, A4, A5 along with its Voronoi cells. Assume that the
application is interested in detecting whether a given object
has been continuously moving towards R for at least 35 time-
units and five location-samples with the respective time-values.

First, note that Algorithm 2 distinguishes between two main
cases: (1) The tracked object is inside the Voronoi cell of an
edge (handled by lines 1—16); (2) The tracked object is inside
the Voronoi cell of a vertex (handled by lines 17—39)

The rationale is that if the object’s location falls inside a
VCell of a given edge and the previously sampled location
is inside the same VCell – then the object can either move
completely towards or completely away from the region R,
throughout the entire interval of its motion inside that VCell.
This is illustrated with locations (L1, 0) and (L2, 20) in

235235235

Figure 3. Since dist(L2, A5A1) < dist(L1, A5A1) and both
L1 and L2 are in the same VCell(A5A1), the TCT value is
updated to 20.

If, on the other hand, the tracked object’s current and
previous locations are in VCell(Ai) belonging to vertex Ai

of the polygonal boundary of R, then we have an additional
case to consider (cf. line 20 of Algorithm 2): namely, if the
perpendicular from Ai to the line defined by Lc and Lp falls
inside the line-segment LcLp, we know that at the terminus
of the perpendicular, the motion plan of the tracked object has
changed from MovingTowards (i.e., the distance to R begins
to increase). This is illustrated with the portion LiL3 of the
segment L2L3 in Figure 3. Both L′2 and L3 are in VCell(A5)
and, initially, the object is moving closer towards R, i.e., its
distance to A5 is decreasing. However, at point L′2, which is
the terminus of the perpendicular line from A5 to Li, L3, the
distance has reached its minimum at begins to grow. Hence,
at (L3, 40) the time of moving towards R is set to TCT = 0.

Finally, we note that in both main cases – the current
location-sample being within a Voronoi cell of an edge or a
vertex – Algorithm 2 makes recursive calls when the previous
and the current location-samples belong to different Voronoi
cells. This scenario applies to both sampling (L3, 40) and
(L5, 80) in Figure 3. Specifically, when calculating the value
of TCT at (L3, 40), firstly the location of Li – intersection of
L2L3 and Edge(A5, VCell(A5A1)) is found and the expected
time at that location (26.6 time-units) is calculated via linear
interpolation. Subsequently, we have two recursive calls (lines
13—14 and 35—36 in Algorithm 2), each calculating the
respective time spend moving towards R along the segments
L2Li and LiL3.

Since each recursive calls decreases the total length of the
segment used, Algorithm 2 is guaranteed to terminate. As
for its complexity, note that, in the worst case (e.g., a fast-
moving object coupled with a small convex polygon with n
vertices), a given line segment can intersect the edges of at
most O(n) Voronoi cells. This is the bound on the number
of the recursive calls, each of them taking a constant amount
of time to complete within a single cell. Hence, the running
time of Algorithm 2 is O(n), which is also an upper bound
on the number of the messages that the current principal may
need to exchange in order to determine all the actual cells that
participate in the CMT predicate satisfaction. Assuming that
the localization step is performed regularly in intervals of δs,
the running time of Algorithm 1 is O(�(te − tb)/δs�n).

IV. EXPERIMENTAL EVALUATIONS

The experimental observations were generated using the
open-source, SIDnet-SWANS simulator for WSN [6]. We
considered a WSN with 750 homogeneous nodes with sim-
ulated ranging capabilities that implement the equivalent
of an active ultrasonic echo ranging system, running on
a standard MAC802.15.4 link layer protocol. To alleviate
the lack of spatio-temporal dependency among consecutive
motion-segments present in the random way-point model, we
used trajectories based on the Gauss-Markov Mobility Model

(GMMM) [12] which does exhibit spatial and temporal de-
pendency – at each slot the speed and direction are computed
based on the ones from the previous time-slot. We used
three different categories of speeds of motion, corresponding
to walking, riding a bicycle, and driving a car. The first
group of experiments that we present illustrates the benefits
of our three-phase protocol for disseminating the requests via
selective flooding.

0

10000

20000

30000

40000

50000

60000

4 5 6 7 8

Size of the Polygon

Number of bits sent
Flooding

Number of bits sent
Selective Flooding

Fig. 4. Bits transmitted for Request Dissemination

As shown in Figure 4, the total number of bits transmitted
between the pairs of nodes in the network grows linearly
with the size (number of vertices) of the polygon bounding
the query region R. On the other hand, using the proposed
selective flooding – which guarantees that the nodes in the
WSN will be able to correctly process the request for detecting
the CMT predicate – the total number of bits transmitted
is almost a constant. Both observations are, in a sense, ”in
concert” with the intuitive expectations.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1 1.2 1.4 1.6 1.8 2 2.2 2.4

T
ot

al
 M

es
sa

ge
 H

op
s

Time (h)

CMT-Ch
CMT-Cu

BF

Fig. 5. Detecting Continuously Moving Towards

Our next set of simulations aimed at providing some quanti-
tative observations regarding the savings obtained when using
our Algorithm 1 for processing the CMT predicate, when
compared to the naı̈ve, or Brute-Force approach of transmitting
every single location to the sink. The results are illustrated
in Figure 5, which shows averaged observations for sampling
intervals of 5 seconds, 10 seconds and 30 seconds; and the cri-
teria of Δ = 3·SamplingInterval and Δ = 5·SamplingInterval
needed to satisfy the CMT predicate. As can be seen, the

236236236

Brute-Force approach (denoted ”BF” in Figure 5) generates
much higher volume of messages than the CMT approach.
Note that there are two curves, one for each of the consumption
policies (Ch – Chronical, and Cu – Cumulative) corresponding
to the in-network CMT processing. As expected, the Ch–
consumption will generate more messages towards the sink,
since it ”recycles” all the former (location, time) pairs, except
for the oldest one; whereas the Cu-consumption completely
eliminates the history upon detection of the predicate.

V. RELATED WORK AND CONCLUSIONS

Localization and tracking can be viewed as canonical prob-
lems in WSN settings and the results abound, ranging from
efficient maintenance of tree-structures that route data towards
a dedicated sink and energy-efficiency [9], [13], through
incorporating unreliability of the tracking nodes and quality-
guarantees [18], to considering fast-moving objects and low-
frequency snapshots [2]. In this work, we did not attempt
to present any new tracking or localization methodologies –
our goal was to use the existing results and, in some sense,
augment their use for the purpose of developing efficient
distributed algorithms for in-network detection of the two
motion trend predicates.

Using geometric concepts in WSN settings has been part of
many research efforts. Several results have been reported for
distributed computation of various structures – e.g., Voronoi
diagrams [4], convex hulls [14] – and their use for efficient
solutions to problems related to boundaries/holes detection,
routing, etc. In this work, we also relied on a geometric
concept – the Voronoi diagram [3] for polygonal boundary
of a region of interest. We presented an efficient protocol
for disseminating a request whose processing depends on the
knowledge of the distribution of the sensor nodes among the
Voronoi cells of the region, along with efficient detection
satisfiability of the CMT predicate in WSN settings, where
the detection of the location of the moving object in a given
time instant is done by collaborative trilateration of tracking
sensors.

We also discussed the policies for consuming the primitive
(location, time) events upon detection of the composite event
of detecting the occurrence(s) of the CMT and PMT predicates.
Our experiments demonstrated that the proposed algorithms
indeed bring substantial savings in terms of reducing the
number of messages that need to be communicated throughout
the network, when compared to the naı̈ve approach which
transmits every detected location (along with the time-stamp)
to the sink.

Currently, we are adapting our approaches towards capturing
motion trends for larger groups of objects, similar to the
concepts of a flock of trajectories (cf. [16]) – but in WSN
settings. There are few other challenges that we would like to
address in the future as extensions of this work. Firstly, we
will need to modify the existing algorithms so that the epoch-
based synchronized operation of the nodes can be taken into
account, along with the corresponding policies for selecting
tracking principals. Secondly, we would like to investigate the

impact of having heterogeneous networks’ settings where, in
addition to the static nodes, there are also mobile nodes, to
the processing of motion trends related predicates.
Acknowledgements: We thank Herve Bronninman for his
constructive suggestions.

REFERENCES

[1] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless
sensor networks: a survey. Computer Networks, 38(4), 2002.

[2] Aysegul Alaybeyogly, Kayhan Erciyes, Aylin Kantarci, and Orhan
Dagdeviren. Tracking fast moving targets in wireless sensor networks.
IETE Technical Review, 27(1), 2010.

[3] Franz Aurenhammer. Voronoi diagrams - a survey of a fundamental
geometric data structure. ACM Comput. Surv., 23(3), 1991.

[4] Boulat A. Bash and Peter Desnoyers. Exact distributed voronoi cell
computation in sensor networks. In IPSN, pages 236–243, 2007.

[5] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.K. Kim. Composite
events for active databases: Semantics, contexts and detection. In 20th
VLDB Conference, 1994.

[6] Oliviu Ghica, Goce Trajcevski, Peter Scheuermann, Zachary Bischoff,
and Nikolay Valtchanov. Sidnet-swans: A simulator and integrated
development platform for sensor networks applications. In SenSys, pages
385–386, 2008.

[7] Oliviu Ghica, Goce Trajcevski, Fan Zhou, Roberto Tamassia, and Peter
Scheuermann. Selecting tracking principals with epoch-awareness. In
Proceedings of the 18th ACM SIGSPATIAL GIS Conference, pages 222–
231, 2010.

[8] Tian He, Pascal Vicaire, Ting Yan, Liqian Luo, Lin Gu, Gang Zhou,
Radu Stoleru, Qing Cao, John A. Stankovic, and Tarek F. Abdelzaher.
Achieving real-time target tracking using wireless sensor networks. In
IEEE Real Time Technology and Applications Symposium, 2006.

[9] Jaehoon Jeong, Taehyun Hwang, Tian He, and David Hung-Chang Du.
Mcta: Target tracking algorithm based on minimal contour in wireless
sensor networks. In INFOCOM, 2007.

[10] Sukun Kim, Shamim Pakzad, David E. Culler, James Demmel, Gregory
Fenves, Steve Glaser, and Martin Turon. Health monitoring of civil
infrastructures using wireless sensor networks. In IPSN, pages 254–
263, 2007.

[11] Loukas Lazos, Radha Poovendran, and James A. Ritcey. Analytic
evaluation of target detection in heterogeneous wireless sensor networks.
TOSN, 5(2), 2009.

[12] Ben Liang and Zygmunt J. Haas. Predictive distance-based mobility
management for multidimensional pcs networks. IEEE/ACM Trans.
Netw., 11(5):718–732, 2003.

[13] G. Mao and B. Fidan. Localization Algorithms and Strategies for
Wireless Sensor Networks. IGI Global – Invormation Science Publishing,
2009.

[14] Ivan Stojmenovic, Anand Prakash Ruhil, and D. K. Lobiyal. Voronoi
diagram and convex hull based geocasting and routing in wireless
networks. Wireless Communications and Mobile Computing, 6:247–258,
2006.

[15] Goce Trajcevski, Peter Scheuermann, H. Brönnimann, and Agnes Vois-
ard. Dynamic topological predicates and notifications in moving objects
databases. In Mobile Data Management (MDM), 2005.

[16] Marcos R. Vieira, Petko Bakalov, and Vassilis J. Tsotras. On-line
discovery of flock patterns in spatio-temporal data. In GIS, pages 286–
295, 2009.

[17] Geoffrey Werner-Allen, Konrad Lorincz, Matt Welsh, Omar Marcillo,
Jeff Johnson, Mario Ruiz, and Jonathan Lees. Deploying a wireless
sensor network on an active volcano. IEEE Internet Computing, 10(2),
2006.

[18] Ziguo Zhong, Ting Zhu, Dan Wang, and Tian He. Tracking with
unreliable node sequences. In INFOCOM, pages 1215–1223, 2009.

237237237

