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Abstract. We address the problem of balancing trade-off between the
(im)precision of the answer to evolving spatial queries and efficiency of
their processing in Wireless Sensor Networks (WSN). Specifically, we are
interested in the boundaries of a shape in which all the sensors’ readings
satisfy a certain criteria. Given the evolution of the underlying sensed
phenomenon, the boundaries of the shape(s) will also evolve over time. To
avoid constantly updating the individual sensor-readings to a dedicated
sink, we propose a distributed methodology where the accuracy of the
answer is guaranteed within probabilistic bounds. We present linguistic
constructs for the user to express the desired probabilistic guarantees in
the query’s syntax, along with the corresponding implementations. Our
experiments demonstrate that the proposed methodology provides over
25% savings in energy spent on communication in the WSN.

1 Introduction

A Wireless Sensor Network (WSN) consists of hundreds, even thousands of tiny
devices, called nodes, capable of sensing a particular environmental value (tem-
perature, humidity, etc.), performing basic computations and communicating
with other nodes via wireless medium [1]. WSNs have become an enabling tech-
nology for applications in various domains of societal relevance, e.g., environ-
mental monitoring, health care, structural safety assurances, tracking – to name
but a few. Given that the nodes (also called motes) may be deployed in harsh or
inaccessible environments, the efficient use of their battery power is one of the
major objectives in every application/protocol design, in order to prolong the
operational lifetime of the WSN.

The problem of efficient processing of continuous queries has been addressed
in the database literature [5,16,18,24], and the distinct context of WSNs had
its impact on what energy-efficient processing of such queries is about [17,25].
However, previous research attempts trying to tackle spatial queries pertaining
to two-dimensional evolving shapes are underwhelming. A few research attempts
propose temporal boundary detection schemes [3,10,26] and, although there is a
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consensus that one needs to be aware of the uncertainty – there are no systematic
approaches that will capture the notion of uncertainty and couple it with the
(energy) efficient processing of detecting/tracking evolving spatial shapes.

In traditional TinySQL-like systems, users indicate with the query-syntax
what kind of data they would like to fetch, what sort of functions to apply on
the data and, most importantly, how frequently they would like to retrieve the
relevant information [17]. If query is responded too frequently, network resources
are drained quicker – but if query responses are returned infrequently, then the
user’s view of the (evolution of the) phenomenon may be obsolete. In addi-
tion, quite often the users are interested to know the “map” of the spatial
distribution of the underlying phenomenon, instead of a collection of individ-
ual sensor readings at selected locations [22]. Numerous works have tried to
tackle the problem of efficient incorporation and management of uncertainty in
WSN queries [7,9], along with the continuity aspect of the changes in the mon-
itored phenomena [17,18]. Complementary to these, there are works related to
2D boundary detection, both from the perspective of iso-contour of values read,
as well as communication holes [6,8,13]. The main motivation for this work is
based on the observation that, to the best of our knowledge, there has been no
work that would seamlessly fuse the probabilistic aspects of the sensed data and
the boundary of the evolving shapes representing contiguous regions in which
sensors reading exceed a desired threshold with a certain probability. Towards
that, our main contribution can be summarized as follows:

• We develop a shape detection scheme for spatial data summaries with prob-
abilistic bounds by discretizing the space and applying Bayesian filtering.

• We provide both linguistic constructs and efficient in-network algorithmic
implementation for processing the novel predicates. We enable users to choose
adaptive update frequencies and data granularity in our query model.

• We present a query management scheme that achieves a balance between
responding to queries more frequently if underlying phenomena are changing
rapidly or by responding with a predefined interval, where query answer is
valid for a longer period of time.

The rest of the paper is structured as follows. Section 2 lays out the preliminaries,
notation and introduces the syntactic elements of our proposed query language.
Section 3 explains the details of the system design and provides the methodology
for detecting the boundaries that is amenable to efficient probabilistic updates.
Section 4 presents the experimental evaluation of our work. Finally, Sect. 5 gives
the conclusion and outlines the possible directions for future work.

2 Basic Queries and Data Model

We assume that a WSN consists of a collection SN = {sn1, sn2, . . . , snk} of k
nodes, each of which is aware of its location in a suitably selected coordinate
system [1].
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Query Model: Several aspects of spatial queries pertaining to 2D shapes detec-
tion have been tackled in the WSN literature: boundary detection [8], isocontour
construction [6], hole detection [13], etc. Our focus is on detecting the boundary
of “important events” spanning a 2D region, with user-specified parameters of
the events of interest. Given the energy limitations of the sensor motes, no WSN
query is truly continuous in the absolute sense, but is rather a sequence of discrete
snapshots over time. When users pose a query to a WSN, they specify a certain
sampling period for the desired frequency. The basic SQL-like querying in WSNs
is provided by the TinySQL [17] and it caters to two basic scenarios: (1) periodic
sampling – as indicated in line #5 in Listing 1.1; and (2) event-based queries,
provided by the TinyDB approach for more efficient query processing, when the
code that generates the events is compiled into the sensor nodes beforehand –
shown in Listing 1.2.

Listing 1.1. Continuous Query

SELECT count (∗ )
FROM sensor s , r l i g h t

WHERE sen so r s . nid=r l i g h t . nid
AND sen so r s . l i gh t<r l i g h t . l i g h t

PERIOD 2 s

Listing 1.2. Event-based Query

ON EVENT rad ia t i on−l e ak ( l o c )
SELECT Sensor . value , Sensor . l o c

FROM Sensors
WHERE Sensors . value >1200

PERIOD 100 s

The sampling period imposes a natural trade-off: more frequent samplings
(and reporting) deplete the energy faster, while less frequent ones may render
the data obsolete and miss some significant changes. However, the information
gain from reporting that the temperature readings are 20 ± 0.5◦C every 10 s
for 10 min – if the acceptable level of uncertainty is ±3◦C – is same as sending
only two readings – at the beginning and the end of the 10 min interval, thereby
saving 598 transmissions. Thus, by incorporating an extra, explicitly specified
parameter of a (relative) “significant change”, our approach dynamically adapts
the consumption of resources to the fluctuations in the sensed values.

In our earlier work, we proposed predicates pertaining to shapes and objects
trajectories along with their in-network detection [3,21]. In a similar fashion,
our focal point in this work is spatial events that are covering two dimensional
regions, with a consideration of uncertainty. A query language that is closest to
our desiderata is the Event Query Language (EQL) [2], defined by separating
the events into several statements:

• Event Statement: conditions to recognize (parameterized) events
• Detection Statement: rules specifying how and where to detect an event
• Tracking Statement: rules specifying how to track an event
• Query Statement: syntax for expressing queries on events.

An example of EQL syntax is shown in Listing 1.3, corresponding to a sce-
nario for tracking a gas cloud, initiated by detecting a composite event corre-
sponding to three phenomena (light gas, temperature and oxygen). In this work
we provide a few modifications and propose the language Evolving Shapes Event
Query Language (ES-EQL). The main modifications are two-fold: Firstly, ES-
EQL does not use an explicit Tracking Statement since, by default, we make
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the WSN track the events of interest. Moreover, our detection methodology dif-
fers from what is proposed in [2] significantly enough so that we cannot adopt
the tracking statement component as such. Secondly, we augment the Detection
Statement with a clause called EVOLUTION, which defines the update interval
in conjunction with EVERY clause, and a WITH GRANULARITY clause for
users to specify the data granularity. An exemplary ES-EQL query that can be
compared EQL syntax is shown in Listing 1.4.

Listing 1.3. Sample EQL Statement

DEFINE EVENT GasCloud
SIZE : 3hops
AS: Avg( Light ) as lightGasAvg ,

WHERE: lightGasAvg < 50

AND tempAvg >40
AND oxygenAvg < 60

DEFINE DETECTION f o r GasCloud
ON REGION: Explos ion
EVERY: 1000

DEFINE TRACKING fo r GasCloud

EVOLUTION: 1hop
EVERY: 1000
TIMEOUT: 5m

SELECT Pos i t ion , Speed ,

oxygenAvg
FROM GasCloud
WHERE oxygenAvg >50

Listing 1.4. Modified ES-SQL Version

DEFINE EVENT Fire

SIZE 500

AS Min( Probab i l i t y ) as
MinCe l lProbab i l i ty

WHERE Temperature > 200
AND Probab i l i t y > 0 .7

DEFINE DETECTION f o r F i r e

ON REGION Al l

WITH GRANULARITY 256

EVERY 60
EVOLUTION 0.2

SELECT EventImage

FROM Fire

WHERE MinCel lProbabi l i ty <0.75

The first statement in Listing 1.4 defines a fire event with the parameters
being: size of the event is 500 ft2, temperature readings for each unit cell above
200◦F, and the probability of each cell readings being above 200◦F is 0.7. If
multiple sensors are located within a particular cell (for a given granularity of
the division of space of interest) then the probability of the temperature value
being ≥200◦F in an infinitesimally small region within that cell is >0.75. Then
the detection scheme for the Fire event will be carried out on the whole field
with data granularity of 256 cells. Afterwards, reporting interval is specified as
60 s and the evolution parameter of 20 % – instructing the system to update
the answer either regularly within 60-s intervals or in case of occurrence of 20 %
change in the event. Finally a query statement is issued, with fetching an “image”
of the event (in fact a 2D data grid-structure that can be converted to an image),
from the fire regions where the minimum probability in a unit cell is ≥75 %.

Now the challenge becomes how to identify what constitutes a significant
change (evolution) in an event. WSNs sample the environment and commu-
nicate in discrete time intervals called epochs [17] so, the evolution of the
shapes between epochs is also discrete. Significant change, or evolution, can be
attributed to several aspects of changes in an existing shape: – its probability; –
its size (area); – or a combination of both. The evolution in the probability of
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a shape is the positive or negative change in its certainty. If a shape becomes
more certain than its last-reported version by queried amount, then it means
that it has evolved. Another source of a significant change is the area evolution.
When the area of the shape (regardless of its probability-value) changes by a
certain percentage – stated in the respective query – then that shape is consid-
ered to have significantly changed. Lastly, over time both the boundaries of the
shape as well as the confidence in their existence may change, so the evolution
would be progressing on two aspects simultaneously. Implementation details of
all 3 schemes are discussed in Sect. 3. In terms of ES-EQL query syntax, the
change in the area can be specified with AREA EVOLUTION, the change in
the certainty of the shapes with PROBABILITY EVOLUTION, and the com-
bined/overall change with only EVOLUTION clause.

When comparing two shapes for evolution, the problem of shape identification
arises, due to discrete data collection/processing. predefined Two subsequent
calculations of a 2D shape bring another level of uncertainty: do these two shapes
really refer to the same event? One may resort to defining possible worlds and
exploring all the possibilities for identification of shapes is a way to handle this
aspect of a problem. However, this ready-made approach makes the evolution
calculations computationally expensive, and its investigation is beyond the scope
of this work. Instead, we explore spatio-temporal relationships such as split and
merge, the details of which (i.e. comparing last-reported shape and the new
shape) are discussed in Sect. 3.

Data and Network Model: We discretize the space into cells and split the
monitored field to hierarchical raster-like structure, decomposed into n by n grid,
recursively continuing the decomposition One of the most popular way to do this
is by using a quadtree [19], illustrated in Fig. 1(a). At the top level we have a
single cell which represents the whole sensing field, then we build the quadtree
by splitting the sensing field into 4 sub-fields of equal size. We note that the
depth of the quadtree in our current implementation (although it can handle
any arbitrary depth), is 4 – thereby providing 256 leaf-level cells.

At any given level, each cell has a designated/elected leader for data collection
and processing. Depending on the queries, these leaders collect data from the
sensor nodes in their cell and relay the processed data to their parent, which
is the leader of the parent cell in the quadtree. However, electing a dedicated
leader for data collection creates unbalanced energy drainage in the network,
reducing the network lifetime. Therefore, we apply rotating leader scheme [20]
to distribute the load among every node in the network. Therefore, all nodes
in the network form a tree as in Fig. 1(b). With different levels, data can be
defined in different granularity. When continuous spatial queries are posted to
the system, the sensor nodes start sensing the environment and send their sensed
value to their cell leaders. Then, at each level of the hierarchy, sensed data is
aggregated to lower granularities if need be. Finally, the sink (root of the tree)
streams the query update from the network to the querying users. In order for
the system to respond to the queries that are based on certain thresholds, each
cell at each level aggregates its data with respect to the given threshold(s) and
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(a) Quad-tree Decomposition (b) Granularity Level and Separa-
tion of Leaders

Fig. 1. Separation of the sensing field and quad-tree hierarchy

forwards it for shape detection in the higher levels. When data is aggregated
enough, in other words, data granularity has been lowered to user needs, shape
detection schemes start on elected leaders.

3 Aggregation and Shape Detection

When queries are posed to the system, the task for each sensor node may be
different. Since WSNs have very limited energy budget, it is important to mini-
mize the communication overhead and ensure the execution of the query in the
meantime. Thus, the most straightforward approach of each sensor sensing the
phenomena and sending their data to the respective cell leader who, in turn,
would aggregate the data in an uncertainty frame and forward it to the leader
of the higher-level cell in quadtree – may not be efficient in terms of energy
expenditure. Our proposed event-based propagation of data taking advantage of
evolution, granularity, probability and threshold parameters, is explained in the
sequel.

In addition to sensing (and transmitting), a sensor node may have the tasks
of detection of an event of interest and aggregation. We have following parameters
for an event: – γ: sensing threshold; – p: probability threshold per cell; – and A:
min-area for a connected shape. As part of the query, the elements that decide
the detection are: – T : time period for update frequency; – c: relative change
in value, defining a significant change (evolution); – g: number of unit cells in
desired granularity level; – and R: query area.

The position and the size of a unit cells – i.e., cells which there is a single
cell-leader (i.e., cluster-head) and all the other nodes are leaves in the quadtree –
is uniquely identified when user specifies the desired granularity g. For example,
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if g = 256, then the unit cells are at level L = 4(= log4 256) and the addressing
scheme for a cell ci,j denotes simply the location in the 2D array representing the
row number (i) and the column number (j) corresponding to the distance from
the bottom-left (i.e., south-east) corner of the region of interest. However, there
is also a semantic role of the unit cell: it is the smallest piece of the resolution of
the grid that collectively makes up the interior and/or boundary of a 2D shape
(with its neighboring cells).

The sensed data is aggregated until the phenomenon can be represented with
a collection of unit cells. Following the data aggregation, shape detection scheme
is executed in the higher levels of the quadtree, without merging cells any further.
The cell leaders in the quadtree can be horizontally split into two sets of nodes
in terms of their participation-role for handling a given query: aggregation nodes,
and shape detection nodes – as illustrated in Fig. 1(b).

We note that the parameter R above (i.e., the area of interest for a given
query) need not be identical with the entire area covered by the WSN. Thus,
when a query q with a set of instantiated parameters is posed and the level
in the quadtree satisfying g cells is identified – if a particular cell intersects
with the query region, then it is included in the detection/reporting. All the
parameters are pushed down the quadtree structure until the query reaches the
desired granularity level Lg,q. Since the leaders at Lq calculate the query-related
properties of a unit cell, the nodes below this level do not receive any of the
query parameters. The nodes at higher levels L < Lg,q are only tasked with
uncertain data aggregation, not the shape detection (cf. Fig. 1(b)).

Uncertainty in the data values in WSN are a fact of life, due to factors such
as: – imprecise or malfunctioning sensors; – mis-calibration; – physical limits of
precision based on the distance between the sensor and the phenomenon-source;
etc. When tracking 2D shapes, a particular challenge is due to discrete nature
of the data sampling [22] and its “conversion” to continuous regions. Aggre-
gating the cell-wide uncertain data makes the problem becomes similar to the
problem of sensor fusion, for which there are variety of theoretical approaches
in the literature (e.g., based on Central Limit Theorem (CLT), Kalman filter,
Dempster-Shafer methods, etc.). CLT states that the arithmetic mean of a large
number of samplings follows a Gaussian distribution regardless of the distribu-
tion of random variables – sensor readings in our case. However, each cell in the
network may not consist of large number of sensors, where a safe number for large
is ≥30 – thus, the number of nodes in a grid cell may hinder the applicability
of CLT. Evidential belief reasoning methods, such as Dempster-Shafer theory,
rely on a set of probability masses and weighted prior beliefs, which can be quite
expensive to store within the network. Hence, throughout this work we applied
Bayesian filters [11] (i.e., a simpler version of univariate Kalman filters without
the control system), making inferences about the true state of the environment
x (i.e., phenomenon value) and the observation z (i.e., sampling by sensor).
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Fig. 2. Probability and a threshold

The “true state” is a continuous ran-
dom variable, and its probability den-
sity function (pdf) is encoded in the
posterior: Pr(x|z). Our prior beliefs
about the phenomenon is encoded in
the prior: Pr(x). Observations are
made to obtain the true state x, mod-
eled via Pr(z|x) – called the likeli-
hood and denoted Λ(x). Finally, mar-
ginal probability Pr(z) serves as nor-
malization factor for the posterior. With
multiple sources of sensing data, Zn =
z1, z2, ..., zn, the posterior probability

becomes1 Pr(x|Zn) = αΛn(x) Pr(x|Zn−1), where α is the normalization fac-
tor to make

∫
Pr(x|Zn)dx = 1 [15]. Note that the likelihood function, Λ(x) can

also be interpreted as sensor model – alternatively: “given the actual value of
the phenomenon, what is the probability that this node will sense the value z?”

When the final posterior pdf is calculated after merging all of the readings
in a given sensing epoch, the calculation of Pr(x > threshold) is straightforward
(cf. Fig. 2).

Data aggregation is done recursively along the quadtree, each parent fusing
the children data – a distributed Bayes updating based on sending the likelihood
functions from the children and having the parent apply recursive Bayes filter.
Basically, each node sends their likelihood function to be fused to the aggregation
point, which is the cell leader or the parent in the quadtree hierarchy.

To detect a shape, we rely on results in [3], and we define a spatial event
via predicate Q(A, p, γ, t), which holds if there exists a connected 2D shape such
that: (a) Readings for each part of the shape are > γ with probability ≥ p; (b)
Area of the shape is > A; and (c) Time of occurrence of shape is > t.

Cell leaders gather the data from the nodes in their vicinity to aggregate
and to forward it to their parent in the tree hierarchy. However, propagating
probabilistic data poses new challenges: “when the data transmission should be
avoided?” and “which nodes should detect the shape?”

In centralized settings, when cells calculate the probability density function of
the phenomenon value and it is above the threshold, each unit cell can be repre-
sented as a single value in [0, 1] interval pertaining to the given query (predicate)
parameters. When all cells are represented with a single probability value, the
whole map can be plotted as Fig. 3(a), where the bars represent the probabil-
ity values. Taking a horizontal “slice” of this map with the queried probability
parameter, p, would yield the binary image shown in Fig. 3(b), dark cells rep-
resenting a region satisfying the query parameters. Using a simple breadth-first
search algorithm, we can successfully calculate the shapes S1 and S2.

In distributed WSN, shape detection follows the data aggregation step,
and we assume that the data has been aggregated at desired granularity.

1 Due to a lack of space, we present the full derivations at [4].
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(a) Probability values in the cell (b) Binary image of the cell af-
ter the cut

Fig. 3. Taking a horizontal slice of the probabilities

Thus, ancestor-leaders do not aggregate any further, but rather try to detect
a shape in its region of governance and maintain the data granularity. As data
propagates towards the root, cell leaders govern larger sensing areas (e.g., a
“grandparent” would be responsible for detecting a shape 16 times larger than
“grandsons”). At each level, the areas of group(s) of connected cells are computed
and A parameter is checked for each shape – reporting when the total area ≥ A.
Otherwise, the data transmission is halted from this cell, since there is noth-
ing to report with respect to the query. If any leader in the hierarchy detects
a shape that is touching the boundary of its governance region, it forwards all
of its data to its parent, since the shape may be split into neighboring cells.
We note that, while tempting – halting data transmission from the cells whose
probability of being above the threshold is below the p may cause potential prob-
lems when aggregating for a bigger cell in the higher level. If 3 sub-cells report
being above the threshold with at least 0.7 probability, and one cell sending no
data – implying sensing below the specified γ and p thresholds. The aggregation
of these 4 sub-cells into a single value is invalid since applying Bayes’ filter on 4
random variables to a generate single pdf in the absence of one does not actually
represent the true value.

3.1 Temporal Evolution and Updates

The area of events may shrink, expand and/or move over time. Given the query-
syntax, since data aggregation is performed until desired granularity level (cf.
Fig. 1), all sensing data could be regularly transmitted in the quadtree hierarchy.
Blocking transmission of a newly sensed data because of temporal, spatial, and
spatio-temporal correlations is analyzed in detail in [23] and, in our solution, we
capitalize from temporal correlation when sensing values remain steady – i.e.,
nodes do not need to send their new data which has not significantly changed
from the previous transmission; similarly if the aggregated value of any cell
exhibits the same probability distribution (i.e., mean and variance).
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Evolution of a detected shape may refer to change in its probability of occur-
rence, its area of effect, or a combination of both evolution for each defined met-
ric. Events change their location in both spatial and probabilistic dimensions
and tracking the evolution of a single event can be achieved via calculating the
boundary and probabilities of each unit cell for the shape in each epoch, then
comparing the new shape against the last-reported shape based on a desired
metric:

• Area Evolution: Since it satisfies the triangle inequality, we rely on the
Jaccard similarity coefficient for the previously-reported shape and the current
one. using Jaccard index and if the new shape is less than 1 − c, where c is
the evolution parameter, similar to the old shape, then it means it evolved.
Formally,

(
J(Sold, Snew) = |Snew∩Sold|

|Snew∪Sold|
)

< 1 − c must be true to detect area
evolution.

• Probability Evolution: Each unit cell that makes up the shape has a prob-
ability value associated with it, and the probability of a shape is calculated
via taking the average of all unit cell probability values. As the event becomes
more certain, average probability values increase, consecutively decreasing the
uncertainty, 1 − p. The evolution in probability refers to change in the aver-
age uncertainty. Given new and last-reported shapes, if the uncertainty of
new shape is c or 1 − c times the last-reported shape, then the new shape is
considered evolved.

• Area-&-Probability Evolution: We first define a property called Presence
which combines the area and probability of a shape S in a single value PAP ,
calculated as:

PAP (S) =
∑

i∈S

pi × Ai

where i is a cell that is part of S, pi is the probability in that cell, and Ai is
the area of the cell. Therefore, when the new shape is calculated at the most
recent epoch, all parts of the shape may indicate a probability change from
its last-reported version. First, we calculate the net change per cell in the new
shape. For each cell in the intersection, net probability change is calculated via
|pnew − pold|. For the parts of the new shape that was not part of the old shape
(or vice versa) (Snew \ Sold), net probability change is defined as pnew (or pold)
treating the pold (or pnew) as 0. After calculating the net probability change for
each part of Snew ∪Sold, total presence value is calculated – denoted as presence
change (P c

AP ). If PAP (Snew)/PAP (Sold) ≥ c, then shape has evolved.
To calculate the evolution for multiple shapes, the challenge is to identify

which prior shape a given current shape has evolved from. To this end, we apply
a shape matching scheme to elect a candidate shape in the last-sent map. Our
matching method relies on a very straightforward heuristics:

Smatch = argmax
Sx

(|PAP (Sx ∩ Snew)|)
The shape in the previous epoch that shows the biggest intersection presence

is regarded as the matching shape. Given a set of old shapes and a set of new
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Fig. 4. Shape matching

shapes, we can form a bipartite graph where nodes represent the shapes and
edges represent the matchings between new and old shapes. Matching each shape
in the new map to another shape in the last-reported map enables us to track
shapes between epochs (cf. Fig. 4).

Some shapes on the old set may connect to more than one shape in the new
set (the reverse of is not true). Also, a number of shapes in the old set may not
be connected to any of the shapes in the new set; and a number of shapes in the
new set may not be connected to any shape in the old set. All of these properties
of the bipartite graph imply evolving spatio-temporal relationship between two
regions [12]:

Split: In the case of split, there will be more than 1 new shapes corresponding
an old shape. Note that if both of the new shapes have substantial overlap with
the old shape, individually they may not satisfy the evolution parameter.

Merge: If multiple shapes merge in a subsequent epoch, only one of them will
be matched to the new shape. Even though the new shape had absorbed another
shape, there is a possibility that it may fail to satisfy c parameter.

Disappearance: If a shape disappears from the map, then it is not detected in
the current epoch.

Appearance: The case where a new event happens and a new shape occurs in
the next epoch is not handled with the above method either.

For this, we detect whether the bipartite graph contains any: – disconnected
node on the new set (Appearance); – disconnected node on the old set (Disap-
pearance, or Merge); – a node on the old set connecting to two nodes in the new
set (Split).

4 Experimental Analysis

Our experimental setup on SID-net Swans [14] simulator is a WSN consisting of
800 homogeneous nodes, capable to sense the phenomenon at its location with
a discrepancy-controlled random placement, reporting every 10 s. Sensing field
is set to be 1000 × 1000 m2, and each node had a communication range as 50 m.
We used synthetic phenomenon for the experiments, built by generating 8 by 8
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(a) Snapshot of the
Network and the Phe-
nomenon

(b) Ground Truth for the
Event Contours

(c) Output Image from
Our Method

Fig. 5. Shape approximation

(a) Centralized vs. In-network (b) Constant (No Evolution) vs.
     Evolution-basedReporting

Fig. 6. Communication expenditures (Color figure online)

grids and each cell assigned a random temperature between 0◦C and 100◦C, for
every 20 min, linearly morphing the old grid to the new grid. Sensing value for
any point in the field are calculated via bilinear interpolation. Sensor readings
are perturbed with white Gaussian noise with mean = 0 and standard deviation
a random number between 0 and 20. We processed the query with following
parameters: R (query area) = 300; Temperature >80 F and p = 0.7 (70 %);
Granularity = 256 unit-cells; Sampling frequency = 60 s; Change = 10 % – and
the results we present were averaged over 3 independent runs.

Firstly, we evaluated the effectiveness of the Bayes filter and our shape detec-
tion scheme. Figure 5(a) shows the snapshot of the heatmap generated by our
simulator with the location of the nodes (white disks) interpolated on top. For
our query, event contours are extracted as ground truth in Fig. 5(b). Lastly, the
output of our scheme can be seen in Fig. 5(c).

The second set of experiments highlight the difference in communication
expenditure between in-network and centralized approach. Figure 6(a) illustrates
the communication overhead of the centralized (vs. in-network) shape detection
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in terms of total message hops exchanged in the network. Our second set of
experiments illustrate the impact of the evolution. When AREA EVOLUTION
= 30%, the communication expenditure difference between the constant and
evolution-based reporting is shown in Fig. 6(b). The red line indicates the total
messages over time for evolution-based reporting and the gold line shows the
scheme with constant reporting. Note that at the start of the execution both
techniques need to report the detected shapes.

5 Conclusion and Future Work

We proposed a 2D shape detection and tracking scheme with probabilistic
bounds in WSNs, and enhanced users’ control over the network by allowing
a selection of update frequency and data granularity as part of query’s syntax.
As our experiments indicate, our approach is effective for the detection such
events and is more energy-efficient in comparison to centralized processing. In
the future, we plan to incorporate mobile nodes where nodes move freely, join
and leave the network at will. Besides, we would like to extend our framework to
capture belief-based data fusion methods with a semi-supervised belief updating
protocol, and adapt them to approximate representations [22] in sparse WSN.
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