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Abstract—This paper addresses the problem of energy effi-
ciency balanced with tracking accuracy in wireless sensor net-
works (WSNs). Specifically, we focus on the issues related to
selecting tracking principals, i.e., the nodes with two special tasks:
1) coordinating the activities among the sensors that are detecting
the tracked object’s locations in time and 2) selecting a node to
which the tasks of coordination and data fusion will be handed
off when the tracked object exits the sensing area of the current
principal. Extending the existing results that based the respective
principal selection algorithms on the assumption that the target’s
trajectory is approximated with straight line segments, we con-
sider more general settings of (possibly) continuous changes of the
direction of the moving target. We developed an approach based
on particle filters to estimate the target’s angular deflection at the
time of a handoff, and we considered the tradeoffs between the
expensive in-node computations incurred by the particle filters
and the imprecision tolerance when selecting subsequent tracking
principals. Our experiments demonstrate that the proposed ap-
proach yields significant savings in the number of handoffs and
the number of unsuccessful transfers in comparison with previous
approaches.

Index Terms—Moving-object tracking, network coverage,
principal selection, sensor network.

I. INTRODUCTION

ENERGY-EFFICIENT tracking of moving objects is one
of the canonical problems in wireless sensor network

(WSN) research [1], [2], and one specific aspect of the problem
is the tradeoff between the energy efficiency and tracking
accuracy [3]. In many approaches, the sensor nodes are typi-
cally organized in (hierarchical) clusters [4]–[6] according to
their geographical positions, and a designated sensor node is
elected as the tracking principal of each cluster, acting as a
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temporal data fusion center and a coordinator of the tracking
process. To localize the target and to monitor the target’s
movement information such as speed, acceleration, and moving
direction, tracking principals communicate with the member
nodes of their respective clusters and obtain the data regarding
range/distance measurements [7], which they combine with its
own observations.

In addition to coordinating the process, an important respon-
sibility of an on-duty tracking principal, which is the focus of
this paper, is selecting the next principal and, when needed,
handing off the target tracking information to the selected
one. There are some fundamental criteria to be obeyed when
designing the tracking-principal selection and handoff scheme.

– The sequence of the selected principals should be able to
cover the trajectory of the moving object being tracked.

– The number of handoffs between consecutive principals
should be minimized to reduce the overhead due to
the handoff communication. Conversely, each principal
should “cover” a large portion of the tracked object’s
motion as possible.

An exemplary scenario illustrating the motivation and the
main intuition behind this paper is shown in Fig. 1. The current
tracking principal Pt at time t needs to select a node that will
take the role of the cluster head at the next sampling epoch,
i.e., starting time t+ 1. The handoff schemes that predict the
trajectory of the tracked target based on the past movement
information (cf. [8] and [9]) would consider the location shown
with the gray squares along the dashed line in Fig. 1. Based on
this, Pt would select the node Si as the next tracking principal
because it yields the largest coverage of the predicted trajectory,
regardless of whether the continuous straight line segment is
used (cf. [8]) or the discrete sampling instants are considered
(cf. [9]). However, if the moving object deviates a small angle,
e.g.,ϕ from the expected trajectory, as shown with the darker
squares along the solid curve in Fig. 1, the node Si will cover a
much smaller portion of the actual trajectory or only two sam-
pling time instants if discrete location sampling is considered.
However, in this case, another sensor node, i.e., Sj , will be able
to cover a larger portion of the trajectory or four actual locations
(denoted as read squares) at subsequent sampling epochs. This
qualifies Sj to be a better tracking principal than Si.

The motivation for this paper is based on the observation
that the straight-line-segment-based prediction of the actual
position of target may be biased and that even small deviations
may significantly decrease the performance of the tracking-
principal selection algorithm, a consequence of which would
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Fig. 1. Motivation.

be an increase in the in-network communication overhead. This
happens because of increasing the number of handoffs between
successive tracking principals that need to convey data to each
other, i.e., along the trajectory of the tracked object. The exist-
ing related works on target tracking and coverage often model
the trajectory of the tracked object as a sequence of straight
line segments [1], [8]–[10] and, consequently, cannot quite
capture the changes in the (description of the state) target’s
motion. Arguably, without taking into proper consideration the
target’s real location at the handoff step, any location-based
precalculation may be inaccurate, particularly in WSN settings,
where the problems of time delay/synchronization [11] can be
amplified by the drift of the accumulated position error due to
mispredictions.

The main objective of this paper is to derive efficient schemes
aimed at reducing the number of tracking principals required
to cover the moving object’s trajectory. We achieve this by
incorporating the effects of angular deflection of the target’s
motion, particularly at the time instants at which the handoff
between principals occur. We addressed both continuous and
discrete coverage of the moving object’s trajectory by active
sensor nodes, considering different target mobility models in
which the directions of target continuously change. Our main
contributions can be summarized as follows.

• We propose an adaptive algorithm, which is called
deflection-aware selection (DAS), for tracking-principal
selection, which is aimed at maximizing the spa-
tiotemporal tracking coverage for objects with nonlinear
trajectories.

• A particle-filtering-based method, which we will refer
to as dead-reckoning-based particle filtering (DRPF) is
presented for recursively calculating the target’s angular
deflection, which, by leveraging the dead-reckoning pre-
diction within permissible error bound, can significantly
reduce the computation and communication overhead of
state estimation.

• We analyze the upper and lower bounds on the number of
principals required to cover an arc trajectory and demon-
strate that DAS yields significant improvement on reduc-
ing the number of principal transfers and, thus, in-network
communication, compared with existing approaches.

• We present the extensive simulation results to evaluate the
proposed approaches and show that our methods outper-
form existing schemes under a wide range of conditions.

The rest of this paper is structured as follows. In Section II,
we introduce the basic settings regarding the network model
and present our approach to estimating the direction deviation
based on particle filtering. Section III derives the theoretical
upper and lower bounds on both continuous and discrete cover-
age of a mobile target and presents the DAS tracking-principal
selection algorithm. An extensive experimental comparison of
the benefits of our approach on principal selection with respect
to the previous methods is presented in Section IV. We discuss
the previous works and position our results with respect to the
related literature in Section V. The concluding remarks, along
with possible future extensions, are discussed in Section VI.

II. DIRECTION DEFLECTION ESTIMATE

USING PARTICLE FILTERS

We first discuss our assumptions regarding the network
model and review the localization-related issues in the tracking
process, following with the basics of target-state estimation
with particle filtering. Subsequently, we present in detail the
main steps of the direction deflection estimate in the framework
of particle filtering and our DRPF methodology.

A. Network Model

We consider a WSN consisting of N homogenous static
sensor nodes S = (S1, S2 . . . SN ) deployed over a 2-D surveil-
lance field F ⊂ R

2. We assume that all the nodes have identical
communication range Rc and sensing range Rs. A given sensor
node locates the target in its sensing area via some range-based
methods, e.g., received signal strength indicator (RSSI) or time
difference of arrival [12]. Each node is assumed to be aware of
its own location and the locations of its one-hop neighbors, i.e.,
the nodes within its communication range, i.e., a pair of sensor
nodes (Si, Sj), i, j ∈ [1, N ], can communicate to each other iff
their Euclidean distance is no greater than the radio commu-
nication range, e.g., ‖Si − Sj‖ ≤ Rc. We also assume that the
communication range of each node is at least twice of its sens-
ing range, which guarantees both full coverage of the sensing
region and network connectivity [13], [14]. Finally, we assume
that the network is dense enough to ensure that a moving target
can be tracked while it travels in the area of nodes’ deployment.
D(Si, Rs) denotes the disk centered at the location of sensor

Si with radius Rs, and N (Si) denotes the set of one-hop
neighboring nodes of Si, which are distributed within the
communication range Rc of Si.

Contrary to the more passive approaches, e.g., using acoustic
sensors to estimate the location of the moving object during
collaborative tracking [15], in this paper, we focus more on
active scenarios, where tracking sensors also collaborate for
estimating the target’s state. We reiterate that our main objective
is developing criteria for selection of the subsequent tracking
principle [8], [9].

The symbols used throughout the rest of this paper are
summarized in Table I.
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TABLE I
LIST OF NOTATIONS

B. Target-State Estimation With Particle Filters

Particle filtering is a probabilistic framework for sequen-
tially computing the target’s state based on the Monte Carlo
method. The key idea of particle filtering is to use a number
of independent random variables called particles, which are
sampled directly from the state space, to represent the posterior
probability. Then, the posterior can be updated in time using
the importance sampling method [16], which is based on target
dynamics and the observation likelihood model. It has the flex-
ibility to accommodate arbitrary nonlinear motion patterns and
multimodal likelihood models at the computational complexity,
which depends largely on the number of particles. However, for
our application, even small number of particles works well, as
we will show, by utilizing the DRPF scheme.

Let xt indicate the position distribution of target at time t,
and let Z0:t indicate the observation sequence {Z0,Z1 . . .Zt},
corresponding to the conditionally independent measurements
with respect to target’s location sequence {x0,x1 . . .xt}.
Specifically, particle filtering consists of two main processes,
predict and update, which can be, respectively, expressed as
follows:

P (xt|Zt−1) =

∫
p(xt|xt−1)p (xt−1|Z0:t−1) dxt−1 (1)

p(xt|Z0:t) =
p(Zt|xt)p(xt|Z0:t−1)

p(Zt|Z0:t−1)
. (2)

The likelihood p(Zt|xt) is the measurement equation and noise
model, prior distribution p(xt|Z0:t−1) represents the knowl-
edge of the mobility model, the denominator p(Zt|Z0:t−1) is
a constant called evidence, and the expression p(xt|xt−1) is the
target-state transition density and describes the dynamics of the
target model.

Equation (1) is commonly referred to as the predict process,
which computes the prior distribution for the next time t
based on the posterior distribution estimation at time t− 1 and
transition density p(xt|xt−1). Equation (2), on the other hand,
corresponds to the update process that calculates the posterior
distribution of the target state by involving the measurements
Zt at time t.

C. Direction Deflection Estimate via Particle Filtering

We now proceed with the details of direction deflection
estimate described in the framework of particle filtering.

Let ϕt denote the angular deflection at time t from the previ-
ous moving direction θt, which is determined by the positions
of the target at previous time steps. Further, let x1

t ,x
2
t . . .x

N
t

denote the independent particles, where N is the number of
particles and ωi

t denotes the weight of particle xi
t.

Our goal is to estimate the posterior distribution of the
angular deflection p(ϕt|Z0:t), given the observations up to time
t. At each time step, when measurements are available, the
posterior distribution of ϕt is updated with new observations
Zt(Si) (Si ∈ N (Pt−1)). This process evolves along the time
according to the state model, and a detailed discussion of the
main steps of estimating the ϕt using a particle filter follows.

1) Sampling: While the choice of q(xt|xi
0:t−1,Z0:t) =

p(xt|xi
t−1,Zt) as the importance density minimizes the vari-

ance of importance weight ωi
t conditional upon xi

t−1 and Z0:t,
it requires sampling from p(xt|xi

t−1,Zt) and evaluating the
integral P (Zt|xi

t−1) =
∫
p(Zt|xt)p(xt|xi

t−1)dxt [17]. An in-
tuitive way of implementing this in WSN settings is to use the
state transition density p(xi

t|xi
t−1) as the importance function.

We notice that it does not include the most recent observations,
but it is easy to implement and consumes less computation.

In this paper, since the expected moving direction of a given
target at current time t is calculated based on its past locations,
the state transition probability density function (pdf) is then
chosen as the importance density, namely, q(xt|xi

0:t−1,Z0:t) =
p(xi

t|xi
t−1).

Therefore, the ith particle’s importance weight ωi
t can be

recursively computed in time with observations and a transition
function in the form of

ωi
t(xt) =

p
(
xi
0:t

)
|Z0:t)

q
(
xi
0:t|Z0:t

)
∝

p
(
Zt|xi

t

)
p
(
xi
t|xi

t−1

)
q
(
xi
t|xi

0:t−1,Z0:t

) ×
p
(
xi
0:t−1|Z0:t−1

)
q
(
xi
0:t−1

)
|Z0:t−1)

= ωi
t−1(xt−1)× p

(
Zt|xi

t

)
(3)

where the incremental weight relies only on the likelihood of
the observations p(Zt|xi

t).
Suppose that the angular deflection ϕt follows the uniform

distribution in [−ϕm, ϕm](ϕm ∈ [0, π]) and the speed of the
target is uniformly distributed within [Vmin, Vmax]. Then, the
probability of the target being at a given location at time t, based
on past locations, can be expressed as

p (xt|xt−1, ϕt) =
1

ϕm (V 2
max − V 2

min)
. (4)

Fig. 2 depicts the sampling area (the shaded sector) at time
t, determined by the tracked mobility information, where Lt−2

and Lt−1 denote the previous positions of the target.
After specifying the sampling area, an additional ran-

dom sampling step then draws independent identically dis-
tributed samples x1

t ,x
2
t . . .x

N
t from importance the density

p(xi
t|xi

t−1, ϕt).
2) Updating: At time step t, the location of the target is

estimated by assimilating the new available sensor-node range
measurements. We assume a Gaussian error model for range
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Fig. 2. Sampling area.

measurements of each sensor; then, for particle xi
t, its weight

ωi
t is recursively calculated as

ωi
t = ωi

t−1

M∏
j=1

1√
2πσj

e

−(Zt(Sj)−Zi
t
(Sj))

2

2σ2
j . (5)

where M is the number of measurements, and Zt(Sj) is the
measurement of sensor Sj ; σj (j ∈ [1,M ]) is the standard
deviation of measurement noise for Sj , which specifies the
confidence of the Zt(Sj); and the value Zi

t(Sj) denotes the
estimated measurement for the ith particle given the location
of the sensor Sj . The weight of each particle can be normalized
as follows:

ωi
t =

ωi
t∑N

k=1 ω
k
t

. (6)

The current location L̂t is updated as the centroid of all the
weighted particles as follows:

L̂t(x̂t, ŷt) =

(
N∑

I=1

ωi
t · xi

t,

N∑
i=1

ωi
t · yit

)
. (7)

Consequently, the angular deflection ϕt can be estimated as

ϕt = arctan

(
ŷt − yt−1

x̂t − xt−1

)
− arctan

(
yt−1 − yt−2

xt−1 − xt−2

)
(8)

where points with coordinates (xt−1, yt−1) and (xt−2, yt−2) are
retrieved from the historical trajectory tracking information,
which we assume to be contained in a corresponding spatiotem-
poral buffer Cb.

3) Resampling: One problem of particle filtering method-
ology is that, after a few iterations, the weights may become
highly degenerate because a small number of particles have
nearly all of the probability mass. Hence, some resampling
may be required to avoid accumulation of the error and to
render the particle system more stable. In this paper, the partial
rejection control (cf. [18]) is being used to reduce the burden of
computation while preserving a rejection control.

Fig. 3. DRPF scheme.

D. Dead Reckoning and Particle Filtering

Equations (4)–(8) specify the process of continuously estimat-
ing the deflection of the moving target. However, since particle-
filtering-based localization is, to some extent, energy inefficient
due to the overhead of intensive computations, it is desirable
to derive a lightweight scheme for calculating the target’s state.
Toward this goal, we present a DRPF scheme, which leverages
the dead-reckoning prediction of the target’s motion pattern to
avoid continuous localization at every sampling step. Specifi-
cally, DRPF uses a threshold δ to control the sampling process
of localization and deflection estimation, in which the task of
state estimation only happens when the threshold is reached.

Fig. 3 shows the basic idea of DRPF, in which the local-
ization tasks in sampling step t+ 1, . . . , t+ 4 are saved, and
the target’s location during this period can be inferred and
indexed simply via a dead-reckoning technique based on its
moving velocity and direction. In this case, the threshold δ = 4
indicates the number of samplings that tracking principal Pt

saves while bounding the target in its monitoring area. After
δ = 4 sampling time steps, another target-state estimation task
will be triggered.

Thus, DRPF is an approach that essentially attempts to
provide a tradeoff between the (in)exact position information
regarding the target during δ sampling steps and the energy
consumption of particle filtering. In other words, DRPF dynam-
ically adapts the sampling and state estimation process based
on the mobility information. We note that DRPF may introduce
extra localization error due to expansion of the sampling area.
However, as we will show in Section IV, the experimental
evaluations verified that substantial computation and commu-
nication burden introduced by particle filtering can be saved by
employing the DRPF scheme.

We note that there may be other definitions of the threshold δ;
for example, we can define it as the RSSI value of the tracking
principal, below which another process of particle-filtering-
based localization will be launched. However, in this paper,
we focus on using the dead-reckoning prediction with target’s
movement information, i.e., velocity and direction, to derive the
threshold δ, which is calculated as the number of samples that
a tracking principal can tolerate in within a given epoch.

III. SELECTING TRACKING PRINCIPALS

We now present our DAS algorithm for selecting the tracking
principals. We begin this section with reviewing two closely
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Fig. 4. Spatiotemporal coverage.

related approaches and proceed with discussing the details of
the DAS algorithm.

A. Principal Selection via Relay Area and
Sampling Look-Ahead

A target-movement-prediction-based methodology, which is
called relay-area-based (RAB) principal selection, is proposed
in [8]. The RAB method designates an annular sector region,
as the relay area, from where the next tracking principal is
selected. The relay area is determined by three tunable param-
eters ϕ, D̃, and ω, where ϕ denotes the central angle of the
sector, D̃ is the radius of the outer circle of the sector, and ω
defines the width of the annular sector area.

If there is no node residing in the relay area, it will be
iteratively expanded by increasing the three tunable parameters
until at least one sensor node is encompassed within it. It is that
particular node that will be selected as the subsequent tracking
principal. A lower bound of �(L/1.1D̃)� on the average number
of principals required to cover a line segment L is derived
in [8].

To incorporate semantics of the discrete sampling organized
in epochs, Ghica et al. [9] proposed a tracking-principal selec-
tion algorithm, which is called sampling look-ahead selection
(SLS). By discriminating between the blind coverage (incorpo-
rating both a priori (T−) and a posteriori (T+) times), and
the effective coverage T e of a given sensor node, SLS was able
to improve the lower bound proposed by He et al. [8] and
achieved significant savings on the number of required tracking
principals.

An illustration of the spatiotemporal coverage by a principal
node is shown in Fig. 4, which explains the meaning of the
a priori T− and a posteriori T+ blind coverage and the one
of the effective coverage T e.

While the goal of the RAB method is to increase T e

through reducing a priori blind coverage, SLS also incorporated
a posteriori blind coverage into the process of tracking-
principal selection, thereby reducing the combined impact of
T− and T+. Following the work in [9], this paper also considers
the semantics of the spatiotemporal coverage process when
selecting the tracking principals.

B. DAS of Tracking Principals

In the sequel, we give a detailed presentation of the main
steps of our methodology for selecting tracking principals,
separately addressing the issues of continuous coverage and the
discrete-time coverage.

1) Trajectory Prediction: Assume that Pt−1 is the current
tracking principal that continuously monitors the target and acts
as the fusion center of the mobility information before the target
moves out of its coverage disk. When the target moves into the
“handoff area,” determined both by the target’s motion and the
sensing range of nodes, the principal Pt−1 will communicate
with its neighbor nodes, requesting them to perform range
measurements. Then, at the next tracking epoch starting at time
t, the particle-filtering-based localization algorithm DRPF is
employed to update the location L̂t and estimate the angular
deflection ϕt of the target, using (7) and (8), respectively. More
specifically, at time t, the location along the expected trajectory
Traj(Lk, ṽI) is predicted according to the following formula:

Traj(Lk, ṽ =

{
x̃k = x̃t + ṽI · cos (θt + (k − t)ϕt)
ỹk = ỹt + ṽI · sin (θt + (k − t)ϕt)

(9)

where the point with coordinates (x̃k, ỹk) denotes the predicted
location of the target trajectory at time step k(k ≥ t+ 1); θt
is the previous moving direction calculated using the histor-
ical movement information, e.g., arctan(yt−1 − yt−2/xt−1 −
xt−2); and ṽI specifies the expected displacement of the tar-
get during the sampling epoch I . We implicitly assumed that
ϕt > 0 if the direction of trajectory is on the left hand of θt and
ϕt < 0 if otherwise.

2) Coverage Gain of DAS: As explained in [9], one of the
main features of SLS is that it minimizes the blind coverage,
both a priori and a posteriori portions, when selecting tracking
principals while implicitly increasing the effective coverage.
Since it has been demonstrated that SLS requires fewer tracking
principals when considering the discrete nature of sampling
epoch, which is also the premise of this paper, we only illustrate
the effective coverage gain of DAS compared with the SLS
algorithm.

As a specific example, consider the scenario shown in Fig. 5,
involving two candidate tracking principals P1 and P2. We have
the following observations in order.

• The SLS method selects P1 as the principal node when
taking into consideration of the discrete nature of the sam-
pling epochs because it exhibits maximal linear predicted
effective coverage T̃ e (see the dashed line in Fig. 5).

• Although SLS outperforms the RAB method in terms of
reducing tracking-principal transfers, the benefit originates
from “predicting” the posterior blind coverage and hence
“forward-looking” the next sampling location of target.
One of the problems, as stated in [9], is that it introduces
more “unsuccessful” principal transfers in contrast with
CPS and RAB approaches.

• However, we also observe that the object deviates an angle
ϕt from the previous moving direction after transmitting
the tracking information from the previous principal to
P1. Therefore, unlike SLS, DAS will select the node P2

as the next tracking principal when accounting for the
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Fig. 5. DAS versus SLS.

Fig. 6. Trajectory coverage by a tracking principal.

angular deflection of the target at sampling time step t. As
shown in Fig. 5, candidate P2 may yield a coverage gain
Tg on the effective coverage compared with candidate P1.
Apparently, we have T e

c2 > T e
c1, which demonstrates that

P2 is a better choice.
• Finally, as has been stated in the previous section, DAS

is a safer principal transfer approach compared with SLS,
due to deferring the location prediction to time step t after
involving measurements rather than relying only on linear
prediction at t− 1, which is the case for both the SLS and
RAB methodologies.

3) Continuous Trajectory Coverage: We now derive the
bound on the average number of tracking principals required
to cover an arc of a given target’s trajectory. To help with de-
veloping the intuition behind the proposed approach, we use the
settings described in Fig. 6, which shows a circle centered at the
point o with radius r and its arc segment ÂB intersecting with
the covering disk of a sensor node Si at intersections A and B.

Let � denote the length of the chord AB, and assume that �
is uniformly distributed in the range [0, 2Rs], where Rs is the
sensing range of Si. Then, angle φ (∠AoB in Fig. 6, measured
in radians) and the length of ÂB, e.g.,L, can be expressed
as 2 · arcsin(�/2r) and 2 · r · arcsin(�/2r), respectively. The
distribution of L can therefore be calculated as

F (L) =
2r·sin( L

2r )∫
0

f(�)d� =
r

Rs
· sin

(
L
2r

)
(10)

where f(�) is the pdf of �, and f(�) = 1/2Rs, when 0 ≤
� ≤ 2Rs. Then, the pdf of L, e.g., f(L), can be obtained by
differentiating F (L) with respect to L as follows:

f(L) = F ′(L) =
{

1
2Rs

· cos
(

L
2r

)
0≤ L ≤ πRs

0, otherwise.
(11)

Therefore, the expectation of the length of the arc segment
ÂB being inside the sensing disk is given by

E(L)) =
∫

f(L) · LdL

=

2Rs∫
0

2r · arcsin

(
�

2r

)
· 1

2Rs
d�

=
r

Rs

[
2Rsarcsin

(
Rs

r

)
+ 2

√
r2 −R2

s − 2r

]
. (12)

We now derive the expression for the average length of an arc
covered by a sensor node using a method analogous to the one
presented in [8] for line segments. Clearly, the mean number of
sensor nodes that are needed to cover an arc curve of length L
is �(L/E(L)))�, which serves as a lower bound on the required
number of tracking principals. On the other hand, the upper
bound, derived in [19] on the expected intersections between
a straight line and the boundaries of covering disks, is still valid
for an arc trajectory. Thus, the average number of nodes Na

required to cover an arc segment of length L satisfies⌈
L

E(L))

⌉
≤ Na ≤�4λLRs� (13)

where λ denotes the node density, which is assumed to be
sufficiently large so that the entire area of interest (the net-
work deployment area) is covered with respect to location
detection [20].

4) Maximizing Samples Under the Discrete Sampling Pro-
cess: Previously, we derived the average length of an arc E(L̂)
covered by a tracking principal under a continuous coverage
process. Now, we proceed to deriving a formula for quantifying
the number of samples covered by a principal, taking the
discrete nature of the sampling process into account.

More formally, the current principal Pt should select a sensor
node, e.g., Si (Si ∈ N (Pt)), which is located in the area of
D(Pt, Rs), as the next tracking principal. The selected sensor
node Si should satisfy that the segment of the expected trajec-
tory ÂB, intersecting with the disk D(Si, Rs) at position LA

and LB , yields the largest number of sampling points along
with it.

Given the expected displacement of the moving target during
a sampling interval, e.g., ṽI , and the angular deflection ϕt,
radius r (see Fig. 6) is given by

r =
ṽI

2 sin
(
ϕt

2

) . (14)

Hence, the coordinates of the intersections A and B, which
are denoted as LA and LB , respectively, are given by solving
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the following system of equations:

{
(x− xj)

2 + (y − yj)
2 = Rs

(x− xo)
2 + (y − yo)

2 = r
(15)

where (xi, yi) denotes the center of D(Si, Rs), and (xo, yo)

denotes the center of the arc ÂB, which is computed based
on the previous locations Lt−1 and current location Lt of
the target, combined with deflection value ϕt, radius r, and
expected displacement ṽI .

Let γ(A,B) denote the length of the arc segment ÂB, which
is the nominal spatial coverage of node Si, and let γ(A,Lt)
denote the length of the arc segment between A and the current
object’s location Lt, representing the posterior blind coverage
portion of node Si. Then, the function Ψ(Si), which calculates
the expected number of samples covered by a candidate sensor
node Si ∈ N (Pt), can be specified as

Ψ(Si) =

⌊
γ(A,B)− γ(A,Lt)

r · ϕt

⌋
(16)

where the denominator r · ϕt is the length of the expected
displacement curve during a given sampling epoch I .

The pseudocode of the algorithm that implements the pro-
posed DAS approach to selecting tracking principals is pre-
sented in Algorithm 1. Note that Algorithm 1 is a heuristic
approach, which recursively considers each node Si ∈ N (Pt),
and returns the one that can maximize the number of samples
along a corresponding segment of the expected trajectory. Ob-
viously, the time complexity of DAS is O(n), where n is the
number of neighbor nodes of the current principal, which is
determined by the node density.

Algorithm 1 Algorithm of DAS Tracking-Principal Selection
Require: current principal Pt, I , N (Pt)
Ensure: cand �= Null
1:Estimate ϕt with (8)
2:Calculate radius r with (14)
3:Time stamp T ← t;
4:Cand = N (Pt).first //candidate node
5:while true do
6: Ltemp ← Traj(LT , ṽI) with (9)
7: for each Sk ∈ N (Si) do
8: if ‖Sk.LT , Ltemp‖ > Rs then
9: N (Si).remove(Sk)
10: else if Ψ(Sk) > Ψ(Cand) then
11: Cand ← Sk

12: end if
13: end for
14: if N (Si) == Null then
15: return Cand;
16: end if
17: T ← T + I;
18:end while

IV. EVALUATION WITH SIMULATIONS

We implemented three broad groups of simulations compar-
ing our methodologies with the existing related works. Specifi-
cally, we present our observations (and corresponding analysis)
categorized as follows.

1) The first group of simulations shows our observa-
tions regarding the impact of the various parameters
on the number of transfers between successive tracking
principals.

2) The second group of simulations addresses the impact of
the network configuration parameters on localization and
deviation estimations.

3) The third group of simulations pertains to the energy
consumption and also discusses the energy-related issues
related to precision (i.e., minimizing the localization er-
ror) via increasing the number of particles.

The evaluations were conducted on the open-source SIDnet-
SWANS simulator for WSNs [21]. The network consisted of
800 homogeneous nodes with simulated ranging capabilities
that implement the equivalent of an active ultrasonic echo-
ranging system, running on a standard MAC802.15.4 link layer
protocol.

We adopted a modified random waypoint mobility model
[22] for moving target. The target traces are generated to
represent four types of moving objects: walk (people), bikes,
cars, and fast driving cars, calibrated according to the average
speed of the real traces: 4, 10, 25, and 50 mi/h, respectively.
The only modification of the mobility model is that, at each
time step, the target randomly deviates a value, i.e., ϕt, from
its previous moving direction θt−1, where ϕt is uniformly
distributed in [ϕmin, ϕmax] (in degrees), e.g., [0◦, 15◦]. For sim-
plicity, we set ϕmin to zero and evaluate the impact of param-
eter ϕmax on the performance of tracking-principal selection
algorithms.

Every simulation spanned 3.2 h of simulation time consisting
of two parts: 1) bootstrapping and neighbor discovery protocols
in SIDnet-SWANS and 2) the actual tracking, in the remaining
2.2 h. The simulation configuration space is summarized in
Table II, providing 320 distinct configurations. In addition, we
conduct ten random runs for each configuration to evaluate the
average performance of different schemes.

A. Reduction of Principal Transfers

We first report the results comparing the DAS algorithm with
the existing principal transfer algorithms, i.e., CPS, RAB, and
SLS, in terms of the number of the transfer of data/tracking
responsibilities between principals. We note that we employed
the DRPF scheme in the DAS algorithm, unless otherwise spec-
ified. Specifically, we investigate the following impact factors
on tracking principals required to cover the target trajectory:
1) the angular deviation ϕmax; 2) the moving target’s velocity
ṽ during each sampling interval; and 3) the average number of
measurements at each sampling epoch, which is determined by
the node density λ of the networks.
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TABLE II
SIMULATIONS CONFIGURATIONS

Fig. 7. Impact of angular deviation. (a) Number of transfers. (b) Number of
unsuccessful transfers.

1) Impact of the Angular Deviation: Fig. 7(a) and (b) com-
pares the performance of different tracking-principal selection
schemes under the impact of parameter ϕmax, increasing from
1◦ to 15◦. The following observations can be established.

• DAS achieves improvement by 44%–59% over CPS,
8%–39% over RAB, and 3%–37% over SLS on average.
When the angular deviation is small, DAS slightly reduces
the number of principals compared with SLS and RAB, due
to the fact that there is no significant difference between
linear prediction (SLS and RAB) and the real trajectory.
However, as ϕmax increases, the advantage of DAS be-
comes obvious due to incorporating the angular deviation
of the target into trajectory prediction.

• CPS is, in a sense, a “risk-free” principal transferring, ow-
ing to its conservative sensor selection approach, and RAB,
which returns the closest sensor if there is no node residing
in the relay area in our experiment. However, SLS and
DAS may produce unsuccessful principal transfers because
the selected node may not cover the mobile target after
handing off the tracking information. Therefore, similar
to SLS, DAS is an “adventurous” tracking-principal selec-
tion scheme, which means there exist unsuccessful leader

transfers due to inaccurate trajectory prediction. However,
as shown in Fig. 7(b), DAS can largely reduce the number
of unsuccessful principal transfers by accounting for the
angular deflection of the mobile target, particularly for
larger value of ϕmax.

• The performances of the SLS and RAB approaches are very
similar, which is, to some extent, different from the results
reported in [9]. This is because the advantage of SLS
over RAB, through increasing the posterior blind coverage,
is partially compensated by the “randomly” selection of
nodes in the expanded relay area of RAB. The selected
nodes in RAB are indeed sometimes coincided to or close
to the optimal node as chosen by DAS, although this kind
of selection is unconscious regarding the deviation of the
moving direction.

We note that due to the localization estimated error, there
exists biased angular deviation and generating inaccuracy in
terms of the moving object’s actual location. This, in turn, is
likely to impact the optimal selection of the principals with
respect to DAS. The impact of the errors due to estimating
angular deviations is analyzed in Section IV-B; however, the
complete treatment (qualitative and quantitative) of the impact
of the uncertainty due to location errors on the quality of
selecting tracking principals is left for our future work.

2) Impact of the Target’s Speed: Another factor that affects
the performance is the speed of the mobile target. The results,
which are shown in Fig. 8(a) and (b), demonstrate that DAS
reduces 52%–52.5%, 23%–26%, and 22%–24% of handoff
size compared with CPS, RAB, and SLS, respectively. While
frequent sampling is ideal for accurate localization and robust
tracking, desirable sampling intervals for the WSN should be
large for the purpose of energy efficiency. To balance the
energy saving and quality of tracking, the sampling intervals
for different vehicle types vary from 0.4s to 8s, which are
empirically chosen.

Intuitively, the faster the mobile target, the more tracking
principals are required to cover the moving trajectory if the
time is fixed. As shown in Fig. 8(a), the number of tracking
principals required, in all schemes, are almost proportional
to the target speed. On the other hand, without taking into
consideration of the direction deviation, a fast moving object
further increases the uncertainty of the prediction and unreliable
principal selection, for both SLS and RAB.

Fig. 8(b) shows the unsuccessful transfers of SLS and DAS.
It demonstrates that DAS can keep the unsuccessful transfers in
an acceptable level compared with SLS.

3) Impact of the Node Density: Next, we present the eval-
uation of the impact of node density, which we obtained by
varying the size of the area of the sensing field, while keeping
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Fig. 8. Impact of target speed. (a) Number of transfers. (b) Number of
unsuccessful transfers.

the same number of deployed nodes. Node density impacts
the performance of tracking-principal selection schemes in two
ways. First, the network density has a great impact on the
accuracy of location estimation for all schemes. In addition,
for DAS, the higher the node density is, the more accurate
particle-filtering-based localization can be, as can the angular
deflection estimation. In addition, from the perspective of tra-
jectory coverage, high node density may provide more qualified
nodes that can assume the role of the next tracking principal.
However, increasing the node density can largely increase the
amount of energy expenditure on sensing, data aggregation,
and, particularly, the in-network communication. The energy
dissipation issues will be discussed in Section IV-C.

As shown in Fig. 9(a), the DAS algorithm still performs the
best under all node density configurations. The mean perfor-
mance gain of DAS over CPS, RAB, and SLS is 53%, 26%,
and 24%, respectively. Another important observation is that,
as shown in Fig. 9(a), a few neighbors are sufficient to reach
stable performance for various principal selection schemes.

Fig. 9(b) shows the comparison between DAS and SLS on
unsuccessful transfers, which show the more accurate trajec-
tory prediction of DAS compared with SLS. An interesting
observation is that there are slightly more failed transfers in
the higher node density network, which seems counterintuitive.
The reason is that there are more nodes distributed in the margin
region of the communication area of the current principal in a
higher density network, which may cover more trajectory ac-
cording to (16), and thus are preferable choices. However, these
“desirable” nodes also increase the possibility of unsuccessful
handoffs because of the presence of prediction errors.

Fig. 9. Impact of node density. (a) Number of transfers. (b) Number of
unsuccessful transfers.

4) General Performance: Fig. 10(a) and (b) shows the gen-
eral performance of different schemes on the number of prin-
cipal transfers (successful and failed, respectively) evolving
along with the time axis, which is plotted by averaging all
runs. As it shows, DAS achieves strong principals reduction,
on average, compared with other schemes, while keeping the
unsuccessful transfers in an acceptable level, which validate the
advantage of the proposed algorithm in different scenarios of
network configurations.

In conclusion, the simulation results demonstrate that our
deflection-aware tracking-principal selection algorithm signif-
icantly outperforms the previous schemes under a wide range
of conditions.

B. On Localization Accuracy

Since the DAS algorithm relies on the particle-filtering-based
localization and direction estimation, the next results concern
the performance of the localization error and the deviation
estimation error, which are denoted as Le and ϕe, respectively,
under the impact of different network configuration parameters.

The localization error Le is measured as the mean abso-
lute localization error, which is scaled as the percentage of
the sensing range Le = (1/T )

∑T
t=1 ‖L̂t, Lt‖/Rs, where ‖ · ‖

denotes the Euclidean distance between the estimated location
L̂t and the real location Lt at time step t, and the results
are averaged with the total sampling epochs T . Similarly,
the direction deviation estimated error ϕe is calculated as
follows: ϕt = (1/T )

∑T
t=1 |ϕ̂t, ϕt|/ϕt, where | · | denotes the

absolute error between the estimated deviation ϕ̂t and the actual
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Fig. 10. Comparison of general performance. (a) Number of transfers.
(b) Number of unsuccessful transfers.

deviation ϕt. As discussed in Section II, this paper uses the
DRPF scheme to adapt the sampling process of particle filter-
ing. We compare the state estimation error of the DRPF scheme
to the original particle filtering calculation, to evaluate the in-
troduced error by DRPF. The energy consumption comparison
will be held in Section IV-C.

Fig. 11(a) and (b) shows the impact of node density λ on
the target-state estimation while evaluating the performance of
DRPF scheme. Apparently, the accuracy of state estimation,
including localization and direction deflection, improves by
increasing node density. In some sense, the node density and
the particle number affect the accuracy of state estimation in
the same way, i.e., through increasing the number of efficient
samples and thus approaching the real distribution of state
space. On the other hand, it shows that applying the DRPF
scheme may bring a small estimation error, although it is
insignificant in WSNs with a higher node density.

Fig. 12(a) and (b) shows the impact of the number of
particles Np on Le and ϕe, respectively. As indicated, the
expected conclusion is that the more particles there are, the
more accurate localization and deviation estimation will be.
Note that the DRPF scheme slightly reduces the estimation
accuracy. However, on the flip side, one can observe that while
more particles obtain higher localization accuracy, they incur
additional computational overheads and increase the commu-
nication levels, thereby demanding more energy. While the
problem of striking a good balance between the two is beyond
the scope of this paper, we note that [as can be observed in
Fig. 12(a) and (b)] using 100 particles may achieve acceptable
estimation results.

Fig. 11. Impact of λ on estimation error. (a) λ versus Le. (b) λ versus ϕe.

Fig. 12. Impact ofNp on estimation error. (a)Np versusLe. (b)Np versusϕe.

As shown in Fig. 13, both Le and ϕe are not too sensitive
on the direction deflection ϕmax due to the expanded sam-
pling area through increasing the values of ϕmax (cf. Fig. 2).
We observe, however, that the deviation estimate significantly
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Fig. 13. Impact of ϕmax on estimation error. (a) ϕmax versus Le. (b) ϕmax

versus ϕe.

improves as ϕmax increases, as shown in Fig. 13(b), which
demonstrates that DAS performs better with a larger value of
ϕmax (cf. discussion accompanying Fig. 7).

Fig. 14(a) and (b) shows the impact of ṽ on Le and ϕe,
respectively. As can be observed, the performance of DRPF is
rather insensitive to the parameter ṽ, which happens because the
sampling period δ tolerated by DRPF is inversely proportional
to the target’s velocity ṽ. As explained before, fast moving
objects increase the uncertainty of the target’s position which,
in turn, leads to poorer localization and angular estimation.
Hence, from the perspective of the precision of the tracking
process, a larger value of particle number and/or more frequent
sampling are preferred for a fast moving target.

C. Energy Consumption

The final group of simulation observations that we report
addresses the in-network energy consumption aspects.

The nodes are configured to meet the Mica2 Mote energy
consumption specifications outlined in Table III. The calcula-
tion of the communication overhead of each node is performed
using

Ec = EREQ + EMES + EPT

where we have the following.
1) EREQ denotes the energy expenditure of requesting mea-

surement sent by the tracking principal to its one-hop
neighbors.

2) EMES denotes the energy expenditure due to transmitting
the measured data.

Fig. 14. Impact of ṽ on estimation error. (a) ṽ versus Le. (b) ṽ versus ϕe.

TABLE III
ENERGY SPECIFICATIONS OF MICA2 MOTE

3) EPT denotes the energy expenditure due to transferring
tracking data between consecutive principals.

Specifically, the earlier three components are estimated asEREQ =
∑T

t=1 Mreq · Nt · (ERT + ERR)

EMES =
∑T

t=1 Mmes ·Nt · (ERT + ERR)
EPT = Nprincipal ·Mpl · (ERT + ERR)

(17)

where Mreq, Mmes, and Mpl denote the message (data) size
of the request, measurement, and tracking data, respectively,
which are set to 24 bits, 128 bits, and 1 KB. Nt indicates the
number of one-hop neighbors, and Nt indicates the number of
nodes giving the measurements at each time step. The energy
required for aggregating the measurement data and estimating
weight of each particle in the principal node is set to 5nj/bit
(cf. [23]).

Fig. 15(a) and (b) shows the impact of the number of particles
Np and the node density λ on the overall energy consumption
of the DAS approach. The results show that increasing Np or
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Fig. 15. Energy consumption of DAS. (a) Impact of Np. (b) Impact of λ.

λ also increases the burden of in-network energy dissipation,
although it may reduce the localization error, as discussed in
Section IV-B. The reason is that DAS is a particle-filtering-
based localization and an angular deflection estimation method-
ology, which requires intensive calculation in the principal
nodes as λ or Np increases, although DAS achieves fewer
transfers of tracking data. There are different ways to conserve
energy in high-density networks for DAS, one of which is to
utilize a threshold parameter ξ to control the number of nodes
that can communicate to the principal, e.g., only those nodes
detecting the target with signal strength ≥ ξ may report the
measurements.

Fig. 16 compares the energy consumption of the DAS al-
gorithm with the DRPF scheme to the conventional particle
filter, analyzing the impact of Np and λ, respectively. As stated
earlier, DRPF is an approach that is targeting a reduction in
the computation cost of the particle filtering method, at the
expense of some localization errors. Clearly, significant energy
expenditures are saved by employing DRPF, particularly in
settings in which the values of Np and λ are larger.

V. RELATED WORK

Research in the field of WSNs has generated a large body
of works that have addressed various aspects of the problem of
robust and energy-efficient target tracking.

Organizing the nodes in clusters for the purpose of collabora-
tive target tracking has already been considered in the literature
[4]–[6], along with some dynamically maintained structures
to improve the information fusion, e.g., convoy trees [24]. In

Fig. 16. Energy saving of the DRPF scheme. (a)Np versusEc. (b)λ versusEc.

addition, various nodes’ wake-up strategies and power conser-
vation protocols for target tracking have been investigated [1],
[25]–[27]. The cluster formation strategy considered in this
paper is similar to that in [4]; however, our approach differs
in the aspects of combining the issues of tracking-principal
selection and trajectory prediction.

Moving-object trajectory coverage has also been addressed
as a problem of interest in the global context of target tracking.
Wang et al. and Zhang and Hou [13], [14] give the conditions
under which a sensor-network deployment region is guaranteed
to satisfy both coverage and connectivity. In [1] and [8], the
problem of trading off between the energy consumption and
the quality of monitoring in WSNs was studied, and analysis
was presented for continuous target path coverage based on
the geometric properties, similar in spirit to that in [19].
However, the works of Gui and Mohapatra [1] and He and
Hou [8] only consider the straight line path coverage without
concerning the trajectory that is deviating from the expected
moving directions, which is one of the features of this paper.
In addition, compared with the works in [1] and [8], this paper
considered both the continuous path and discrete segments
covered by a sensor node.

The methodologies of indexing and prediction for nonlinear
trajectories have been tackled by the researchers from the
moving-object database community, e.g., in [28] and [29].
Tao et al. [28] proposed the recursive motion function and
the STP tree for expressing and indexing the nonlinear mo-
tion patterns, such as polynomials, ellipses, and sinusoids.
Jeung et al. [29] studied the problem of discovering trajectory
patterns and efficiently answering the predictive query, using a
hybrid prediction algorithm and an indexing technique called
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the trajectory pattern tree. Although the idea of prediction and
indexing nonlinear motion patterns behind this paper is similar,
we focus on addressing the problem of trajectory coverage
and efficiency of transmission of the tracking data between
successive principals.

Selecting a subset of sensors that will collaborate when
executing a certain task is one of the canonical problem in the
WSN field. In [30], Zhao et al. presented an information driven
tracking scheme. Based on [30], several papers such as [31]
and [32] have been proposed, addressing the information gain
of sensor nodes. The main idea of earlier works are to select the
sensor node that can minimize the uncertainty of the moving
target’s location using mutual information and entropy theory.
Compared with the works in [31] and [32], which predict the
information gain by a sensor node before obtaining the data,
our approach focuses on estimating the expected trajectory of
the target and, hence, its spatiotemporal coverage by candidate
sensor nodes.

The approaches that are most closely related to this paper,
in the sense of addressing the problem of reducing the number
of tracking information handoffs between principals, have been
presented in [8] and [9]. In [8], He and Hou proposed a duty-
sensor selection scheme based on the concept of relay areas,
which aims at maximizing the continuous coverage of the pre-
dicted trajectory of a given moving object by a chosen cluster
leader. To specifically take into account the discrete nature of
the sampling process organized in epochs, our previous work
[9] addressed the problem of improving the spatiotemporal
coverage of the expected moving trajectory through minimizing
the posterior blind coverage by a given tracking principal.
There are two main distinctions of this paper compared with the
works of He and Hou [8] Ghica et al. [9]. First, when selecting
the tracking principals, we consider the angular deflection of
the moving object, particularly at the time instant at which the
handoff occurs. Second, the location “prediction” in this paper
is deferred to the time step at which the moving object’s
location has been updated.

There are also works that have addressed the target or mobile
sensor nodes localization, relying upon the Bayesian sequential
Monte Carlo methods [32]–[35]. We note that this paper com-
pletely relies on the existing particle-filtering-based localization
approaches to estimate the moving target, in particular, to esti-
mate the moving angular deflection from the previous moving
direction. However, the DRPF method proposed in this paper
also exploits the movement prediction using the dead-reckoning
technique, to balance the position uncertainty regarding the tar-
get and the energy consumption of particle filtering estimation.
In addition, we focused on improving the accuracy of target
trajectory prediction and, most importantly, on reducing the
number of tracking principals required for trajectory coverage,
by taking into consideration the direction deviation.

Recent work that is similar in spirit, in the sense of tackling
the uncertainty of the tracked object’s location, but is comple-
mentary to our results is presented in [36]. However, while the
focus of [36] is on incorporating the imprecision of the location
detection in the tracking process, we have addressed the issue
of selecting tracking principals’ sequence for the purpose of
minimizing the energy expenditures.

VI. CONCLUSION AND FUTURE WORK

We have addressed the problem of efficiently managing the
energy consumption in tracking settings in WSNs, focusing on
the aspect of selecting the tracking principals. Specifically, we
considered the impact of the deviation of the target’s estimated
trajectory and efficient adjustments of the principal’s selection
in response to detecting it. To cater to this dynamics, we
have presented a novel tracking-principal selection algorithm,
along with a handoff scheme between consecutive principals.
The proposed scheme exploits the angular deflection of target
and significantly reduces the number of tracking principals
required to cover the moving-object trajectory. Both analytical
and experimental evaluations, compared with existing tracking-
principal approaches, are conducted to verify and validate our
scheme in a wide range of scenarios.

As part of our ongoing efforts, we are investigating the issue
of load balancing among the participating nodes when there are
multiple tracking targets [7] and its impact on the selection of
the tracking principal. The instantaneous (location and time)
detection in WSNs is typically done via some collaborative
trilateration [15], [24], [30], where the distance estimates from
the participating nodes are inherently imprecise. While the
spatiotemporal data management community has addressed the
formalization of the problem of handling uncertainty in various
queries [36], [37], incorporating similar treatments when select-
ing tracking principals is a challenge that we plan to address in
the near future, augmenting our recent results [38]. A particular
facet of the problem that we plan to address in the future is the
incorporation of our proposed scheme into real-time tracking
systems similar to VigilNet [39], extending it to the settings in
which heterogeneous nodes (static and mobile) are participating
in the tracking process.
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