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ABSTRACT
This work addresses the problem of efficient distributed de-
tection and tracking of mobile and evolving/deformable spa-
tial shapes in Wireless Sensor Networks (WSN). The shapes
correspond to contiguous regions bounding the locations of
sensors in which the readings of the sensors satisfy a particu-
lar threshold-based criterion related to the values of a phys-
ical phenomenon that they measure. We formalize the pred-
icates representing the shapes in such settings and present
detection algorithms. In addition, we provide a light-weight
protocol and aggregation methods for energy-efficient dis-
tributed execution of those algorithms. Another contribu-
tion of this work is that we developed efficient techniques for
detecting a co-occurrence of shapes within a given proximity
from each other. Our experiments demonstrate that, when
compared to the centralized techniques – which is, predicates
being detected in a dedicated sink – as well as distributed
periodic contours construction, our methodologies yield sig-
nificant energy/communication savings.

Categories and Subject Descriptors
H.0 [Information Systems]: General

General Terms
Algorithm, Design

Keywords
Spatio-temporal events, Wireless Sensor Networks, WSN,
Evolving shapes

1. INTRODUCTION
Wireless Sensor Networks (WSN) consist of a large num-
ber (hundreds, or even thousands) of tiny devices which,
in addition to the capabilities to sense/measure values of
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a particular physical phenomena and perform basic calcula-
tions, can self-organize in a wireless network [3]. This ability,
in turn, enables communicating various observations from
nodes located in different parts of the network, which has
spurred WSNs as paradigm of choice in a plethora of applica-
tions: scientific observations and actuations, traffic manage-
ment, environmental safety/hazards detections, infrastruc-
ture monitoring, health-care and military surveillance [15,
26, 30] – to name but a few.

For many typical sensor nodes, it is a ”fact of life” that
the communication – be it a transmission or active listen-
ing/reception – drains a 2-3 orders of magnitude more en-
ergy than the processes associated with sensing and local-
computations tasks [3]. Given that the batteries on many
types of sensors are non-renewable, especially when deployed
in inaccessible terrain, avoiding unnecessary communication
is a paramount.

A common property of many of the phenomena monitored
by WSNs is that the data sources may span over large spa-
tial regions and generate values at distant (discrete) loca-
tions. However, in many applications, it is of a great impor-
tance to detect the spatial boundaries of the (sub)regions
for which the sensed values have a particular property (e.g.,
temperature exceeding certain threshold). Several research
works have addressed different aspects of the problem of
detecting and representing spatial features of a particular
phenomenon [13, 33, 12]. As an example, to enable energy-
efficient querying, spatial summaries – e.g., isocontours [13]–
may be constructed, representing the (boundaries of the)
regions with same (or, close-enough) readings. A natural
trade-off is the precision of the aggregated representation
vs. the energy efficiency.

Our goal in this work is to provide distributed algorithms
that will enable energy efficient in-network detection of
evolving spatial shapes – which is, contiguous 2D regions in
which readings of the sensors satisfy a particular threshold-
based property. What motivates this work is the obser-
vation that due to the changes of the values of the moni-
tored phenomena, the boundaries of the spatial regions (i.e.,
shapes) with homogeneous readings may change over time
and, based on those changes, actions with potentially costly
consequences may need to be taken. For example, if the re-
gion(s) with high-temperature indicates a forest fire, know-
ing how it evolves is a paramount for planning the distri-
bution of the fire-fighters equipment, as well as predicting



(a) Normal conditions (b) Abnormal readings

Figure 1: Detecting contiguous evolving shapes

where herds of animals may be escaping. Similarly, in other
scenarios related to toxic fumes spreading, the manner of
evolution may help in selecting evacuation routes with min-
imal risks. Among the challenges is the lack of formal treat-
ment of the different facets of this problem. As an illustra-
tion, having very few scattered spikes of temperature read-
ings may be due to noise; similarly, a large number of small
fluctuations need not indicate an occurrence of something of
interest. However, when the set of temperature readings is
very high and the detecting sensors are spatially close and
cover a large-enough area, it may be an indication of a sit-
uation which may require a certain actuation – e.g., from
turning sprinklers in a field, to mobilizing fire-fighters due
to forest fire. An illustrating scenario1 for our objective is
presented in Figure 1. Figure 1(a) shows a ”normal” sce-
nario in which the readings of the sensors deployed in the
field are below the threshold of 100◦C, which indicates that
there is no danger of a fire. However, in Figure 1(b) we
have high-readings of some sensors, prompting two comple-
mentary observations: (1) The reading in the left part of
Figure 1(b) may indicate an ”outlier” (i.e., a malfunctioning
sensor); (2) The readings in the right portion of Figure 1(b)
not only indicate a potential hazard (e.g., a forest-fire) but
also demand some description of the spatial boundary of the
the shape in which such values have been read. Clearly, once
the validity of the corresponding shape-describing predicate
has been established, the next task is to efficiently track/-
monitor how such shape(s) evolves over time.

In addition to the detection and monitoring of the bound-
aries of evolving shapes, in this work we also consider the
problem of efficient detection of co-occurrence of spatial
shapes – which is, spatial shapes which are closer than a
certain distance-threshold. While there have been research
efforts addressing spatial summaries construction and main-
tenance [13, 33] as well as shapes interpolations [28], to
the best of our knowledge, there has been no attempts to
efficiently detect co-occurrence of such spatial phenomena.

1The images are actually generated from the phenomena
fluctuations that we used in the SIDnet-SWANS simula-
tor [14] in our experiments (cf. Section 5).

Such problems, however, are of extreme importance in sce-
narios like disaster mitigation. If we consider again the for-
est fire scenario, there can be two origins for forest fire and
these fire regions may move/expand over time – eventually
they may even merge. The information of two regions com-
ing closer in this example carries a great deal of importance
when it comes to both controlling the fire by deploying fire-
men, as well as the escape-routes affecting the safety of the
firemen.

Towards these goals, the main contributions of this work
are developing an approach for efficient in-network detection
and tracking of evolving spatial shapes, along with detec-
tion of the co-occurrence of those shapes which are within
a proximity-threshold. We formalize the notion of a spa-
tial shape and provide efficient distributed algorithms for
processing the corresponding predicates in WSNs. Our ex-
periments indicate that the methods we propose are much
more efficient than the centralized (näıve) scheme, which
would transmit all the individual observations’ data to a
dedicated sink and have the shape construction performed
there. In addition, the event-based shapes detection ap-
proach is demonstrated to perform better than the tradi-
tional approach of periodic shape-construction.

The rest of this paper is organized as follows. After recol-
lecting basic preliminaries and developing the terminology
in Section 2, we proceed with the details of the shape detec-
tion methodology in Section 3. Section 4 expands towards
the details of the protocol and distributed algorithms for de-
tecting co-occurrence of evolving shapes. Our experimental
observations are discussed in Section 5. Section 6 positions
our results with respect to related literature and Section 7
concludes the paper and outlines directions for future work.

2. BACKGROUND AND PRELIMINARIES
A wireless sensor network is assumed to consist of N nodes,
represented as the set SN = {sn1, sn2, . . . , snN}. Each node
sni, in addition to measuring values of the phenomena in
its vicinity and communicating with its neighbors, is also
aware of its location (xi, yi) in a corresponding reference



coordinate system – either via GPS or other collaborative
techniques [3]. Energy efficiency in WSN applications has
been known to benefit from event-based processing, as op-
posed to periodic sampling and transmission, in a variety
of scenarios. Events can be defined using constructs of the
available query languages such as TinySQL [21] – or they
can also be hard-coded when programming each individual
mote.

In the rest of this section, we firstly present an overview of
the impact of the event-based processing in different aspect
of WSNs systems – and show how we utilize the existing
findings in our work. Subsequently, we follow with present-
ing the formal definition of the predicates introduced in this
work.

2.1 WSN – Broad Perspective
Aside from the context of a particular application settings
– from a ”generic” perspective, routing structures and duty
cycling are some of the important factors of event based
processing in WSNs. However, there are other roles of the
event-based modelling and executing of tasks in WSNs.

Routing and Aggregation
Routing protocols in WSN can be classified in two basic cat-
egories: hierarchical and flat [2]. Flat routing schemes in-
clude methods like flooding – and the commonality of such
methods is that typically no particular topology is required.
Hierarchical routing protocols [18], in turn, can also be di-
vided into two sub-categories: tree-based and cluster-based.
Tree-based protocols, as the name suggests, form a tree
with all the nodes rooted at the sink and data propagation
is achieved by relaying messages from children to parents.
Cluster-based protocols divide the nodes into groups which
are based on a local proximity within a particular geographic
region. Each such group is managed by a designated cluster
head.

Data gathering and aggregation in WSNs is often done with
an aid of a hierarchical indexing structure. The routing pro-
tocol that we rely upon in our shape detection approaches
is based on splitting the zone of interest (i.e., the sensing
field) into nxn grid of cells with equal areas. Each such cell
is assigned a local principal2, which is in charge of gathering
the data from all the nodes inside the region of that cell.
We note that other space partitions may be considered (e.g,
K-d tree [23]) – based on the number of sensors within a cell
(possibly accompanied with a limit on the number of hops
when communicating with the principal). However, the im-
portant observation is that the principals are subsequently
organized in a tree, rooted in a dedicated sink. This geo-
graphic clustering has a two-fold impact: (1) it helps in local-
izing the decision-making because each principal can detect
shape within its corresponding cell; and (2) the tree/hier-
archy principals enables a distributed solution not only for
the problem of detecting the (co)occurrence of shapes, but
also a single shape spanning across ≥ 2 cells. Propagation
of the messages can be briefly expressed as: firstly data is

2We use the term ”principal”, although in WSN literature
they are often referred to as ”local cluster heads”. However,
we do so in order to avoid the ambiguity with the more
traditional concept of clustering (cf. [10]).

propagated from sensor nodes to the cell/region principals;
subsequently, the principals send the data up their own hier-
archy, attempting to limit the level of traversal (or, avoiding
a transmission all the way up to the sink).

Periodic vs. Event-driven Sampling
WSNs typically apply duty-cycling for their nodes in or-
der to save energy by having the nodes wake up periodi-
cally [5]. One possibility for duty-cycling is to use cluster-
based routing protocols for applying Time-Division Multiple
Access (TDMA) for the nodes in the jurisdiction of a partic-
ular cluster head, making the nodes send their sensed values
within their own allocated time slot. Periodic data transmis-
sion and event-driven transmission mainly differ in terms of
when they send sensed value. In periodic schemes, every
sensor sends their sensed value to their respective cluster
head in synchronized periods (e.g., epochs in TinyDB [21]).
However, in an event-driven scheme the data transmission
depends on how a given query is specified beforehand. For
instance, data may be transmitted whenever a particular
sensed value reaches/exceeds a threshold. Doing so may
yield substantial energy savings when the fluctuations of the
monitored phenomenon are not too frequent.

Clearly, such behavior of a WSN needs a well-defined col-
lection of events of interest (e.g., a temperature of a patient
exceeding 38◦C). We note that detection of events may also
be performed cooperatively by multiple sensors like, for ex-
ample in applications dealing with location-detection and
tracking where a distance from an object should be sensed
by at least 3 different sensors to pinpoint the estimate loca-
tion of the object [19, 32].

– TinyDB and TinySQL WSNs can also be perceived as dis-
tributed databases which are capable of processing continu-
ous and instantaneous queries [31]. As their names suggest,
instantaneous queries are aim at capturing values in a sin-
gle time-instant (which, in some sense can be thought of as
instantaneous events), whereas continuous queries are more
convenient for applications which require periodic sampling
and may need comparison of ”historic” states. TinyDB [21]
is a system tailored for database applications in WSN con-
text. It supports both continuous and instantaneous queries
and it provides and interface through which the users can
specify queries and events of interests using the SQL-like
syntax.

2.2 Shape-detection Predicates
In many regards, the predicates that we focus upon in this
work can be perceived as events – i.e., occurrence of ”some-
thing of interest” – which, in turn, are commonly split into
two basic categories: primitive and composite [1]. We note
that throughout this work, when it comes to primitive events
such as readings of individual sensors, we do not distinguish
between the detection and the actual occurrence. Typically,
the primitive events are associated with values which are di-
rectly measurable or observable – like, for example, a sensor
reading above a certain threshold – whereas the composite
ones are specified using well-defined event algebras (both in
terms of the syntax and semantics/processing) [16].

We note that throughout this work we concentrate on shapes
represented by simple polygons – which is, no holes and no



intersecting edges. In this spirit, our first composite event is
the one which denotes an occurrence of a shape which satis-
fies ”certain properties” – where the properties are specified
as parameters of the event.

Definition 1. Given a wireless sensor network SN, the
predicate ES(γ,A, t) holds in SN iff there exists a connected
spatial shape (S) such that:

1. The area of S is ≥ A.

2. The smallest value read by every sensor inside S is at
least γ.

3. The time of detection of ES is t.

We note that other parameters may be added – depending
on particular settings or application’s demands. For exam-
ple, if one would like to provide a bound on how ”narrow”
a particular area can get, the argument signature may be
augmented as ES(γ, r, A, t). This will limit the set of qual-
ified shapes only to the ones for which the diameter of the
point-set corresponding to the sensors locations is ≤ r.

Our next predicate denotes a co-occurrence of two spatial
shapes which, in addition to each of them satisfying 1, are
also within certain distance from each other and have been
detected within an acceptable time-interval. More formally:

Definition 2. Given a wireless sensor network SN, the
predicate ECO(ES1, ES2, d, δ) holds in SN iff

1. ES1(γ1, r1, A1, t1) holds in SN.

2. ES2(γ2, r2, A2, t2) holds in SN.

3. |t1 − t2| ≤ δ

4. The Euclidian distance between the two closest points
of the boundaries of A1 and A2 is ≤ d.

In this work, we only consider the Euclidean distance, al-
though other distance functions may be applicable (e.g.,
Hausdorff distance or the distance between the centroids).

We conclude this section with a note that the arguments sig-
nature in the definition of the predicates may be subject to
minor variations – for the purpose of enabling more efficient
detection. We will discuss this issue in greater detail in the
subsequent sections.

3. SHAPE DETECTION METHODOLOGY
We now present the main aspect of the procedural seman-
tics – which is, the data structures and the algorithms – used
to detect the occurrence of ES(γ,A, t). We distinguish two
separate facets of the problem: (1) Instantaneous detection
of the predicate; (2) Continuous monitoring upon initial de-
tection. In the sequel, we address each of them in greater
detail.

Figure 2: Cluster Head Snapshot

3.1 Initial Shape Detection
Upon deployment and dissemination of the request, the prin-
cipal node of each region begins to receive the readings from
the sensors in its region which exceed the value of γ, along
with the locations of the corresponding sensors. Hence, the
principal has a collection of all the (xi, yi, vali) readings,
specifying the location of each sensor for which the value
vali ≥ γ). In Figure 2 this is illustrated with the red filled
disks, indicating that the sensors in the corresponding loca-
tions have readings above the given threshold.

Based on the value of the argument A in the specification
of ES , it may be the case that a particular not every sensor
(or group of sensors) with reading above the threshold γ will
not contribute towards detection of a shape with the desired
features. Firstly, some of the values that the principal has
received from a given location, may have been due to noise,
random spikes in the phenomenon, or even communication -
based error. This is illustrated in the top portion of Figure 2
with the 2 isolated measurements ≥ γ, represented O1 and
O2. Secondly, although multiple sensors close to each other
may have readings ≥ γ, it may be the case that the total
area of the shape that they cover3 is < A. An illustration
of this is provided with the cluster of nodes denoted C3 in
Figure 2.

The illustration of an occurrence of our ES(γ,A, t) predicate
is provided at the bottom part of Figure 2. Namely, we see
the two spatial shapes, denoted C1 and C2, defined by the
corresponding sets of near-by sensors with readings ≥ γ.
Each of them covers a large-enough area to be reported as
satisfying the predicate ES(γ,A, t).

One of the main challenges now becomes how to construct
the shape which can represent the set of discrete location-
points. Clearly, some kind of an approximation of the
(boundary of the) actual region will need to take place. To-
wards that, we have the following policy:

If two sensor nodes sni and snj with readings ≥ γ are located
within distance ≤ ε from each other, then any geographical

3As we will formally define shortly, the areas of the shape is
actually obtained as the area of its approximated boundary-
polygon.



Figure 3: Convex Hull, α-shape, and χ-shape

2D point within the union of the disks with radii ε and cen-
tered at the respective locations of sni and snj is assumed
to satisfy the γ-threshold.

Essentially, we assume that the value of the sensed phe-
nomenon is the same at any point ”close enough” to the
actual location of the sensor node which performed the read-
ing. This, in turn, enables us to use bounding polygon con-
struction techniques from set of sensor nodes’ location.

Constructing a shape that will approximate the boundary
of a discrete set of points is a problem studied in Computa-
tional Geometry and there are some popular approaches like,
for example, convex hull of the set, α-shapes [8], etc. How-
ever, these techniques have certain shortcomings which ren-
der them not quite applicable in our contexts. As an exam-
ple, consider Figure 3: (1) the convex hull of the L−shaped
collection of points looks creates a ”pocket” within its in-
terior, containing many points which do not belong to ap-
proximated set. (2) To soothe this ”pocket-forming” kind of
problems, α-shapes have been proposed – however, a draw-
back of the α-shapes is that they may result in disconnected
regions in some cases, thus defeating the purpose of bound-
ary construction.

For these reasons, in our work we rely on χ-shapes for rep-
resenting the polygonal boundary of a set of points. In par-
ticular, we use an O(n logn) algorithm presented in [6]. A
comparative illustration of these three approaches is shown
in Figure 3.

In sum, given a collection locations of sensors with readings
≥ γ and within ε distance from each other, we construct χ-
shapes for the set of location-points corresponding to those
sensors. An important property of the boundary of the poly-
gons generated as χ-shapes is that the polygon is simple, and
the boundary is relatively more ”accurate” with respect to
characteristics of the outline of a shape. An illustration of
the polygonal approximation of a region with this technique
is shown in Figure 4 where the yellow line segment indicate
the boundary of the point-set of the sensors shown.

Before we proceed with a formal presentation of our algo-
rithm executed by the principal of a given region for the
purpose of detecting the occurrences of the predicate Es,

Figure 4: Region to Polygon

we need to address one more issue. Namely, given the lo-
cations of all the sensor nodes with readings ≥ γ, how do
we detect which ones do we use as ”generators” for separate
χ-shape polygon? Towards this, we rely on the well-known
DBScan algorithm for clustering [11]. Each cluster of 2D
points is represented as a separate list, and all such lists are
collectively kept as entries in a vector structure.

Formally, the procedure for detecting spatial shapes which
satisfy the predicate ES(γ,A, t) is specified in Algorithm 1.

We maintain two sequential structures (vectors): ES, storing
the (locations of the) detected events with readings > γ; and
VP – as shown in lines 5.-6. every bounding/approximating
polygon of a given 2D cluster is inserted in the vector VP.
The reason we maintain both structures is as follows. If the
local principal detects an occurrence of the event ESi, then
it can be readily reported – and if its bounding polygon is
needed, the corresponding entry at VP[i] can be used.

An important observation is that for some collections of

Algorithm 1 Initial Shape Detection

Input:(γ, A, t); SN ′(⊆ SN) = {sn1, sn2, . . . , snm} – nodes
with readings above γ; proximity threshold ε
Output: List ES = {ES1, . . . , ESk}, of polygons satisfying
the predicate.

1: set ε as sensingRange for DBScan and density as 1;
2: run DBScan;
3: insert each cluster in vector VC;
4: for each cluster of points Ci ∈ VC do
5: Generate the χ-shape approximation polygon Pi;
6: Add the polygon Pi to the vector VP;
7: end for
8: for each polygon Pi ∈ P do
9: calculate the area |Pi|

10: if |Pi| ≥ A then
11: insert ESi into ES(i)
12: else
13: insert NULL into ES(i)
14: end if
15: end for
16: Return ES



nodes (clusters), it may be the case that the correspond-
ing bounding polygon for that particular cluster may fail
the test in line 10. of Algorithm 1. This will generate a
NULL entry in the corresponding position of the ES vector
– however, we still retain the entry in the VP vector. The
reason for it is that there may be a specific ”scenario” that
needs to be accounted for. Namely, it could be the case
that distance between the bounding polygon Pj (such that
|Pj | < A) and the boundary of the zone whose principal de-
tected Pj is ≤ ε. In such cases, there may still be an option
of detecting a large-enough area warranting a detection of
ES(γ,A, t), except a portion of it is detected by the principal
of a neighboring zone.

The tests and detections of such areas spanning on each side
of the boundary of the neighboring regions is performed by
the parent-node of the two principals in the corresponding
hierarchy. We note that in case the polygon bounding the
locations of the sensors with readings above γ, but having
insufficiently large areas, are located at the vicinity of the
corner of the region of a particular principal, the request for
detection of an instance of ES(...) may need to be propa-
gated two levels up the hierarchy, i.e., to the grand-parent
of the principal. Regardless of the level, the parent or the
grand-parent will have to merge the two sets and construct
their joint χ-shape approximation. In some degenerate cases
– like, for example, when sensors with high-enough readings
are in narrow strip along the main separating line (for K-d
trees), the propagation of requests may have to continue all
the way up to the root of the principals’ hierarchy.

Before moving on with the dynamic case of monitoring a
particular shape, we present a couple of additional observa-
tions related to Algorithm 1:

1. We note that if other parameters are added – like, for
example, a maximum radius of a point-set from a given
cluster, slight adjustments will need to be made in Al-
gorithm 1. Namely, before inserting ESi into ES(i)
(cf. line 11) we need to add an additional test and
check whether the diameter of that point-set is ≤ r.

2. In some (application) scenarios it may be sufficient to
use simpler representations of the point-set. For ex-
ample, one may use a minimum bounding rectangle –
either axes-parallel or obtained via rotating callipers
algorithm [27]; or a (smallest enclosing) circle [22].
Should this be the case, the argument signature of the
predicate(s) (cf. Section 2.2) can be extended by in-
cluding an explicit boundary-type. Clearly, in such
setting, instead of specifying the bound on the diame-
ter of the point-set, one may wish to provide an alter-
native quality-constraint like, e.g., θ – the fraction of
points inside the smallest enclosing circle with actual
readings above γ.

3.2 Incremental Continuous Detection
Since the values of the phenomena at different locations
may change over time, the shapes may be ”mobile” (i.e.,
evolving). Thus, in reality, the predicate ES(...) is likely to
be continuous and need re-evaluations. Acquiring messages
from all the participating nodes in a periodic manner incurs
communication overheads which are not necessary – and, in

a similar spirit, recalculating clusters in every sampling in-
terval may incur computations overhead. Considering the
fact that WSN nodes have limited energy resources, we pro-
pose two adjustment which enable incremental re-evaluation
of the continuous version of the predicate: toggle mode and
use of an incremental variant of the DBScan [10].

Toggling
Although shape detection process is continuous, it is per-
formed discretely during every sampling interval, called
epoch. We observe that our sensor behave in a ”binary man-
ner” regarding the threshold value of the predicates: they
either send a message when they meet the threshold or they
do not send any messages. If it is the case that phenomenon
is morphing at a slow rate, then it is expensive (and not nec-
essary) for a node to send threshold met message for every
epoch. Hence, in order to reduce communication overhead,
we introduce toggle that makes nodes send message when
the condition of their sensed value against the threshold
changes. To state it differently, if a node meets a thresh-
old for continuous epochs, it will send a message only in the
first epoch during which it meets the threshold, and it will
be assumed to meet the threshold in the subsequent epochs.
However, when sensed value no longer meets the threshold,
a message will be sent indicating to the principal node that
the (location of the) particular sensor should no longer be
considered when detecting the shape.

(a) Nodes Meeting thresh-
old at t1

(b) Nodes meeting thresh-
old at t2

Figure 5: Consecutive Epochs

An illustrating scenario is shown in Figure 5. Only nodes
4, 7 and 11 need to transmit a message at t2 (t1 < t2), and
all other nodes which have the same stance regarding the
threshold, need not transmit anything. Thus, a total of 3
messages are sent instead of 8 messages during the transition
from epoch at t1 to epoch at t2.

Incremental Shape Construction
Dynamic (re)configuration of clusters is a problem which
has been addressed before, and there are many algorithmic
solutions. As identified in [10], the impact of inserting a new
point to an existing set of clusters has 4 possible outcomes:

• Noise: New point is not spatially connected to any
cluster and can not form a cluster by itself, therefore
considered outliers/noise.



• Creation: New point is spatially connected to a set of
points, which are not part of any cluster, and form a
new cluster among themselves.

• Absorption: Point is added to an existing cluster.

• Merge: New point is causes two disjoint clusters to be
merged into one cluster.

On the other hand, removing a point from the dataset –
which, in our case, corresponds to having a sensor with past
readings exceeding γ now dropping its readings to < γ – has
3 possible outcomes:

• Removal: Point is just removed from the point set
without necessitating further processing.

• Reduction: Removed point causes a cluster to shrink

• Split: Removing the point may break the connectivity
of other points, hence causing a cluster to split into
two.

Now the challenge becomes how to address these insert/re-
move point actions in our settings. For this purpose, we use
the cluster update algorithm, formalizes in Algorithm 2).

Algorithm 2 takes point P , set of all clusters, set of all points
that are not part of any clusters, type of the action (whether
insertion or removal), and proximity threshold ε as param-
eters, and outputs the updated cluster set, and set of non-
clustered points. If the action is an insertion, the algorithm
finds which cluster(s) this point is spatially close with ε pa-
rameter. There are 3 different procedures at this point:

1. If there are multiple clusters that this point P can be
connected to, then it means this is a merge since P
spatially connects two clusters, as we set density as 1.
Also, it may connect other spatially close points, not
previously belonging to any cluster, to this merged big
cluster.

2. If there is a single cluster that this point P can be
connected to, then P is simply appended to the cluster
along with all non-clustered points that are spatially
connected to P

3. If P is not close enough to any of the clusters, then it
either forms a new cluster with other non-clustered
points, otherwise P is just added to non-clustered
point set.

If the action is a deletion, then algorithm finds which cluster
P belongs to, and again 3 different procedures take place:

1. If P does not belong to any cluster, then it means it is
in the set of non-clustered points. Therefore it is just
removed from that set.

2. If P is connected with a single point, then P is just
removed from the cluster.

Algorithm 2 Cluster Update Algorithm

Input: VC – vector of existing clusters; SN ′′(⊆ SN ′) =
{sn1, sn2, . . . , snm} – non-clustered nodes with readings
above γ; Point P ; action; proximity threshold ε
Output: VC; SN ′′

1: if action = ’insertion’ then
2: let V Csub = indexOfConnectedClusters(VC, P );
3: if sizeOf(V Csub) > 1 then
4: merge clusters in VC with indexes in V Csub;
5: let SNsub = connectedPoints(SN ′′, P );
6: if sizeOf(SNsub) > 0 then
7: add SNsub to merged cluster;
8: end if
9: else

10: if sizeOf(V Csub) = 1 then
11: add P to cluster V C[V Csub]
12: let SNsub = connectedPoints(SN ′′, P );
13: if sizeOf(SNsub) > 0 then
14: add SNsub to V C[V Csub];
15: end if
16: end if
17: else
18: if sizeOf(V Csub) = 0 then
19: let SNsub = connectedPoints(SN ′′, P );
20: if sizeOf(SNsub) > 2 then
21: create new cluster C with SNsub and P ;
22: add C to VC;
23: end if
24: end if
25: end if
26: end if
27: if action = ’removal’ then
28: let V Ci = findCluster(VC, P );
29: if V Ci is then
30: remove P from SN ′′;
31: Return VC, SN ′′;
32: end if
33: let Csub = connectedPoints(V Ci, P );
34: if sizeOf(Csub) = 1 then
35: remove P from V Ci

36: Return VC, SN ′′;
37: end if
38: if distance between any two points of Csub < ε then
39: remove P from V Ci;
40: Return VC, SN ′′;
41: else
42: remove P from V Ci

43: split V Ci by re-clustering;
44: end if
45: end if
46: Return VC, SN ′′;

3. If P is connected with multiple points and if any two
of those points are spatially connected, then just re-
move P from the cluster, otherwise split the cluster by
running DBScan on this cluster.

Considering the scenario shown in Figure 5 as an exam-
ple, Cluster Update Algorithm will be called three times:
insertion for nodes 4 and 11, deletion for node 7. As can
be seen, transition from Figure 5(a) to Figure 5(b) requires



an update on the outline of the shape as well. Therefore,
after updating clusters, the χ-shape polygonal approxima-
tion is re-calculated for the ones that have changed, and the
corresponding entries in the vectors EV and VP (cf. Algo-
rithm 1) are updated.

To elaborate on the functions in Algorithm 2: (1) findClus-
ter function takes a point and the vector of clusters, then
returns the cluster which has the input point as a member;
(2) connectedPoints function takes a point and non-clustered
point set as arguments and returns the set of points which
are within ε distance the the input point; (3) Lastly, index-
OfConnectedClusters function takes a point and the vector
of clusters as inputs, then returns the index of clusters, for
which the input point is ε distant from a member of the clus-
ter, on the vector. Our implementation of all three functions
performs exhaustive distance measurement on input point
and the list of points. The respective complexity of each of
these functions is O(n). We note that these functions are, in
a sense, range queries and optimization of their processing
– while desirable – is beyond the scope of this work.

We conclude this section with an observation that the
boundary scenarios are equally important in the context of
tracking the evolution of the shapes as they were for the
initial detection (cf. Section 3.1.). It may very well be the
case that the detection of an expansion of a shape (along
with merging of shapes) may need to be handled by prop-
agating corresponding requests up the hierarchy. However,
as our experiments demonstrate, this still would not incur
as much communication overheads as the ”centralized” ap-
proach, which consists of sending individual readings to the
sink.

4. DETECTING CO-OCCURRENCE
OF SHAPES

We now turn our attention to detecting a co-occurrence of
shapes which satisfy the area and phenomenon-value thresh-
old, and are within certain spatio-temporal proximity. Given
the definition of predicate ECO(ES1, ES2, d, δ) (cf. Section
2), we proceed with describing the algorithmic aspects in our
WSN settings. We note that the detection(s) of ES(γ,A, t)
are assumed to have been initiated in the local principal(s)
(or involving the hierarchy for boundary-conditions) before
initializing the algorithms for detecting the co-occurrence
predicates.

We assume that the request for detecting
ECO(ES1, ES2, d, δ) is transmitted top-down from the
sink towards the lowest levels of the hierarchical index –
down to the local principals. Similarly to the detection of
ES(γ,A, t), we distinguish between initial detection and
”tracking” tracking of the co-occurrence predicate in a
continuous manner.

The initial evaluation of co-occurrence predicates follows the
shape detection predicate detection. Having detected shapes
and put into a vector, principal traverses through its list of
co-occurrence predicate queries. For each query, polygons of
satisfying shape predicates are extracted and Euclidean dis-
tance between these polygons is calculated via edge to edge,
vertex to vertex, edge to vertex distance computations. If
distance between the polygons is smaller than ECO’s d pa-

Algorithm 3 Co-occurrence Detection

Input: List EV ; list of predicate occurrences of type ES ,
List V Cq; list of predicates ECOi(ES1i , ES2i , di, δi) re-
quested
Output: List V Co of predicate occurrences of type
ECO(...)

1: for all composite predicate ECCOi queries in V Cq do
2: for every pair Ei and Ej in V E do
3: compute the Euclidean distance between closest

points of polygons
4: if distance(Ei, Ej) < d AND |Ei.t − Ej .t| < δ

then
5: insert the occurrence of detected ECCOi in V Co

6: end if
7: end for
8: end for
9: Return V Co

rameter and occurrence of shapes are within the time inter-
val δ, then ECO predicate holds and it is reported in the
hierarchy.

If we take the exemplary scenario in Figure 6(a), there
are three spatial regions of interest in the principal’s ju-
risdiction. The nodes highlighted by red disks will be the
ones sending the message to the principal. Subsequently,
principal clusters the group of points (denoted C1, C2, C3)
based on their proximity, and calculates the polygon for
each cluster by running Algorithm 1 with reaching to con-
clusion that each polygon satisfy a specific shape predicate
ESi . However, shapes are too far from each other to sat-
isfy the distance parameter for any ECO(...) predicate. As
the time flows, shapes evolve for the next epoch and princi-
pal’s point of view becomes as in Figure 6(b). Cluster Re-
pair Algorithm (Algorithm 2) is run to update the clusters
C1, C2 and C3, at which point the bounding polygons are re-
calculated. Afterwards, co-occurrence predicate detection
process is re-initiated, and minimum Euclidean distance be-
tween polygons representing clusters C1 and C2 turns out to
be smaller than d parameter of a queried co-occurrence pred-
icate ECOi(ESi , ESi , d, 0). In this case, ECOi(...) predicate
is determined to hold and sink is notified. One thing to note
is that ECO predicates, by default, are executed for simul-
taneous occurrence, meaning δ = 0, and experiments were
done under this circumstance. However, historic predicate
occurrence data needs to be stored for different δ values.

Evaluation of co-occurrence predicate is formalized in Algo-
rithm 3. The input to the algorithm executed by the local
principals consists of the list of the ES(...) events currently
valid and the list of requests of ECO(...) events to be de-
tected. We note that the list of ES(...) is already available
from the vector ES generated by Algorithm 1. Once again,
we used vectors to implement the corresponding lists.

Similarly to Algorithm 1 it may be the case that some shapes
satisfying ES(γ,A, t) could contribute to co-occurrence de-
tection with shapes belonging to regions managed by other
principals. In such cases, the request for detecting ECO(...)
will have to be propagated up the hierarchy of principals. In
the worst case, the propagation may need to be recursively
carried all the way up to the root – however, to speed up



(a) Shapes at t1 (b) Shapes at t2

Figure 6: Detecting contiguous evolving shapes

the computation we propose the following pruning heuris-
tics to be used by the inner nodes/principals: if the distance
between the closest polygons in the children is larger than
the largest di from the set of pending requests for detecting
ECO(...), then the parent node need not propagate the re-
quest further up the hierarchy, nor does it need to apply the
corresponding instance of Algorithm 3.

As the phenomena values fluctuate, the size and location of
the individual shapes will evolve over time. This, in turn,
may affect the co-occurrence predicates: some of which were
valid may become invalid and vice-versa – some instances
which did not hold, may become true. To avoid repeated
invocations of Algorithm 3 with every sensing epoch, we
propose the following event-based management of the con-
tinuous variant of ECO(...):

1. Expand the convex hull of the polygonal boundary Pi

of every ESi ∈ V E by dj , where dj/2 is the small-
est of all the distances in the current list of pending
ECO(...)’s. In other words, calculate the Minkowski
sum Hull(Pi)⊕ dj/2.

2. If the evolution of Pi is within Pi ⊕ dj/2, then there
is no need to re-evaluate any ECO(...) predicate with
respect to Pi at the new time-instant, for any other
shape ESk for which (Hull(Pk)⊕dj/2)∩Hull(Pi)⊕dj/2
= ∅. The reason is that if Pi and Pj were not close
enough before and neither of them has evolved outside
the ”safety” region – they are guaranteed not be close-
enough after the updates.

For instance, blue outline in Figure 6(a) represent the
Minkowski sum Hull(P3) ⊕ dj/2 at t = t1, where P3 rep-
resents the polygon for the cluster C3. Observing the fact
that P3 is within the blue outline at t = t2, it is pruned for
further executions of co-occurrence detection process. As
the experimental observations will demonstrate, the pruning
along the hierarchy and the use of ”safe” regions improve the
communication overheads in our proposed approaches.

5. EXPERIMENTAL EVALUATION
Our experimental evaluations were run using our open-
source WSN simulator, SIDnet-Swans [14]. We considered a
WSN consisting of 800 homogeneous nodes, each being ca-
pable to sense the value of a simulated phenomenon at its
location. The deployment of the sensors was semi-random
in the sense that we controlled the value of the discrepancy
of their distribution within the cells. All experiments were
conducted at a field with 1000 × 1000m2, with the radio
transmission strength 12 dBm, and the sampling frequency
5 seconds.

We used synthetic generation of the temperature phe-
nomenon for our experiments, whereby the region of interest
was split into an 8× 8 grid. With a pre-defined frequency, a
new matrix is being created with every grid assigned random
values between 0 and 100 degrees Celcius, and the current
matrix changes its values to this newly created target matrix
linearly over time. Increasing the frequency of the new ma-
trix creation yields higher fluctuations of the values of the
phenomenon, where decreasing will make it more stable. We
note that although the geographic field is split into 64 cells,
the values within a particular cell are not uniformly same –
rather, they are calculated using bi-linear interpolation

Our experimental results are the average of 3 runs with same
setups. We ran shape detection predicates with different γ
values. Phenomenon creating and evolution is random and
can vary for different runs, except for the last part of the
experiments where all experiments were run using the same
phenomenon.

We report the comparison between our proposed methodolo-
gies; centralized contour tracking algorithm; and distributed
periodic contour tracking algorithms, as these methods are
used for comparison in previous works [33]. Centralized con-
tour tracking algorithm simply uses the sensed value the
phenomenon in individual sensors and each of those val-
ues are transmitted to the sink via shortest geographic path
routing scheme (only the values satisfying the preset thresh-
old). Distributed periodic contour tracking is constructed



on the hierarchical routing scheme and periodically recon-
structs the contour with new set of data sent every epoch.
We note that we measure communication expenditure by the
total number of message-hops exchanged between nodes, as
data is transmitted in a multi-hop manner in the network.

First set of observations aims to reveal that our distributed
approach saves substantial communication overhead when
compared to centralized approach in Figure 7. Figure 7
shows number of message hops over time for two differ-
ent approaches. Note that toggle technique is not applied
in either type of the experiments. Same set of predicates
were applied for both experimental setups with the signature
(93, 300m2, t = now). Our findings show that by distribut-
ing the predicate detection among local principals, 4 times
less communication overhead is incurred, when compared to
the centralized approach (CENT refers to centralized ap-
proach, DIST refers to distributed approach).

Figure 7: Centralized vs Distributed

Our next group of experiments aims at illustrating benefits
of toggle technique. In this setups, we used distributed ap-
proach and we implemented toggle technique in one of them
and did not implement on the other to observe the bene-
fit of the incremental updates. Experiments were run with
3 different instances of the predicates, corresponding to 3
different γ values: 80◦C, 85◦C, 90◦C. Figure 8 shows the
number of message hops for each experimental setups. Even
though total number of messages vary, the relative benefits
of toggling are clear – from 2 times up to 3 times smaller
communication overhead.

In addition, Figure 9 illustrates the effect of toggle technique
under the effect of fluctuation rate of the phenomenon. As
discussed earlier, toggle mechanism saves more communica-
tion overhead if phenomenon fluctuation rate is low when
compared to regular periodic transmission approach. Fig-
ure 9 shows the communication overhead produced by reg-
ular approach divided by communication overhead incurred
after applying our toggle mechanism approach. y−axis rep-
resent the new phenomenon creation frequency. For exam-
ple, with 2 hours setting, a new phenomenon will be created
every 2 hours and the current phenomenon will morph into
the new phenomenon linearly.

Figure 8: Toggle Mechanism Benefits

Figure 9: Fluctuation Ratio Effects

Our last set of experimental results aims at quantifying
the benefits of co-occurrence detection when distributing
the work among local principals, as opposed to applying
centralized detection in the sink (root of the hierarchy).
Figure 10 shows the communication cost comparison be-
tween centralized approach and distributed approach while
all other techniques are being applied. We note that the
same phenomenon values were used in all experiments to en-
sure fairness. In both approaches, the individual predicates’
detection is performed in the same way and their communi-
cation overheads are not added to the total cost. Centralized
approach is similar to the one in [33], where boundaries are
detected in a distributed manner, and boundary informa-
tion has to be sent to the sink for co-occurrence. The predi-
cate used in this experimental settings has different γ values:
80, 85, 90, area is set to 300 square meters with signatures
ES(80, 300m2, t = now). Co-occurrence predicate was set to
detect any two predicate occurrences happening at the same
time with signature (ES , ES , 100, 0). CENT refers to cen-
tralized co-occurrence detection scheme and DIST refers to
approach where distributed co-occurrence detection is per-



formed among local principals.

Figure 10: Centralized vs. Distributed Co-occurrence

6. RELATED WORK
There are several bodies of research results which are related
to our work.

Topological methods for boundary (and holes) detection are
presented in [29] – however, the work focuses on static sce-
nario, in the sense that the values read by particular sen-
sors are not formally considered. The problem of tracking
dynamic boundaries has been addressed in several works.
In [13], spatial summary of the phenomenon is acquired in a
distributed manner an isocontour map of the field is created.
Other techniques for estimating the boundaries of a dynamic
region are proposed in [7]. In a similar spirit [33] introduces a
light-weight contour tracking method for binary binary sen-
sors, and proposes methodologies for merging and splitting
actions over the contours. The methodologies are completely
distributed, having in mind the minimization of the commu-
nication overhead. Complementary to these works, we in-
troduced spatial predicates which pertain to threshold-based
detection (and approximation) of shapes and their contin-
uous monitoring. In addition, we investigated a distance-
based relationship of distinct such shapes and demonstrated
that adding a hierarchical structure may help in reducing
the communication overhead when detecting the predicates.

The DRAGON protocol introduced in [17] pursues a similar
objective to ours, but from a complementary perspective.
The work proposes the concept of a center of mass as a rep-
resentative of regions in which certain phenomena (readings
of sensors) is detected, and addresses the problems of merg-
ing and splitting such shapes and generating new centers.
In our work, we have focused on detecting predicates which
are based on the area (size) of the region in which a par-
ticular phenomenon exceeds a given threshold and proposed
methodologies for event-based validation. A qualitative de-
scription and a method for detecting homogeneous shapes in
WSN settings was presented in [20]. In our work, we used χ-
shapes to derive the bounding polygons of what corresponds
to homogeneous regions in [20] and we also proposed a hier-
archical solution for detecting a distance-based relationships
between pairs of regions.

There is a substantial body of works addressing the co-
location and co-occurrence problems in data mining and
pattern recognition communities. Spatio-temporal co-
occurrence pattern mining was addressed in [4], and there
are more recent works[24, 25] attempting to solve spatio-
temporal co-location pattern discovery. Interestingly, [24]
addressed a specific setting of two dimensional shapes rep-
resenting solar data and it bears similarity to our objective.
However, most of data mining and pattern recognition works
focus on historic data, and they do not cope with the evo-
lution of the approximation-shapes.

7. CONCLUSION AND FUTURE WORK
We presented a methodology for tracking evolving spatial
shapes in WSNs, where threshold-based criteria for sensed
values was used to define a particular shape. We formal-
ized the concept of a shape in terms of the locations of the
participating sensors and presented efficient algorithms for
initial detection and tracking. In addition, we also presented
efficient solution to the problem of detecting a co-occurrence
of evolving spatial shapes. Our techniques were based on a
two-phase approach where part of the detection process was
done locally, within a region governed by a selected princi-
pal – and, when needed, the detection process would proceed
along the hierarchy of such principals. We presented exper-
imental evaluations which demonstrated that our proposed
approaches outperform the näıve one – where all the individ-
ual readings are transmitted to a dedicated sink – in terms
of communication/energy savings.

There are two main directions of our future work. Part of our
investigation is geared towards the ”completeness” aspect of
our techniques, in the sense of providing efficient algorithms
for managing a complete suite of predicates such as over-
lap, contain, etc... (cf. [9]) for evolving spatial shapes. One
of the main challenges here is to properly incorporate the
values of the threshold γ in the semantics and investigate
different subsumption properties. Namely, a non-empty in-
tersection of two shapes with 70C and 100C thresholds is
an indication for merging their polygons w.r.t. 70C, but not
w.r.g. 100C. A complementary avenue that we plan to pur-
sue is investigation of a context-aware speed up techniques.
One immediate step is to provide a sorting of the predicates
based, e.g., on Z-curves, for the purpose of more efficient
pruning (cf. Section 4.). Another aspect of the efficiency
is the selection of indexing structures. More specifically, we
believe that properties such as non-uniform distribution of
the nodes, incorporating mobile nodes, and dynamic adjust-
ment of Quality of Service (i.e., increased coverage or track-
ing quality) may require more flexible/adaptable indexing
techniques.
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