
McCormick
 Northwestern Engineering
 Department of Electrical Engineering and Computer Science

EECS 211(B) – Object-Oriented Programming with C++

Winter 2012 Quarter

Instructor: Goce Trajcevski

Contact: g-trajcevski@northwestern.edu

Class meets: Mon. (Tue.) Wed., Fri. 3:00-3:50PM – at LR2, Tech.

Office hours: Mon/Wed/Fri 2:00-3:00 (or, by appointment)

Detailed TA info: TBA

I. Course description: The main objective of this course is to expose the students to the foundations of

the Object-Oriented programming model and make them proficient in the C++ language, as a

particular example of the languages from that paradigm.

The course will attempt to strike a balance between the two fundamental aspects of studying any

field: – depth, via studying both the syntax and semantics of the important programming concepts,

along with providing programming assignments and tests related to them; and – breadth, bringing to

awareness the “bigger picture” of good programming style and tying it with problem-solving, along

with designing relevant test-cases and developing a set of broader-skills to come handy in the

subsequent courses focusing on software design/engineering.

Part of the course will provide a brief introduction to C/C++ programming in Unix/Linux

environments, thereby introducing the students to some aspects that will be subsequently studied in

greater detail in courses like introduction to systems programming, operating systems, networking,

etc.

II. Linguistic aspects: Building upon C as its foundation, C++ offered two major improvements in

terms of the syntax, the second which also affects the semantics (i.e., the meaning) of the programs:

a. Syntactic constructs which “bettered” the C language (e.g., providing operators instead of

traditional functions), while staying in the realm of the imperative/procedural programming

paradigm.

b. Syntactic constructs which provided capabilities for writing a program code in which the

entities behave in accordance with the Object-Oriented paradigm. Under this paradigm, the

main “players” during the execution of a particular program are the objects, each of which

must be an instance of a particular class – the encoding of which captures the state (captured

via data members) and the behavior (enabled by the member functions) of its instances.

Programming with classes provides the opportunity to build highly cohesive “modules”

(which was the abstraction typically used before classes were formally introduced) and a low

coupling across them. The (objects from different) classes communicate with each other via

well-defined collection of “messages” – which amounts to invocation of the respective

member-functions. One of the main advantages of this paradigm is that structuring the

program code in this manner conforms more closely to the entities appearing in many real-

world applications which, in turn, makes the overall product development (spanning from

requirements specifications, through design, to coding/testing/deployment) much faster. A

specific feature that was introduced in C++ to better cater to the Object-Oriented paradigm,

and will be covered in this course, is the inheritance between classes.

mailto:g-trajcevski@northwestern.edu

McCormick
 Northwestern Engineering
 Department of Electrical Engineering and Computer Science
III. Prerequisites: CS 110 or knowledge of any programming language. The course begins with a

review of data types and basic flow-of-control, so your prior knowledge of a programming language need

not be deep and need not be specific to C/C++.

IV. Required text: “Big C++”, by Cay Horstmann and Timothy Budd (publisher: Wiley)

V. Recommended text and/or other materials:
a. “C++: How to Program”, by Deitel&Deitel (publisher: Pearson (Prentice Hall), any edition

after the 5
th
 one);

b. Handouts that will be provided as part of the course.

c. There is a plethora of textbooks covering the major topics which qualify as an introduction to

C++ programming. The reasons for selecting the textbooks above include:

i. The required text is pedagogically easier to follow for a first-time C++ programmer,

and can be used as a reference in the subsequent stages of the education;

ii. The recommended text, with various editions being around since the early 1990s,

has an extensive collection of example-codes. Hence, after some initial

familiarization, the students should not have any problems using the recommended

text as a “quick-lookup” source.

NOTE: There are plenty of examples available on (various forums on) the web that you should feel free to

consult.

VI. Course Outcomes: After finishing the course, the students should be able to:

a. Use (most of) the syntactic elements of the C++ programming language in a fluent manner;

b. Develop well organized object-oriented code in C++ code for solving problems of interest in

various applications’ settings;

c. Provide their code with various test-cases and “guards” for the purpose of preventing

unwanted behavior;

d. Understand code of existing applications and be able to add new features, correct existing

errors and incorporate their novel solutions. An implicit benefit is increasing the broad

flexibility in terms of being comfortable with adjusting to new programming environments.

VII. Tentative Course Outline (NOTE for HRL – this is just a template from my 230 – will

change it tomorrow in accordance with the topics listed in the .pdf file of your syllabus!!!!!)

Week1 - Introduction/Motivation/History of programming;

- The basic stages of a program “lifetime”;

 Visual C++ IDE (Integrated Development Environment);

- Basic Data Types and Variables (“touch” of classes);

Week2 - Program Flow

 Comparisons, Relational Operators, if-then-else branching;

- Nested Branching;

- Boolean type and Operators;

- Looping constructs

 while; for and do loops

Week 3

- Introduction to Functions and parameters/arguments;

- Functions (cont.)

 Scopes of Variables and References;

- Recursion;

McCormick
 Northwestern Engineering
 Department of Electrical Engineering and Computer Science

Week4 - Arrays and Vectors;

 Strings;

- Pointers and Dynamic Memory Allocation;

-



 Quiz

Week5 - Arrays and Pointers;

- Streams (Files I/O vs. command line arguments)

- Introduction to Classes

- Classes and encapsulation;

 Object-Oriented paradigm and C++

Week 6 - Data Members and Member Functions

- Life-span of objects

 constructors and destructors;

- Access privileges and friendship

- Overloading (functions vs. operators)

 Midterm

Week 7 Nested classes

- Inheritance (derived classes)

  Inheriting state (data members + access) and behavior (overriding member

functions)

- Polymorphism and virtual functions

- Abstract classes and pure virtual functions

Week 8 - Multiple inheritance in C++

- Templates (functions vs. classes)

- Namespaces

Week 9 - Special topics:

Exceptions handling (C model vs. C++)

- Introduction to Unix/Linux OS (file system; C-based I/O)

- The “hidden” arguments of main – revisited

Week 10 - OS-issues (cont.)

- Porpourri:

 Basic features of other Object-Oriented and Object-Based languages:

(Java; C#)

Week 11 - Final exam (material after the midterm only)

VIII. Grading

Your grades will be based on:

 2-3 homeworks – 2.8%

 1 Quiz – 7.2%

 8 Projects – a 40% (see the corresponding paragraph below)

 Midterm – 25%

McCormick
 Northwestern Engineering
 Department of Electrical Engineering and Computer Science

 Final – 25%

NOTE: the distribution given above is approximate and may be subject to some very minor changes.

However, the firm-policy will be announced during the last week of classes (Week #10 of the Winter

quarter).

Practice Sessions: Starting with week#3, Tuesday lectures will be specifically allocated to a practice

which can have a two-fold nature: (1) going over a collection of exercises that will illustrate the concepts

and abstractions introduced in a certain topic of the course; (2) dedicated lab-demonstrations (towards the

end of the quarter).

Programming Assignments: There will be eight programming assignments. The first two introduce the

students to basic C++ programming and the use of a modern, integrated development environment (IDE).

The remaining six assignments form a single medium scale application. Each assignment adds a piece to

the overall project. The various assignments in the project cover common programming applications such

as character processing, linked data structures, classes and inheritance, etc. Sample applications from

previous quarters include internet message passing, computer memory management system, sensor

network simulator, and XML parser.
Students generally do the programming assignments on their laptops, although the course does include

demonstrations and lectures on using UNIX for programming. A separate document contains information

on how to obtain free software for C++ software development.

Awareness, Academic Responsibilities and Closing Remarks:

Please be advised that it is each student’s individual responsibility to keep him/herself up-to-date with the

announcements made in class, distributed via email, or otherwise posted. Although you are encouraged to

always discuss class-related issues with your classmates, it is your individual responsibility to ensure that

the work is done individually. Example: you are encouraged to discuss the algorithmic aspects of solving

a particular programming assignment, and even the high-level design approach. The source code that you

will submit, however, must be typed individually in its entirety. The policies for cheating are well-defined

and there will be no exceptions made for any excuse whatsoever – if caught cheating (e.g., copying on an

exam, borrowing someone else’s code as well as allowing someone to borrow your code), you will

automatically fail the class and face a possible expulsion from the University. In addition,

notwithstanding our willingness to be understanding for the students’ commitments and time-constraints,

please do not attempt to obtain an incomplete grade for the course, based solely on your poor performance

– it is against the University regulations.

Lastly, please note that a substantial part of your grade is based on the programming assignments. Hence,

in addition to keeping yourself up-to-date with the materials lectured, you should also make it a habit to

start working on the programs as early as possible. You should not allow yourself to fall behind with the

topics, as the new ones will be building incrementally upon the older ones, and it will be very hard to

catch up. Plan your time wisely and good luck.

