
Discrete Math in CS A First Example: Voting Systems
CS 280 Fall 2005 (Kleinberg)

A typical way in which computer scientists approach problems is to write down some
properties that a solution should satisfy, and then reason about whether these properties
can be achieved.

There are a number of areas where the introduction of this style of thinking had revolu-
tionary consequences; as one illustration, and a nice first example for this course, we look
at Arrow’s Impossibility Theorem (1951) from mathematical economics. (Arrow won the
Nobel Prize in Economics in 1972, cited in part for this result.) The background of Arrow’s
Theorem is voting, and in particular some “paradoxical” properties of voting outcomes that
were discovered by French philosophers in the 1700’s.

Condorcet’s Principles. The Marquis de Condorcet was one of these philosophers, and
he has influenced a lot of thinking on the design of voting systems.

Suppose we have a list of candidates, and a set of voters, and each voter has a ranking
of all candidates by preference.

• Example: Suppose the candidates are x, y, z. The voters produce rankings

– Voter 1 : x, y, z

– Voter 2 : x, z, y

– Voter 3 : z, x, y

– Voter 4 : y, x, z

• Who should be the winner if the above voters get together to choose a candidate? x

has the property that in head-to-head comparison it defeats y (3 to 1) and defeats z

(3 to 1). We will call a candidate a Condorcet winner if it has this property: it wins
in each head-to-head comparison.

Notice that what we’re doing already has a fairly computer-science flavor to it. We have a
set of “inputs” — the rankings of all voters — and we wish to design a function that will
produce a desired “output” — the winning candidate. We now want to reason about what
properties we would like the output to have, and what sorts of functions might guarantee
these properties.

Let’s discuss some of Condorcet’s principles.

• The Condorcet criterion says that whenever there is a Condorcet winner, the voting
system should declare it the winner. (Could there be two different Condorcet winners?
No, since one would have to defeat the other.)

• What happens in U.S. Presidential elections? We just take the candidate who appears
at the front of the most lists. (This is called pluarilty voting.) Does this guarantee that
we obey the Condorcet criterion? No. For example:

1



– 10 voters favor x, z, y.

– 2 voters favor y, z, x.

– 9 voters favor z, x, y.

The winner under plurality voting is x, even though a majority of voters prefer z to x.
Here, candidate y acts as a “spoiler”; if they hadn’t been in the election, then z would
have won.

• Is the Condorcet criterion a good idea? Generally yes, though there are examples that
make you wonder. Suppose

– 10 voters favor x, y, z.

– 2 voters favor y, x, z.

– 9 voters favor z, y, x.

Then y is the Condorcet winner, but intuitively y acts sort of as the “compromise
candidate” that no one’s really excited about.

• Another problem: there might not be a Condorcet winner.

– 10 voters favor x, y, z.

– 10 voters favor y, z, x.

– 10 voters favor z, x, y.

For any candidate, there is another candidate that beats it 20-10. This example is
called the Condorcet paradox: it’s not at all clear how to choose a winner in such a
situation.

What do we mean by a voting system? These kinds of issues left people feeling very
confused about how best to design a voting system, but it was only 150 years later that
Kenneth Arrow took the step of formalizing what a voting system was trying to accomplish,
and encapsulating the crux of these debates in an elegant impossibility theorem. Here’s how
he did this.

We assume a set of k options (the candidates), and a set of n voters. Each voter i has a
preference list Pi.

Informally, what is a voting system? To think about this, let’s get back to our analogy
with a function that takes an input and produces an output. Roughly, a voting system is
something that takes all these preferences, analyzes them somehow, and comes up with a
“consensus” order on the options, ranking one option first in the overall consensus, another
second, and so forth. So formally, it’s a function f that takes a sequence of preference
orders P1, P2, . . . , Pn and outputs a consensus order P = f(P1, P2, . . . , Pn). (Note that in
this definition, we’ll be asking for the output to consists of a ranking of all options, rather
than just a selection of the “winning” one.)

2



What properties should a voting system satisfy? Arrow proposed two desirable
properties. The first is unamimity:

• If all voters rank option a ahead of option b, then the consensus order ranks a ahead of
b too. (Formally, if a is ahead of b in Pi for every i, then a is ahead of b in f(P1, . . . , Pn).

The second property is independence of irrelevant alternatives:

• Informally, the consensus order of a and b should depend only on the relative orders of
a and b in each ranking. Formally, if a is ahead of b in a consensus f(P1, P2, . . . , Pn),
and then we change each ranking Pi to P ′

i
simply by sliding the position of c 6= a, b

forward or backward, then a is also ahead of b in the consensus f(P ′

1
, P ′

2
, . . . , P ′

n
).

Can we think of any voting systems that satisfy these two properties? Actually, here’s
one: just take voter number 1’s ranking and return it as the consensus. This satisfies
unanimity (if everyone favors a to b, then so does voter 1) and independence of irrelevant
alternatives (sliding the position of option c doesn’t change how voter 1 feels about a and b).
We’ll refer to this voting systems as a dictatorship, since voter 1 simply acts as a dictator.

For that matter, there are n such voting systems that satisfy these two properties: one
in which we take voter i as the dictator for each possible choice of i = 1, 2, . . . , n.

Thus, we’ll refer to a voting system as a dictatorship if there is a “hard-wired” voter i

such that the voting system consists simply of returning i’s ranking as the consensus for any
input.

Arrow’s Theorem. Arrow’s striking result is that dictatorships are the only voting sys-
tems that satisfy our two properties.

• Arrow’s Theorem: If a voting system f satisfies unanimity and independence of irrel-
evant alternatives, then it is a dictatorship.

While it’s now clear what Arrow’s Theorem says, it’s not at all clear why it’s true. For
that, we need a proof. We won’t go into the proof in this lecture, but, time permitting, we
will try to come back to the theorem later in the semester and describe a proof.

Other Voting Systems. Arrow’s Theorem has never really meant that voting is “impos-
sible,” simply that any voting system you invent will exhibit some potentially undesirable
pathologies. And a large number of voting systems have been proposed over the years. Here
we mention two of them as examples.

In the Borda Count system, with k options, each voter gives k points to their first-place
option, k−1 to their place option, and in general k− j +1 points to their j th favorite option.
For each option, the total number of points given by all voters is then added up, and the
options are ranked in order of their point totals.

In Instant Runoff Voting, the option with the fewest first-place votes is “eliminated” and
placed last in the consensus ranking. This option is then deleted from each voter’s ranking,
and the procedure is applied recursively to the remaining options.

3



Some computer science context. The setting of Arrow’s Theorem has appeared recently
in the context of search engine rankings. Suppose you have a service that tries to “combine”
the results of several search engines: it issues the same query to Google, Yahoo, MSN Search,
Teoma, and so forth, and then tries to identify a “consensus” among their rankings. Such
services are sometimes called meta-search engines. For this task, voting systems provide ways
of combining the individual search engine rankings into a consensus, and Arrow’s Theorem
provides powerful limitations on what such a consensus can look like.

4


