
An Experimental Study of Minimum Mean Cycle Algorithms

Loukas Georgiadis1 Andrew V. Goldberg2 Robert E. Tarjan3 Renato F. Werneck2

Abstract

We study algorithms for the minimum mean cycle prob-
lem, a parametric version of shortest path feasibility
(SPF). The three basic approaches to the problem are
cycle-based, binary search, and tree-based. The first
two use an SPF algorithm as a subroutine, while the
latter uses a parametric approach. When implementing
the SPF-based methods, one has a choice of SPF algo-
rithms and incremental optimization strategies. There
are also several ways to handle precision issues. This
leads to dozens of variants, which we systematically
compare. Our experimental setup is more compre-
hensive than in previous studies. In our experiments,
the tree-based method and two implementations of the
cycle-based method outperformed other approaches, in-
cluding binary search.

1 Introduction

Given a directed graph with arc lengths, the minimum

mean cycle (MMC) problem is that of finding a cycle
with minimum mean length. The mean length of a cycle
is the ratio between its total length and its number of
arcs. The MMC problem is a parametric version of the
shortest path feasibility (SPF) problem. The goal of
this problem is to find a cycle of negative total length
(negative cycle) or to show that one does not exist by
finding a potential function (a set of dual variables) that
makes all arc lengths non-negative.

The MMC problem, and the closely related min-

imum ratio cycle problem, have applications in areas
ranging from discrete event systems and computer-aided

1Hewlett-Packard Laboratories, Palo Alto, CA 94304. Cur-

rent address: Informatics and Telecommunications Engineering

Department, University of Western Macedonia, Kozani, Greece.
E-mail: lgeorg@uowm.gr.

2Microsoft Research Silicon Valley, Mountain View, CA 94043.
E-mail: {goldberg,renatow}@microsoft.com.

3Department of Computer Science, Princeton University, 35

Olden Street, Princeton, NJ 08540 and Hewlett-Packard Labora-

tories, Palo Alto, CA, 94304. E-mail: ret@cs.princeton.edu.
Research at Princeton University partially supported by NSF

grants CCF-0830676 and CCF-0832797. The information con-

tained herein does not necessarily reflect the opinion or policy
of the federal government and no official endorsement should be

inferred.

design to graph theory. See Dasdan [6] for a detailed
discussion and references.

A number of algorithms for the problem have been
proposed [11, 12, 13, 14, 17], most of which are exten-
sions of SPF algorithms. In particular, some use an
incremental version of an SPF algorithm to find an op-
timal solution to a subproblem, which is then modified
and reoptimized. Two experimental studies [2, 6] show
that improved SPF algorithms lead to improved MMC
algorithms.

Our recent study of SPF algorithms [3], including
incremental ones, puts us in a good position to study
the MMC problem. In particular, we wanted to see
if improved SPF algorithms lead to improved MMC
algorithms. Efficient implementations of MMC algo-
rithms require nontrivial engineering, including data
structures, efficient incremental restart, early termina-
tion detection, and hybrid algorithms. Our contribu-
tions include performance optimizations, new variants,
and systematic treatment of precision issues.

While SPF algorithms use only additions and sub-
tractions, MMC algorithms also use division, and there-
fore exact solutions require significantly higher preci-
sion. In particular, double-precision floating point rep-
resentation (providing 52 bits of precision), which has
been used often in MMC implementations, is insufficient
to solve to optimality problems with millions of vertices
and arc lengths in the millions, problems that modern
computers can easily handle. Even 64-bit integers may
not be enough, and higher precision arithmetic is not
currently supported by mainstream hardware. We dis-
cuss precision issues in detail in Section 4.

Previous empirical studies focused on real-world
graphs representing circuits and on small random
graphs. These problems are easy—good codes solve
them in linear time, with very small constants. The
studies disagree on which algorithm is the fastest: Chan-
drachoodan et al. [2] concluded that Lawler’s binary
search algorithm [14] using an incremental version of
Tarjan’s SPF subroutine [16] is the best, but Dasdan [6]
(see also [7]) found the tree-based algorithm of Young
et al. [17] to be the fastest, with an optimized version of
Howard’s cycle-based algorithm [11] a close second. Nei-
ther study reported operation counts, making it hard to
compare their results to each other and to newer studies

1 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

like ours. Since the experiments are limited to a small
number of easy problem families, the conclusions have
limited applicability.

We used a more extensive data set, including harder
synthetic graph families and specially constructed bad-
case graphs. Our results give a better picture of rela-
tive algorithm performance. We found that, although
Howard’s algorithm performs well on simple problems,
it is generally not robust. Also, the binary search algo-
rithm is not competitive with other alternatives. The
best performers in our study are the algorithm of Young
et al. and two variants of the cycle-based method.

This paper is organized as follows. Section 2
presents background information on the MMC prob-
lem, including definitions and algorithms for the SPF
problem. We describe the basic MMC algorithms we
study, including new variants, in Section 3. Section 4
deals with precision issues, and Section 5 discusses in-
cremental restarts. Section 6 introduces pathological
input families that are particularly challenging for some
of the algorithms we study. Section 7 reports experi-
mental results, and final remarks are made in Section 8.

2 Background

2.1 Definitions. Let G = (V,A) be a graph with
n vertices, m arcs, and an integral length function
ℓ : A→ [−U,U]. Given a cycle C, we denote by ℓ(C) its
length (the sum of its arc lengths), by |C| its number of
arcs, and by µ(C) its mean length (defined as ℓ(C)/|C|).
A zero cycle is a cycle of length zero; a negative cycle
is a cycle of negative length. The MMC problem is to
find a cycle of minimum mean length; the length of such
a cycle, which we denote by λ∗, is the minimum cycle

mean of the graph.
To simplify the exposition, we work with an aug-

mented graph, obtained from G by adding a (root) ver-
tex s and arcs of length zero from s to every vertex in
V . Since this adds no cycles, the minimum mean cycle
does not change.

Reduced lengths with respect to a potential function

π are defined as ℓπ(v, w) = ℓ(v, w)+π(v)−π(w) for each
arc (v, w). This transformation does not affect cycle
lengths. The feasibility problem is to find a negative
cycle in G or a proof that none exists, given by a
potential function that makes all reduced lengths non-
negative.

For a parameter λ, the parametric length function
is ℓλ = ℓ−λ. We say λ is feasible if no cycle has negative
length with respect to ℓλ. If λ is feasible, we say that ℓλ

is a feasible length function. With respect to ℓλ∗ , there
is a zero cycle but no negative cycle.

Theorem 2.1. λ is feasible if and only if λ ≤ λ∗.

2.2 SPF Algorithms. Using the previous theorem,
one can solve the MMC problem using repeated calls
to an SPF algorithm. We now discuss several SPF
algorithms based on the scanning method. The method
maintains for every vertex v a potential π(v), a parent
p(v), and a status S(v) ∈ {unreached, labeled, scanned}.
Initially s is labeled and other vertices are unreached.
Unless there is a negative cycle, every unreached vertex
eventually becomes labeled and then scanned. Given
a labeled vertex v, scan(v) processes every arc (v, w)
as follows: if π(v) + ℓ(v, w) < π(w), then set π(w) ←
π(v)+ ℓ(v, w), p(w)← v, and S(w)← labeled. Once all
outgoing arcs are processed, set S(v)← scanned.

The parent graph is the graph induced by the arcs
(p(v), v). All arcs of the parent graph have non-positive
reduced lengths. All arcs out of scanned vertices have
non-negative reduced lengths. To reinitialize if some arc
lengths change, we must change to labeled the status of
vertices with outgoing arcs of negative reduced length.

The simplest scanning method is Bellman-Ford-
Moore (bfm) [1, 9, 15], which maintains labeled vertices
in a queue: each newly labeled vertex is added to the
back, and the next vertex to be scanned is removed
from the front. The algorithm finishes when the queue
becomes empty (there is no cycle) or after n passes
over the queue (there is a cycle). We define passes

inductively: pass 0 is the initialization, and pass i for
i > 0 is the scanning of vertices labeled during pass
i − 1. This algorithm can be generalized to a class of
O(n)-pass algorithms [3].

A more efficient variant in practice, due to Tar-
jan [16], is bfct (see also [4]). It also maintains labeled
vertices in a queue, but uses subtree disassembly to de-
tect cycles faster. It keeps the current shortest path tree
as a doubly-linked list representing its preorder traver-
sal. When the processing of an arc (u, v) results in a
reduction of π(v), the algorithm traverses the subtree
rooted at v looking for u. If u is in this subtree, there is
a negative cycle; otherwise, the algorithm disassembles
the subtree and marks all its vertices except for v as
unreached. The disassembly does not affect the correct-
ness of the algorithm, because all the vertices marked
unreached will later have their potentials decreased and
hence become labeled. The cost of traversing the sub-
tree can be charged to the cost of building it, thus pre-
serving the O(nm) worst-case time of the algorithm (the
same as bfm).

A third variant is robust Dijkstra (rdh), introduced
by Cherkassky et al. [3]. It is also an O(n)-pass
algorithm that uses subtree disassembly. Instead of
using a queue, however, rdh maintains labeled vertices
in a heap. The priority of a vertex is given by the
improvement in its potential since it was last scanned.

2 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Vertices with larger improvements are scanned sooner.
This is a generalization of Dijkstra’s algorithm, and its
worst-case running time is O(nm log n). In practice,
however, it is often faster than bfct, especially when a
negative cycle is present.

3 MMC Algorithms

We now describe the MMC algorithms we study, in-
cluding new variants. Precision issues are deferred to
Section 4.

3.1 Initialization. The algorithms we discuss main-
tain an upper and/or a lower bound on λ∗. One can use
U and −U as näıve bounds. A potentially better up-
per bound can be found with greedy initialization (see
Dasdan [6]): just pick the minimum cycle mean of the
subgraph obtained by taking the minimum-length arc
out of each vertex (if the subgraph is acyclic, simply
use U as an upper bound). The MMC can be found in
linear time with a simple depth-first search (DFS) on
the original graph, ignoring all but the shortest arc out
of each vertex.

We get a slightly stronger bound using a similar pro-
cedure, with two modifications. First, while scanning a
vertex v (to determine the best outgoing arc), we check
whether each arc (v, w) is a back arc, i.e., if w occurs
before v on the current path; if so, we compute the cor-
responding cycle mean and update the upper bound on
λ∗. Second, when choosing the outgoing arc in each
step, we pick the minimum-length arc leading to an un-

visited vertex. This allows us to grow longer paths, thus
examining more back arcs (and cycles). These changes
ensure that we always examine a superset of the cycles
checked by Dasdan’s initialization, while still scanning
each vertex only once. We call our bound enhanced

greedy.

3.2 Cycle-based. The simplest solution to the
MMC problem is arguably the cycle-based algorithm

(Cycle). It maintains an upper bound λ ≥ λ∗ and
a cycle Γ with µ(Γ) = λ. At each iteration, the algo-
rithm runs an SPF subroutine for the length function
ℓ− λ. If a negative cycle C is found, we set Γ← C and
λ← µ(C). Otherwise, the current λ is optimal and the
algorithm terminates. No polynomial bound is known
for the generic Cycle algorithm. We can prove polyno-
mial bounds for specific implementations, but they are
not very good.

A well-known implementation of Cycle is
Howard’s algorithm [11]. As described by Dasdan [6],
it uses the greedy initialization to find the first value of
λ, then makes bfm passes through vertices. At the end
of each pass, the parent graph is checked for cycles. If

no cycle is found, the algorithm continues with the next
pass or terminates if all reduced lengths for the length
function ℓ − λ are non-negative. If cycles are found,
λ is updated to make the most negative one have zero
length, and the next pass starts. Dasdan [6] describes
heuristics that improve algorithm performance.

Our implementations of Cycle use bfct and rdh

as SPF subroutines, which are more efficient in practice
than bfm. We use the enhanced greedy initialization.

3.3 Binary Search. Due to Lawler [14], the binary

search algorithm (BinSearch) maintains two values,
λ1 and λ2, such that λ1 ≤ λ∗ ≤ λ2, and a cycle Γ
with µ(Γ) = λ2. At each step, the algorithm sets λ to
the average of λ1 and λ2 and tests whether the length
function ℓ−λ is feasible. If a negative cycle is found, we
set Γ to the cycle and λ2 to µ(Γ) (which is less than λ).
Otherwise we set λ1 ← λ. The algorithm terminates
when λ2−λ1 < ǫ, where ǫ is the desired approximation.
If ǫ is sufficiently small (as explained in Section 4), the
last Γ will be a minimum mean cycle. The number of
iterations is O(log(nU)).

The binary search algorithm has two related prob-
lems in practice. First, it is often the case that the initial
value of λ1 is too conservative, i.e., very far from the ac-
tual minimum cycle mean. Second, the algorithm often
finds a minimum mean cycle well before the termina-
tion condition is satisfied, i.e., when λ1 and λ2 are still
far apart. From this point on, only λ1 will change. To
speed up convergence, we tried a variant called biased

search. Instead of taking a simple average of λ1 and λ2

in a given step, we actually set λ ← λ1+kλ2

1+k
, where k

is a positive integer. When k > 1 this biases the step
towards λ2. The value of k is updated after each step:
starting at 1, k doubles when a cycle is found, and is
halved when none is (the minimum allowed value is 1).

3.4 Hybrid. One can also deal with the convergence
issue by combining binary (or biased) search with the
cycle-based algorithm. We call this approach Hybrid.
It has the same worst-case guarantees as binary search
(O(log(nU)) iterations), and always finishes at most two
iterations after finding an optimal cycle.

Like BinSearch, Hybrid maintains two values,
λ1 and λ2 (with λ1 ≤ λ∗ ≤ λ2), and a cycle Γ with
µ(Γ) = λ2. Each step does an SPF test, with a new
value of λ that depends on the result of the previous
test: if a negative cycle was found (or if this is the first
step), the new value is λ = λ1+λ2

2 ; otherwise, it is λ = λ2

(this forces the algorithm to check if the current value
of λ2 is optimal). If a cycle C is found with the new
value of λ, the algorithm sets Γ ← C and λ2 ← µ(C);
otherwise (if no cycle is found), it sets λ1 ← λ. The

3 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

algorithm stops as soon as two consecutive steps find
no negative cycle.

3.5 Tree-based. We refer to BinSearch, Cycle,
and Hybrid as SPF-based methods, since they use a
full SPF algorithm as a subroutine. We now discuss
a parametric algorithm. Due to Young et al. [17] (im-
proving on Karp and Orlin [13]), the tree-based algo-
rithm (Tree) starts from a value of λ small enough to
ensure all edges have positive length, and progressively
increases λ (in carefully chosen increments) until a zero
cycle is created.

Tree explicitly maintains the shortest path tree
corresponding to the current value of λ. Initially, all
vertices are children of the root s (in the augmented
graph). As λ increases, the tree gets deeper.

Let λi be the value of λ after step i, and suppose
no zero cycle has been detected yet. Define λi+1 as
the smallest λ ≥ λi that leads to a different shortest
path tree. We associate with each vertex v a breakpoint,
the smallest value of λ that would cause it to switch
parents (assuming there is no other change to the tree).
The smallest such breakpoint, over all vertices, is λi+1;
we use a heap to find it.

Each vertex keeps two pieces of information: the
number of arcs on the path from the root and the total
(original) length of this path. We can then compute the
breakpoint of any vertex v based only on information
stored at v and at the tails of its incoming arcs.

When a vertex v changes parent, the entire subtree
Tv rooted at v gets at least one arc further from the
root. Each vertex w ∈ Tv must be scanned twice:
first, we look at its incoming arcs to update w’s own
breakpoint; then we look at its outgoing arcs to update
the breakpoints of its neighbors (with more arcs from
the root, w now looks more attractive). We also check
if the new parent of v belongs to Tv: if it does, a zero
cycle has been found, and the algorithm terminates.

Note that while SPF-based methods need only
outgoing arc lists for every vertex (forward graph), the
Tree method needs both incoming and outgoing lists
(forward and reverse graphs).

Each vertex is scanned at most O(n) times, so
the algorithm spends O(nm) time in scanning oper-
ations and performs O(n2) heap insertions and dele-
tions. It may also perform O(nm) breakpoint (heap)
updates. With Fibonacci heaps, the total running time
is O(n2 log n + nm). Our implementation uses 4-heaps,
which are more practical, and runs in O(nm log n) time.

4 Precision Issues

The following discussion and our implementation as-
sume that distances in the input graph can be repre-

sented as 32-bit integers and that n < 232, which is
reasonable for many applications. Our techniques, how-
ever, apply to arbitrary precision.

Even assuming integrality, mean cycle lengths λ
are, in general, rational. Since we work with length
functions of the form ℓ− λ, we must deal with rational
arithmetic or work with rounded length values, either
implicitly (with floating-point arithmetic) or explicitly.
This section discusses each technique in turn.

4.1 Floating-Point Representation. Suppose we
want to approximate λ∗ to an additive parameter ǫ >
0. SPF-based MMC algorithms can use a standard
technique (also used in [6]). We modify the scan
operation so that π(w) is updated only if it improves by
at least ǫ: if π(v)+ ℓ(v, w) < π(w)− ǫ, then set π(w)←
π(v) + ℓ(v, w) and S(w) ← labeled. Although the
algorithm may terminate with a non-optimal solution,
reduced lengths will be at least −ǫ, allowing λ∗ to be
approximated with ǫ precision. If ǫ is small enough, this
technique solves the problem exactly:

Theorem 4.1. With integral lengths, any two distinct

mean cycle lengths are at least 1
n(n−1) apart.

Proof. Take two cycles with mean lengths c1

k1

> c2

k2

, with
c’s and k’s integral and 0 < k1, k2 ≤ n. Then

c1

k1
− c2

k2
=

c1k2 − c2k1

k1k2
.

Note that the difference is at least 1
k1

≥ 1
n

if k1 = k2,

and at least 1
n(n−1) otherwise. 2

Therefore, if we use ǫ < 1
n(n−1) , the algorithm will

find an optimal solution. This bound is tight, as we can
have two cycles of length 1, with n− 1 and n arcs.

Because floating point numbers have limited preci-
sion, ǫ cannot be arbitrarily small. Otherwise, rounding
errors may cause the algorithm to terminate with an er-
ror higher than ǫ, or not terminate at all.

4.2 Integer Representation. An alternative ap-
proach to precision issues is to multiply all lengths by
n(n− 1) in the beginning, then work only with integers
throughout the algorithm. Since values of λ returned
by the SPF algorithm may be fractional, they must
be rounded down to the nearest integer. The modi-
fied length function ℓ − ⌊λ⌋ is then guaranteed to be
integral, and the difference between two distinct mean
cycle lengths will be at least one. Furthermore, a cycle
is negative with respect to the input lengths if and only
if it is negative with respect to the multiplied lengths.

Define ℓλ = ℓ − λ and ℓ′λ = ℓ − ⌊λ⌋. We can show
that rounding does not change the sign of cycle lengths:

4 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Lemma 4.1. Suppose λ is the mean length of some cycle

Γ in G: λ = µ(Γ). Let C be a cycle in G with ℓλ(C) 6= 0.
Then ℓλ(C) · ℓ′λ(C) > 0.

Proof. Clearly ℓλ(C) ≤ ℓ′λ(C); if the former is positive,
so is the latter. Next we show that if ℓλ(C) < 0, then
ℓ′λ(C) < 0. If ℓλ(C) < 0, then µ(C) < λ = µ(Γ).
Since cycle mean values are at least one apart after we
multiplied the length function, µ(C) ≤ λ − 1 < ⌊λ⌋.
Thus ℓ′λ(C) < 0. 2

Next we show that this rounding technique does
not affect the correctness or the asymptotic worst-case
performance of SPF-based algorithms.

For Cycle, recall that the algorithm maintains a
cycle Γ and λ = µ(Γ). If there is a negative cycle with
respect to the length function ℓ − λ, it is also negative
with respect to ℓ−⌊λ⌋ by Lemma 4.1, and the algorithm
will find a negative cycle Γ′ with respect to ℓ−⌊λ⌋. Since
µ(Γ′) < ⌊λ⌋ ≤ λ, the algorithm makes progress. If the
algorithm fails to find a negative cycle, Γ is a zero cycle,
and there are no negative cycles.

For BinSearch, note that λ1 and λ2 are rounded,
and the algorithm terminates when λ1 = λ2 (assuming
ǫ is sufficiently small). It is easy to see that λ2 − λ1

decreases by a constant factor in each iteration; the
constant is at least 3/2 when λ2−λ1 ≥ 2. What is left to
show is that the cycle Γ is optimal when the algorithm
terminates. Recall that λ2 = ⌊µ(Γ)⌋, and that the
length function ℓ−λ1 admits no negative cycle. Suppose
that the algorithm terminates but there is a cycle C
with µ(C) < µ(Γ). Then µ(C) ≤ µ(Γ)− 1 < λ2 = λ1, a
contradiction. A similar argument shows that Hybrid

is correct.
Note that, to achieve ǫ precision (for ǫ > 0), we need

to multiply the lengths by ⌈1/ǫ⌉. In particular, given the
input and the precision of the arithmetic operations, one
can select the smallest appropriate value of ǫ. With the
same number of bits, we get more precision with integers
than floating-point numbers, since no bits are wasted on
exponents.

4.3 Rational Representation. The tree-based al-
gorithm represents potentials in parametrized form.
Each vertex stores a pair (c, d) representing the num-
ber of arcs c and the total length d of the path from the
root. Since the inputs are integers, so are c and d. The
actual potential, d − cλ, depends on the current value
of λ, and may be a rational.

The algorithm must also deal with breakpoints.
Given a vertex v, a breakpoint is a value of λ that
would cause v to switch parents in the current shortest
path tree. In other words, given two parametrized
potentials (c′, d′) and (c′′, d′′) (induced by two possible

parents of v), the breakpoint is the value of λ such that

d′ − c′λ = d′′ − c′′λ. Here, λ = d′′
−d′

c′′−c′
is a rational

number that can be represented as a pair of integers.
To compare breakpoints (in the heap), we must perform

comparisons of the form a′

b′
< a′′

b′′
. This is essentially the

same as checking if a′b′′ < a′′b′, with special cases when
denominators are zero.

While our experiments assume it is enough to use
64 bits for this computation, in general it is not. If the
original arc lengths use B bits and n uses N bits, path
lengths require up to B + N bits, and the comparison
above (a′b′′ < a′′b′) needs B + 2N bits. Note that
an exact solution using integers needs even more: up
to B + 3N bits to represent the modified path lengths
(from Theorem 4.1). For moderate values B = N = 20,
64 bits are enough with rationals, but not with integers.

4.3.1 SPF-based Algorithms. The rational repre-
sentation can also be used to implement parametrized
versions of SPF-based MMC algorithms (Cycle, Bin-

Search, or Hybrid). Instead of storing a potential as a
single number (either floating point or integer), we keep
a pair (c, d) of integers, representing the number of arcs
and the length of the path from the root. As in Tree,
two potentials are compared using cross multiplication.

There is an additional issue to consider for
BinSearch (and Hybrid). In Cycle and Tree, ev-
ery value of λ ever considered corresponds to an actual
cycle or path in the graph. In contrast, BinSearch

computes values of λ that are (weighted) averages of
two other values (and averages of averages as the algo-
rithm progresses). To address this issue, whenever we
compute an average we replace it by a low-precision ra-
tional (a pair of 32-bit integers, in our implementation)
calculated using continued fractions. When λ1 and λ2

are very close, however, this method may fail to yield a
new value of λ that is actually between λ1 and λ2; when
this happens, we simply switch to Cycle.

SPF-based algorithms with rationals are fundamen-
tally different from those using integers or floating-point
numbers. Being parametric functions of λ, potentials
implicitly change whenever λ does.

5 Incremental Restarts

SPF algorithms assign potentials to vertices in an at-
tempt to prove that no negative cycle exists. If a nega-
tive cycle is found, an SPF-based MMC algorithm will
adjust the value of λ and call the SPF routine again.
One could restart with a brand new set of potentials
(typically zero); we call this a full restart. In practice,
however, it is often useful to reuse the potentials found
in the previous call, performing a partially incremental

restart. When the change in λ is small, this could spare

5 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

the algorithm from recomputing similar potentials, al-
lowing it to concentrate on important parts of the graph.
The algorithm described in [2], for example, is an imple-
mentation of BinSearch that preserves the potentials
and uses Tarjan’s SPF algorithm [16].

We take this idea one step further. SPF algorithms
only need to scan vertices that may have outgoing arcs
with negative reduced lengths. We call these candidate

vertices; a vertex is added to this set when its potential
changes (and during initialization), and removed right
after it is scanned. When an SPF routine finds a
negative cycle, the next call will use a smaller value of
λ. If we preserve the potentials between calls, reduced
lengths can only increase. Therefore, only vertices in
the candidate set after the first call need to be marked
as labeled for the second—no other vertex will have
outgoing arcs with negative reduced lengths. This
avoids the need to examine the entire graph during a
restart.

Note that this incremental reinitialization tech-
nique can only be used when λ decreases, which happens
in every iteration of Cycle, but only in some iterations
of BinSearch and Hybrid. When λ increases, some
reduced lengths may become negative, and all vertices
must be marked as labeled (though potentials are pre-
served).

Another limitation of this technique is that it can-
not be safely used with the parametrized implementa-
tion described in Section 4.3.1. Because potentials im-
plicitly change with λ (by different amounts), any arc
may acquire a negative reduced length. Instead of sim-
ply abandoning incremental reinitialization, we tried a
more aggressive approach. When λ decreases, we still
call the SPF algorithm with incremental reinitialization.
If it does find a cycle, we proceed safely. If it does not,
the result cannot be trusted: we mark all vertices as
labeled and redo the computation using the new poten-
tials as a starting point.

6 Pathological Instances

This section describes some graph families designed to
be hard for some of the algorithms we study. In each
family, a single parameter k controls the instance size:
the number of vertices is always a linear function of k,
and for most families this is also true for the number of
arcs.

To simplify our constructions, we assume that the
initialization phase returns an initial guess for λ∗ that
is larger than the mean length of any actual cycle in the
network. To justify this assumption we note that it is
relatively easy to modify any graph so as to force the
greedy initialization to find an acyclic graph; we can
then add an artificial cycle (disjoint from the original

graph) with the desired mean length for the initial guess.

6.1 Cycle-based algorithm. We start with patho-
logical instances for the bfct version of the Cycle algo-
rithm. We first present a sparse graph that forces bfct

to perform Θ(n) iterations, then give a dense graph that
forces Θ(n2) iterations. Recall that tight bounds are not
known for the Cycle algorithm.

The first graph consists of k arc-disjoint triangles;
the ith triangle has vertices xi, yi, and zi and arcs
(xi, yi), (yi, zi), and (zi, xi), all of length −i. Successive
triangles have a vertex in common, i.e., zi = xi+1.
By choosing the vertex identifiers appropriately, we
guarantee that bfct finds the cycle with the next largest
mean first. To that end, we set xi = 2(i−1)+1, yi = 2i,
and zk = 2k − 1. Moreover, assuming full restart at
the beginning of each iteration, bfct will perform Θ(n)
scans on average to find the next cycle, resulting in
Θ(n2) running time. We refer to this family as bad1.
See Figure 1.

−4

y1 y2 y3 y4

−2−2 −3 −4−3

−2 −4−3

−1−1

−1x1 x2 x3 x4 z4

Figure 1: Bad-case instance for Cycle with k = 4
(bad1).

By making the graph more complicated, we can
in fact get quadratic running time even when we use
incremental reinitialization. Augmenting the main path
with some reverse arcs prevents the more sophisticated
algorithms from finding multiple cycles in a single pass.
We refer to the modified family as bad2.

Another network that gives similar results when full
restart is used is the following. We start with a path
of k vertices P = (x1, x2, . . . , xk), where ℓ(xi, xi+1) =
ℓ(xi−1, xi) − 1 = l − i (where l is a parameter to be
chosen later). We add a vertex y1 together with the
arcs (xk, y1) and (y1, xi) for 1 ≤ i < k. Let C1

i denote
the cycle (xi, xi+1, . . . , xk, y1, xi). We choose the arc
lengths so that ℓ(C1

i) = −i(k − i + 2), and hence
λ(C1

i) = −i. To that end, we set l = 0, ℓ(xk, y1) = −k,
and ℓ(y1, xi) = −i(k − i + 2) + k(k + 1)/2− i(i− 1)/2.
To get the desired bound we need to assign appropriate
identifiers to the vertices, and order the adjacency list
of y1 suitably. It suffices to set xi = i, y1 = k + 1, and
order the adjacency list of y1 by increasing identifier.
See Figure 2. Then C1

i is discovered before C1
i+1 and

we get k − 1 iterations. Furthermore, each iteration
needs Θ(k) scans, assuming full restarts.

6 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

x2

y1

−3 −5

x3 x4 x5
−1 −2 −3 −4

9 4 0

x1

Figure 2: A quadratic-time instance for Cycle with
k = 4. By replicating vertex y1 and its adjacent arcs
k times (and modifying the lengths suitably), we get a
dense graph that causes Θ(n3) scans (bad3).

We now extend the above network to achieve Θ(n2)
iterations. First, we add the vertices yi, for 2 ≤ i ≤
k. Then, for each yi, we add the arcs (xk, yi) and
(yi, xj), where 1 ≤ j < k. We let Cj

i denote the
cycle (xi, xi+1, . . . , xk, yj , xi). Here our goal is to have

λ(Cj
i) = −(k − 1)j − i, which can be accomplished

similarly. This network gives Θ(n3) = Θ(mn) scans.
We refer to this family as bad3.

6.2 Tree-based algorithm. We now describe a fam-
ily of sparse graphs that causes the worst-case run-
ning time of Tree: the shortest path tree changes
Θ(n2) = Θ(mn) times.

The network consists of a source s, a sink t, three
sets of k vertices each ({xi}, {yi}, and {zi}), and
two more vertices w1 and w2. We form the paths
P1 = (x1, . . . , xk) and P2 = (y1, . . . , yk), with ℓ(xi, xi+1)
= ℓ(yi, yi+1) = i. The two paths are connected to the
source with the arcs (s, x1) and (s, y1). Also, we connect
the odd vertices (x1, x3, . . .) of P1 to w1 and the even
vertices (y2, y4, . . .) of P2 to w2. Then, from w1 and
w2 there is an arc to each zi, and an arc from zi to
t. All these arcs have zero length. Finally, we include
the arc (t, s) with length high enough so that λ∗ ≥ k
and the cycle with mean λ∗ has Θ(k) vertices: setting
ℓ(t, s) = k2 satisfies these requirements. See Figure 3.

As λ increases, the shortest path to w1 includes
more and more vertices of P1. Similarly, the shortest
path to w2 includes more and more vertices of P2. Fur-
thermore, at every moment these paths have different
lengths and different numbers of arcs. The result is that
the parent of each zi in the shortest path tree keeps al-
ternating between w1 and w2, changing Θ(k2) times in
total. We refer to this family as bad4.

6.3 Quasi-DAG. We also include in our collection
of pathological instances a family of dense graphs con-
structed as follows: we start with a complete DAG on
n vertices, i.e., for any i < j we have an arc from i to j
with length 1 + j − n. We then add the cycle arc (n, 1)

x4

1 2 3

21 3

w2

w1

y1 y2 y3 y4

x1 x2 x3

s t
z2

z1

z3

z4

16

Figure 3: Worst-case family for Tree (bad4) with
k = 4. Only nonzero arc lengths are shown.

with length 0. We call this family bad5. Its graphs have
many cycles with different numbers of arcs and lengths.

7 Experimental Results

7.1 Methodology. All algorithms were implemented
in C++ and compiled with Microsoft Visual C++ 2008
with full optimization. Timed tests were conducted on
a 2.4 GHz AMD Opteron machine with 16 GB of RAM,
running Windows Server 2003 Enterprise x64 edition.
All input values are 32-bit integers, but we used 64 bits
to represent intermediate values internally. Running
times do not include reading the input graph (which
is done by all algorithms), but do include allocating,
initializing, and destroying additional data structures
(including the reverse graph needed by Tree).

We measured not only running times, but also the
average number of scans per vertex (for Tree, a scan
is a traversal of an adjacency list), which provides
a machine-independent measure of performance. We
did not count scans done during initialization, one per
vertex for every algorithm.

Unless otherwise noted, we used an approximation
factor of ǫ = 10−6 for the SP feasibility-based algo-
rithms (Cycle, BinSearch, and Hybrid). Note that
the Tree algorithm does not use ǫ and always finds an
optimal solution. For the instances tested, ǫ = 10−6

was small enough for all algorithms to find an optimal
solution, i.e., a cycle with the same mean length as the
one found by the Tree algorithm.

7.1.1 Algorithms. Although we have presented only
four basic algorithms (Cycle, Tree, Hybrid, and
BinSearch), we actually ended up testing 76 distinct
implementations, varying aspects such as the SP feasi-
bility algorithm, the data representation, and the restart
method. For ease of exposition, our initial focus is on
a set of five variants that achieved good results. It in-

7 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

cludes two variants of Cycle (using bfct and rdh);
two versions of Hybrid (using bfct and rdh); and
Tree. The first four algorithms use incremental reini-
tialization and represent potentials as integers. Both
implementations of Hybrid use biased search. Sec-
tion 7.4 addresses other variants.

7.1.2 Problem families. Our basic tests were con-
ducted on two real-world problem families representing
clocking problems on circuits. The first family, IBM,
was provided by Ali Dasdan and includes sparse graphs
with up to 210 613 vertices. The second, BONN, was
provided by Stephan Held and contains denser graphs
with millions of edges. See [6, 10] for details.

Because these instances are rather easy for most
algorithms, we also tested synthetic families originally
used in the evaluation of algorithms for the shortest
path problem [4], and later for SP feasibility [3].

Created with the SPRAND generator [5], the rand5
family contains graphs with n vertices and m = 5n
arcs. Each graph consists of a random Hamiltonian
cycle and m − n additional random arcs, with lengths
chosen uniformly at random from [1, 1000].

For more structured instances, we used the TOR

generator [4]. In 2-dimensional grids with wrap-around,
each vertex is connected to its neighbor above (in the
same column) by a short arc (with length in [1, 100]),
and to its neighbor to the right (in the next column)
by a long arc (length in [1000, 10000]). We tested
two families: sqnc consists of square grids, with ⌊√n⌋
columns and rows, and lnc consists of long grids, with
⌊n/16⌋ columns and 16 rows.

A third family generated by TOR, denoted by pnc,
consists of layered networks embedded on a torus.
Graphs are partitioned into layers, each containing a
cycle of length 32 plus 64 random arcs (all with lengths
in the range [1, 100]). Each vertex also has five arcs
to forward layers (with wrap-around): an arc going x
layers forward has length picked uniformly at random
from [1, 10000] and multiplied by x2. All TOR families
have a source connected to the first layer/column by
zero-length arcs.

Finally, we tested road networks [8], planar graphs
in which vertices represent intersections, arcs are road
segments, and lengths are proportional to travel dis-
tances. We tested two instances, representing New York
City (n = 264 346) and Florida (n = 1070 376).

7.1.3 Subfamilies. For a more systematic analysis,
we explicitly added negative cycles in a controlled
fashion. Since all original families have no negative
arcs, these cycles necessarily change the minimum mean
cycle.

Our filter adds zero or more disjoint negative cycles
(connecting randomly chosen vertices) to a graph. We
tested five subfamilies in which each added cycle has
one arc of length −1 and the rest of length 0. These
subfamilies are similar to those studied in [3]: (01) no
cycles; (02) a single small (three arcs) cycle; (03) ⌊√n⌋
small cycles; (04) ⌊ 3

√
n⌋ medium (⌊√n⌋ arcs) cycles;

(05) a single Hamiltonian cycle. In addition, subfamily
(06), which is new, has cycles of varying length. Let
M = ⌊ 3

√
n⌋: we add M cycles with M , 2M , . . ., M2

arcs. Every added arc has length −M , except for a
single arc in each cycle with length −M + 1. Note that
the minimum mean cycle is the one with the most arcs.

After the cycles are added to each subfamily, we
“hide” them. A potential perturbation assigns a random
value in [0, 16384) to each vertex and replaces arc
lengths by their reduced lengths. We also randomly
permute all vertex identifiers and adjacency lists. These
transformations do not change the minimum mean cycle
of the graph.

For experiments with a randomized component (all
that involve synthetic instances or subfamilies), we
report averages of 25 runs with different random seeds.

7.2 Circuits. We start our experiments with BONN
and IBM, the real-world families. The IBM instances
(but not BONN) were originally created for the mini-
mum ratio cycle (MRC) problem: each arc has both a
length and a positive delay, and the goal is to find a cy-
cle minimizing the ratio between its total length and its
total delay. We transformed them into MMC instances
by setting all delays to one. The average number of
scans performed by each algorithm on IBM instances
are shown in Table 1 (for the MMC problem) and Ta-
ble 2 (for MRC). The corresponding results for BONN
(for MMC only) are shown in Table 3.

In most cases, Cycle and Tree perform slightly
more than one scan per vertex. Hybrid usually per-
forms slightly more than two scans on IBM, but one
scan has the sole purpose of detecting optimality, which
means the optimal cycle itself is found after little more
than one scan per vertex. BONN is only slightly harder
for Hybrid. On both families, the minimum cycle usu-
ally has three or fewer arcs, and never more than five.
These problems are too easy for a meaningful compari-
son between the algorithms.

All algorithms discussed in this paper easily extend
to the MRC problem, but without good theoretical per-
formance guarantees. On the IBM family, however,
solving the MRC problem instead of MMC makes lit-
tle difference in practice, confirming Dasdan’s observa-
tion [6]. We restrict ourselves to the MMC problem for
the remainder of this paper, but note that every MMC

8 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Table 1: Minimum Mean Cycle: Average number of
scans per vertex on IBM.

instance Cycle Hybrid Tree

name n m bfct rdh bfct rdh

ibm01 12752 36681 1.04 1.04 2.06 2.07 1.17

ibm02 19601 61829 1.01 1.01 2.02 2.02 1.04

ibm03 23136 66429 1.01 1.01 2.02 2.02 1.05

ibm04 27507 74138 1.01 1.01 2.01 2.01 1.02

ibm05 29347 98793 1.00 1.00 2.00 2.00 1.01

ibm06 32498 93493 1.01 1.01 2.02 2.02 1.06

ibm07 45926 127774 1.03 1.03 2.04 2.04 1.11

ibm08 51309 154644 1.00 1.00 2.01 2.01 1.02

ibm09 53395 161430 1.03 1.03 2.04 2.04 1.10

ibm10 69429 223090 1.03 1.01 3.04 3.04 1.06

ibm11 70558 199694 1.01 1.01 2.02 2.02 1.05

ibm12 71076 241135 1.01 1.01 2.01 2.01 1.02

ibm13 84199 257788 1.01 1.01 2.01 2.01 1.03

ibm14 147605 394497 1.00 1.00 2.01 2.01 1.02

ibm15 161570 529562 1.02 1.02 2.04 2.04 1.10

ibm16 183484 589253 1.01 1.01 2.02 2.02 1.05

ibm17 185495 671174 1.00 1.00 2.00 2.00 1.00

ibm18 210613 618020 1.00 1.00 2.01 2.01 1.02

instance is a valid MRC instance.

7.3 Other Families. We now consider more chal-
lenging instances. We picked the largest IBM instance,
which has 210 613 vertices, and instances of comparable
size from other families: n = 262 144 (218) for rand5,
n = 218 + 1 for TOR-generated families (lnc, pnc, and
sqnc) and n = 264 346 (New York) for the road family.
(Section 7.6 will consider different sizes.)

Table 4 shows the number of scans per vertex on
these families, each with six subfamilies. In every case,
the best method is either Cycle or Tree; Hybrid

is consistently worse. The Cycle algorithm is more
robust with rdh than with bfct: it is never much worse
on “easy” families, but sometimes significantly better
when the number of scans is higher. For example, on
subfamily 05 of pnc, Cycle performs almost an order
of magnitude fewer scans with rdh.

Overall, these synthetic instances are harder than
the real-world instances tested in Section 7.2. In par-
ticular, the original ibm18 instance requires fewer scans
per vertex than any of its corresponding subfamilies—
including subfamily 01, which adds a potential pertur-
bation but no negative cycle.

Note, however, that even these synthetic families
are not too hard: no algorithm performs more than 150
scans per vertex on average. In particular, both Tree

and Cycle with rdh need no more than 26 scans per
vertex. All algorithms consistently perform fewer scans
when the negative cycles are short (subfamilies 02 or
03) rather than long (04 to 06).

Table 2: Minimum Ratio Cycle: Average number of
scans per vertex on IBM for the minimum cycle ratio
problem.

instance Cycle Hybrid Tree

name n m bfct rdh bfct rdh

ibm01 12752 36681 1.03 1.03 2.04 2.04 1.11

ibm02 19601 61829 1.01 1.01 2.02 2.02 1.04

ibm03 23136 66429 1.01 1.01 2.02 2.02 1.05

ibm04 27507 74138 1.01 1.01 2.01 2.01 1.02

ibm05 29347 98793 1.00 1.00 2.00 2.00 1.01

ibm06 32498 93493 1.01 1.01 2.02 2.02 1.06
ibm07 45926 127774 1.02 1.02 2.03 2.03 1.09

ibm08 51309 154644 1.00 1.00 2.01 2.01 1.02

ibm09 53395 161430 1.02 1.02 2.03 2.03 1.09

ibm10 69429 223090 1.03 1.01 3.04 3.04 1.06

ibm11 70558 199694 1.01 1.01 2.02 2.02 1.05

ibm12 71076 241135 1.01 1.01 2.01 2.01 1.02

ibm13 84199 257788 1.01 1.01 2.01 2.01 1.03

ibm14 147605 394497 1.00 1.00 2.01 2.01 1.02

ibm15 161570 529562 1.02 1.02 2.03 2.03 1.08

ibm16 183484 589253 1.01 1.01 2.02 2.02 1.05

ibm17 185495 671174 1.00 1.00 2.00 2.00 1.00

ibm18 210613 618020 1.00 1.00 2.01 2.01 1.02

Table 3: Minimum Mean Cycle: Average number of
scans per vertex on BONN.

instance Cycle Hybrid Tree

name n m bfct rdh bfct rdh

bonn01 4609 2916202 1.04 1.02 4.00 4.03 1.02

bonn02 5361 4166868 1.44 1.42 3.11 3.26 1.36

bonn03 11867 8914917 1.18 1.76 2.00 2.09 1.31

bonn04 20072 1321426 1.05 1.12 3.05 3.10 1.13

bonn05 60309 3969429 1.00 1.03 4.00 4.03 1.04
bonn06 70346 892588 1.01 1.01 4.01 4.01 1.03

bonn07 82038 2603211 1.00 1.03 3.00 5.07 1.14

bonn08 95936 1324128 1.08 1.20 2.08 2.25 1.60

bonn09 346814 9222546 1.00 1.01 5.00 4.02 1.02

Despite its good worst-case bound, Hybrid is usu-
ally worse than Cycle, and never much better. Be-
cause at least half of its iterations use Cycle, however,
it is rarely much worse, either (one exception is the rdh

variant on subfamily 01 of sqnc).
Table 5 reports the average execution times on the

same instances. The fastest code is usually either Tree

or the bfct variant of Cycle. Because the rdh variant
of Cycle has higher overhead per scan (due to the use
of a heap), it is often slower than the bfct variant when
the number of scans is similar. It is more competitive
for harder instances, but on such instances Tree tends
to be even faster.

7.4 Variants. We now analyze how the SPF-based
algorithms are affected by the design choices we made.

9 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Table 4: Average number of scans per vertex on in-
stances with approximately 218 vertices.

Cycle Hybrid Tree

family sub bfct rdh bfct rdh

ibm18 01 1.66 1.75 2.95 3.09 3.33

02 1.67 1.76 3.30 3.40 3.32

03 1.66 1.73 2.75 2.82 3.35

04 12.06 7.39 19.44 13.07 8.23

05 49.86 23.79 61.15 26.01 20.91

06 37.32 12.48 45.69 22.86 12.45

lnc 01 2.36 2.30 6.89 7.17 4.80

02 2.36 2.21 4.24 5.71 4.65

03 2.29 2.11 3.36 3.17 4.71

04 17.69 10.62 29.04 15.81 13.36

05 70.65 24.54 61.94 24.71 22.86

06 47.81 14.13 46.23 22.10 14.15

pnc 01 2.99 2.91 4.14 4.07 7.82

02 2.87 2.85 4.90 4.98 7.24

03 2.89 2.88 4.04 4.05 7.74

04 23.38 12.89 32.92 17.24 20.42

05 148.53 19.19 73.42 21.96 19.57

06 77.17 14.89 59.46 22.34 14.80

rand5 01 10.90 6.60 14.71 10.67 7.80

02 2.66 3.10 5.29 6.04 5.34

03 2.15 2.47 3.30 3.64 5.37

04 31.84 13.04 38.91 16.30 13.30

05 70.83 25.37 69.29 25.31 23.07

06 50.90 14.04 53.70 22.04 14.17

road 01 1.64 1.72 2.74 2.82 3.32
02 1.65 1.75 3.42 3.53 3.31

03 1.65 1.73 2.75 2.83 3.34

04 6.52 4.11 10.68 6.55 7.57

05 43.66 23.66 61.75 25.97 18.68

06 42.62 13.06 49.31 23.82 12.28

sqnc 01 10.56 9.38 20.60 46.25 7.02

02 3.15 5.23 4.91 21.25 5.02
03 2.45 2.23 3.52 3.29 5.07

04 18.87 10.60 29.84 17.03 13.73

05 71.83 24.52 65.29 25.19 22.87

06 48.61 13.79 47.75 21.61 14.15

We consider incremental reinitialization, data represen-
tation, and the benefits of the hybrid algorithm over
“pure” binary search. To improve readability, instead
of reporting the absolute number of scans per vertex,
we report relative values, using as a basis the rele-
vant benchmark algorithm (one of the four studied so
far). Values greater than one favor the benchmark al-
gorithms.

7.4.1 Incremental reinitialization. We begin with
restart strategies. Our benchmark algorithms use incre-

mental restarts, which preserve potentials and candidate
vertices between calls to the SPF algorithm. We com-
pare this with full restarts, which reset all potentials and
mark all vertices as labeled in each call. Table 6 shows
the average number of scans with full restarts relative

Table 5: Average time (in seconds).

Cycle Hybrid Tree

family sub bfct rdh bfct rdh

ibm18 01 0.29 0.66 0.41 0.86 0.84

02 0.31 0.66 0.46 0.92 0.84

03 0.29 0.63 0.39 0.80 0.83

04 2.30 2.37 3.13 3.62 1.71

05 10.22 7.93 11.96 8.63 4.82

06 7.25 4.85 8.36 7.75 2.70

lnc 01 0.54 0.98 0.84 2.03 1.20

02 0.51 0.91 0.69 1.69 1.17

03 0.48 0.82 0.57 0.98 1.18

04 4.08 3.85 5.98 5.37 2.68

05 16.85 10.64 14.00 10.37 6.05

06 11.42 6.43 9.91 8.59 3.37

pnc 01 1.23 1.89 1.48 2.31 4.12

02 1.21 1.99 1.59 2.78 3.84

03 1.20 1.94 1.41 2.33 4.00

04 8.96 7.79 11.18 9.58 9.03

05 59.39 14.83 27.97 14.27 10.35

06 28.46 11.69 20.68 13.67 7.61

rand5 01 3.62 5.25 4.06 6.10 3.24

02 0.97 2.62 1.40 3.34 2.33

03 0.72 1.76 0.92 2.11 2.29

04 9.99 9.61 10.93 8.88 5.00

05 21.90 14.86 20.66 13.36 9.19

06 15.30 10.48 15.21 11.54 5.56

road 01 0.37 0.80 0.48 1.01 0.99

02 0.40 0.82 0.58 1.16 1.02

03 0.36 0.80 0.49 0.99 1.00

04 1.52 1.60 2.01 2.05 1.90

05 10.93 9.83 14.94 10.50 5.19

06 10.60 6.70 11.26 10.30 3.19

sqnc 01 2.12 2.83 3.60 12.29 1.59

02 0.70 1.72 0.89 5.62 1.21

03 0.52 0.85 0.62 1.02 1.23

04 4.37 3.87 6.29 5.99 2.80

05 16.91 10.75 14.55 10.53 6.07

06 11.67 6.32 10.50 8.40 3.32

to incremental restarts.
Incremental restarts are particularly beneficial on

subfamilies 04 to 06, which are harder for all algorithms.
Speedups of over an order of magnitude were observed.
On subfamily 03, in contrast, incremental restarts have
little effect. The benefits of incremental reinitialization
are clearer for the Cycle algorithm, since Hybrid must
use full restarts in roughly half of its SPF calls.

We also considered partially incremental restarts,
which keep potentials but mark all vertices as labeled.
Table 7 presents the number of scans obtained by
this method, relative to fully incremental restarts (the
benchmark method). The latter is still better, but never
by a factor much greater than two. Simply preserving
potentials is enough to achieve most of the speedup
reported in Table 6.

10 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Table 6: Average number of scans using full restarts
(relative to incremental restarts).

algorithm family 01 02 03 04 05 06

Cycle ibm18 1.11 1.41 1.00 2.01 4.00 9.37

bfct lnc 4.56 1.40 1.00 2.91 5.14 9.47

pnc 1.00 1.54 1.00 3.35 19.56 7.34

rand5 2.09 1.66 1.00 2.00 4.32 9.10

road 1.00 1.60 1.00 1.95 3.91 8.72

sqnc 2.87 1.09 1.00 2.72 5.06 9.29

Cycle ibm18 1.10 1.27 1.00 2.41 7.83 6.84

rdh lnc 2.94 1.75 1.00 3.70 10.57 6.88

pnc 1.00 1.44 1.00 5.77 13.25 8.30

rand5 3.20 2.13 1.00 4.34 9.80 8.31

road 1.00 1.43 1.00 1.73 6.66 6.53

sqnc 1.11 0.52 1.00 3.65 10.59 7.86

Hybrid ibm18 1.09 1.26 1.00 1.88 2.87 3.26

bfct lnc 2.64 1.28 1.00 2.14 3.53 3.86

pnc 1.00 1.40 1.00 2.58 4.09 3.50

rand5 1.79 1.48 1.00 1.75 3.08 3.21

road 1.00 1.35 1.00 1.69 2.76 2.82

sqnc 2.03 1.11 1.00 2.08 3.40 3.71

Hybrid ibm18 1.09 1.21 1.00 2.08 6.21 4.40

rdh lnc 1.87 1.46 1.00 3.08 6.89 5.24

pnc 1.00 1.34 1.00 4.82 5.77 5.38

rand5 2.38 1.68 1.00 3.08 7.52 5.37

road 1.00 1.29 1.00 1.58 5.84 4.25

sqnc 0.44 0.34 1.00 2.77 7.02 5.10

Table 7: Average number of scans using partially
incremental restarts (relative to incremental restarts).

algorithm family 01 02 03 04 05 06

Cycle ibm18 1.07 1.24 1.00 1.50 1.44 2.21
bfct lnc 2.66 1.22 1.00 1.70 1.42 2.19

pnc 1.00 1.19 1.00 1.40 1.29 1.61

rand5 1.34 1.30 1.00 1.41 1.41 2.05

road 1.00 1.35 1.00 1.44 1.47 2.09

sqnc 1.56 1.13 1.00 1.54 1.38 2.07

Cycle ibm18 1.07 1.18 1.00 1.22 1.72 1.55

rdh lnc 1.69 1.31 1.00 1.31 1.80 1.53
pnc 1.00 1.18 1.00 1.23 1.51 1.61

rand5 1.31 1.28 1.00 1.25 1.69 1.61

road 1.00 1.27 1.00 1.27 1.79 1.68
sqnc 1.39 1.40 1.00 1.39 1.60 1.58

Hybrid ibm18 1.04 1.13 1.00 1.30 1.25 1.39

bfct lnc 1.54 1.13 1.00 1.32 1.35 1.41

pnc 1.00 1.12 1.00 1.19 1.24 1.28
rand5 1.17 1.13 1.00 1.25 1.27 1.34

road 1.00 1.17 1.00 1.27 1.26 1.35
sqnc 1.25 1.08 1.00 1.31 1.23 1.46

Hybrid ibm18 1.05 1.14 1.00 1.14 1.33 1.24
rdh lnc 1.19 1.08 1.00 1.18 1.34 1.28

pnc 1.00 1.12 1.00 1.28 1.34 1.29

rand5 1.29 1.24 1.00 1.25 1.34 1.35
road 1.00 1.15 1.00 1.18 1.35 1.22

sqnc 1.06 1.00 1.00 1.22 1.35 1.29

7.4.2 Data representation. We considered three
possible representations of potentials and λ: integers,
floats, and rationals. The results reported so far use
64-bit integers, which have higher precision than 64-
bit doubles. When precision is not an issue, both
methods have almost identical operation counts and
running times on our 64-bit test machine. On 32-bit
machines, however, the running times can be lower with
doubles due to better hardware support (the difference
is a factor of roughly 2 on a Pentium 4). As for the third
approach, Table 8 shows the average number of scans
performed by Cycle and Hybrid (both with bfct)
using rationals, relative to integers.

Table 8: Average number of scans per vertex using
rationals (relative to integers). All algorithms use bfct.

algorithm family 01 02 03 04 05 06

Cycle ibm18 1.10 1.34 1.00 0.85 0.85 0.93

lnc 1.42 1.33 1.00 0.90 0.89 1.00

pnc 1.00 1.32 1.00 0.83 0.88 0.93

rand5 1.01 1.31 1.00 0.83 0.87 0.96

road 1.00 1.41 1.00 1.02 0.92 0.89

sqnc 0.87 1.09 1.00 0.93 0.89 1.01

Hybrid ibm18 1.06 1.17 0.96 1.35 1.09 0.95

lnc 1.74 1.18 0.97 1.08 1.28 1.09

pnc 0.97 1.36 0.97 1.34 1.48 1.13

rand5 1.44 1.34 0.96 1.04 1.15 1.02

road 0.96 1.20 0.96 2.01 1.36 0.94

sqnc 1.24 1.06 0.98 1.13 1.16 1.08

As explained in Section 4.3, rationals actually lead
to a different algorithm, since changes in λ implicitly
change all potentials. This explains why the numbers of
scans sometimes differ substantially. Although in some
cases the rational implementation is slightly better, it is
often significantly worse. Given that this implementa-
tion is more complicated and incompatible with incre-
mental restarts, integers should be preferred in practice.

7.4.3 Binary search. As mentioned in Section 3.3,
we considered two techniques to speed up the conver-
gence of the binary search algorithm (BinSearch):
making the search biased and combining it with Cycle.
Our benchmark algorithm uses both: it is a biased hy-
brid search. We now consider the other three combina-
tions: standard (unbiased) binary search, biased search,
and unbiased hybrid search. Table 9 shows the average
number of scans performed by each such method, with
biased hybrid search as a benchmark. All methods use
bfct as the SPF algorithm.

Hybrid is superior to biased search, which in turn
is clearly superior to standard binary search. The latter
is particularly bad for the 03 subfamily, which can be
solved by Hybrid in 5 scans or less. The two variants

11 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Table 9: Average number of scans by variants of binary
search, relative to biased hybrid, using bfct.

algorithm family 01 02 03 04 05 06

BinSearch ibm18 17.14 13.94 19.11 3.79 1.39 1.30

(unbiased) lnc 6.09 12.62 20.01 2.96 1.53 1.37

pnc 16.92 11.46 17.07 2.29 1.52 1.04

rand5 3.85 8.99 18.43 2.61 1.39 1.22

road 19.09 13.18 19.08 6.77 1.34 1.14

sqnc 4.22 13.18 20.11 3.07 1.43 1.31

BinSearch ibm18 4.90 4.26 5.34 1.73 1.09 0.85

(biased) lnc 2.13 3.98 5.45 1.62 1.18 1.05

pnc 4.76 3.47 4.78 1.38 1.03 0.96

rand5 1.62 2.90 5.17 1.42 1.12 1.00

road 5.34 3.92 5.34 2.54 1.09 0.73

sqnc 1.63 4.15 5.44 1.65 1.10 1.02

Hybrid ibm18 1.00 1.00 1.00 1.00 1.29 1.41

(unbiased) lnc 1.09 0.99 1.00 1.07 1.57 1.59

pnc 1.00 1.00 1.00 1.11 1.49 1.45

rand5 1.20 1.03 1.00 1.22 1.41 1.44

road 1.00 1.00 1.00 0.99 1.11 1.42

sqnc 0.87 0.99 1.00 1.11 1.43 1.54

of Hybrid are roughly equivalent, with slight advantage
to the benchmark (biased) one.

7.5 Precision. The experiments reported so far used
very high precision (ǫ = 10−6). To test the dependence
on ǫ, we varied ǫ from 10−6 to 102, and ran the four
benchmark SP feasibility algorithms, as well as two ver-
sions on binary search (using bfct and rdh), on sub-
family 05 of rand5. Figure 4 shows the average number
of scans per vertex as a function of ǫ. All algorithms
are faster for larger values of ǫ. BinSearch is espe-
cially sensitive, but it is never better than Hybrid or
Cycle when using the same feasibility routine (bfct

or rdh).

7.6 Asymptotic Behavior. To assess the asymp-
totic behavior of the algorithms, we consider graphs
with n ≈ 220 vertices, four times bigger than the ones
tested so far. Table 10 shows the number of scans per
vertex on the larger graphs, relative to the smaller ones.

All algorithms have theoretical worst case at least
Ω(n2). If such growth were observed in practice, values
in the table should be close to four, but all entries are
significantly lower. All values are below two, and many
are close to one, indicating near-linear behavior. The
Tree algorithm is the most robust: its highest value is
1.06. This confirms what we have already observed in
Section 7.3: these problem families are relatively easy.

7.7 Robustness. Our main experiments (Table 4)
showed that our five benchmark algorithms usually
perform far fewer than 100 scans per vertex. This does

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

10-6 10-5 10-4 10-3 10-2 10-1 100 101 102

sc
an

s
pe

r
ve

rt
ex

precision

binary search (BFCT)
hybrid (BFCT)

top-down (BFCT)
binary search (RDH)

hybrid (RDH)
top-down (RDH)

Figure 4: Scans per vertex on subfamily 05 of rand5
(with n = 262 144) as a function of the precision (ǫ).

not mean that any reasonable algorithm works well.
For example, we found Dasdan’s implementation of

Howard’s algorithm to be competitive on circuits and
random graphs (confirming Dasdan’s assessment), but
much worse than Cycle implemented with bfct on
harder instances (such as the 06 subfamily).

Similarly, many variants omitted from Table 4
often perform hundreds of scans per vertex on various
instances. In particular, without incremental restarts,
both versions of the Cycle algorithm (using bfct and
rdh) require more than a thousand scans per vertex on
subfamily 05 of pnc.

In fact, even some of the benchmark algorithms
have superlinear behavior when run on the pathological
instances described in Section 6, To confirm this, we
ran them with k = 100 and k = 400. Table 11
shows the average number of scans per vertex with
k = 400, relative to the corresponding values for
k = 100. Values greater than one indicate superlinear
dependence on n (quadratic for a factor of 4, and
cubic for 16). For completeness, we consider all three
reinitialization strategies for Cycle: full (mode 0),
partially incremental (1) and incremental (2).

8 Final Remarks

Out of many possibilities, our study shows that, on a
wide class of problem families, two variants of the cycle-
based algorithm and especially the tree-based algorithm
of Young et al. are superior to other methods. Binary
search is not competitive.

Note that while Tree has the best known theo-
retical time bound, not much is known about Cycle.
We are currently working on a better theoretical under-

12 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Table 10: Average number of scans for graphs with
n ≈ 220, relative to graphs with n ≈ 218.

algorithm family 01 02 03 04 05 06

Cycle lnc 1.00 1.00 1.00 1.09 1.33 1.45

bfct pnc 1.00 1.00 0.97 1.29 1.55 1.42

rand5 1.04 1.09 1.00 1.12 1.22 1.44

road 0.96 0.96 0.96 1.13 1.26 1.33

sqnc 1.25 1.07 1.00 1.21 1.34 1.43

Cycle lnc 1.00 0.99 0.99 1.16 1.08 1.07

rdh pnc 1.00 1.00 0.98 1.09 1.13 1.06

rand5 0.95 1.02 1.00 1.10 1.06 1.15

road 0.94 0.94 0.94 1.11 1.07 1.18

sqnc 1.35 1.69 1.00 1.16 1.12 1.09

Hybrid lnc 1.07 1.00 1.00 1.08 1.23 1.20

bfct pnc 1.00 1.00 0.98 1.10 1.22 1.18
rand5 1.01 1.15 1.00 1.13 1.17 1.14

road 0.97 1.03 0.97 1.19 1.11 1.10

sqnc 1.26 1.10 1.00 1.26 1.22 1.13

Hybrid lnc 1.15 1.07 1.00 1.10 1.07 1.01

rdh pnc 1.00 1.01 0.99 1.08 1.07 1.03

rand5 0.98 1.10 1.00 1.06 1.05 1.05

road 0.96 1.02 0.96 1.27 1.06 0.93
sqnc 1.33 1.53 1.00 1.10 1.04 1.09

Tree lnc 1.00 1.00 0.99 1.00 1.01 1.05

pnc 1.00 1.00 0.96 1.02 1.01 1.04

rand5 0.99 1.00 1.00 1.03 1.01 1.06

road 0.92 0.92 0.91 0.90 1.02 1.06

sqnc 1.05 1.00 1.00 1.01 1.01 1.05

standing of this algorithm.

Acknowledgements. We thank Ali Dasdan for shar-
ing his code with us and for giving us access to the IBM
instances. We also thank Stephan Held for the BONN
instances.

References

[1] R. E. Bellman. On a Routing Problem. Quarterly of
Applied Mathematics, 16:87–90, 1958.

[2] N. Chandrachoodan, S. S. Bhattaryya, and K. J. R.
Liu. Adaptive Negative Cycle Detection in Dynamic
Graphs. In Proceedings of the International Sympo-
sium on Circuits and Systems (ISCAS), pages V–163–
V–166, 2001.

[3] B. V. Cherkassky, L. Georgiadis, A. V. Goldberg,
R. E. Tarjan, and R. F. Werneck. Shortest Path
Feasibility Algorithms: An Experimental Evaluation.
In Proceedings of the 10th International Workshop on
Algorithm Engineering and Experiments (ALENEX),
pages 118–132. SIAM, 2008.

[4] B. V. Cherkassky and A. V. Goldberg. Negative-Cycle
Detection Algorithms. Mathematical Programming,
85:277–311, 1999.

[5] B. V. Cherkassky, A. V. Goldberg, and T. Radzik.
Shortest Paths Algorithms: Theory and Experimental

Table 11: Number of scans per vertex on pathological
families with k = 400, relative to k = 100. Possible
restart methods (rs) are full (0), partially incremental
(1), and incremental (2).

algorithm rs bad1 bad2 bad3 bad4 bad5

Cycle bfct 0 3.9 4.0 16.1 1.0 1.2

bfct 1 3.9 4.0 1.8 3.6 1.5

bfct 2 1.0 3.9 0.6 3.7 9.7
rdh 0 1.0 1.0 4.0 1.0 1.2

rdh 1 0.9 1.0 1.3 1.0 2.0

rdh 2 1.0 1.0 0.4 1.0 1.7

Hybrid bfct 2 1.0 1.0 1.2 1.0 1.8

rdh 2 0.3 1.0 0.6 1.0 2.3

Tree — — 1.0 1.0 1.0 3.9 2.1

Evaluation. Mathematical Programming, 73:129–174,
1996.

[6] A. Dasdan. Experimental Analysis of the Fastest Opti-
mum Cycle Ratio and Mean Algorithms. ACM Trans-
actions on Design Automation of Electronic Systems,
9(4):385–418, 2004.

[7] A. Dasdan, S. Irani, and R. K. Gupta. Efficient
Algorithms for Optimum Cycle Mean and Optimum
Cost to Time Ratio Problem. In Proceedings of the
36th Design Automation Conference, 1999.

[8] C. Demetrescu, A.V. Goldberg, and D.S. Johnson. 9th
DIMACS Implementation Challenge: Shortest Paths.
http://www.dis.uniroma1.it/~challenge9/, 2007.

[9] L. R. Ford, Jr. Network Flow Theory. Technical
Report P-932, The Rand Corporation, 1956.

[10] S. Held, B. Korte, J. Maßberg, M. Ringe, and J. Vygen.
Clock scheduling and clocktree construction for high
performance ASICs. In Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design
(ICCAD), pages 232–239, 2003.

[11] R. A. Howard. Dynamic Programming and Markov
Processes. John Wiley, New York, 1960.

[12] R. M. Karp. A Characterization of the Minimum Cycle
Mean in a Digraph. Discrete Mathematics, 23:309–311,
1978.

[13] R. M. Karp and J. B. Orlin. Parametric Shortest Path
Algorithms with an Application to Cyclic Staffing.
Discrete Applied Mathematics, 3:37–45, 1981.

[14] E. L. Lawler. Combinatorial Optimization: Networks
and Matroids. Holt, Reinhart, and Winston, New
York, NY, 1976.

[15] E. F. Moore. The Shortest Path Through a Maze.
In Proceedings of the International Symposium on the
Theory of Switching, pages 285–292. Harvard Univer-
sity Press, 1959.

[16] R. E. Tarjan. Shortest Paths. Technical report, AT&T
Bell Laboratories, Murray Hill, NJ, 1981.

[17] N. Young, R.E. Tarjan, and J.B. Orlin. Faster Para-
metric Shortest Path and Minimum Balance Algo-
rithms. Networks, 21:205–221, 1991.

13 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

