
Placement

• The process of arranging the circuit components on a layout surface.

• Inputs: A set of fixed modules, a netlist.

• Goal: Find the best position for each module on the chip according to
appropriate cost functions.

– Considerations: routability/channel density, wirelength, cut size,
performance, thermal issues, I/O pads.

1

2

3

4

5

6

7 8

1

7

5

8

2

3

6

4

1 2

3

4

5

6

8 7

wirelength = 10 wirelength = 12

A

Density = 2 (2 tracks required)

D B C

E F G H

A

Shorter wirelength, 3 tracks required.

B C D

E F G H

1

Estimation of Wirelength

• Semi-perimeter method: Half the perimeter of the bounding rectangle
that encloses all the pins of the net to be connected. Most widely used
approximation!

• Complete graph: Since #edges in a complete graph (n(n−1)
2

) is n
2
× #

of tree edges (n− 1), wirelength ≈ 2
n

∑
(i,j)∈net dist(i, j).

• Minimum chain: Start from one vertex and connect to the closest one,
and then to the next closest, etc.

• Source-to-sink connection: Connect one pin to all other pins of the
net. Not accurate for uncongested chips.

• Steiner-tree approximation: Computationally expensive.

• Minimum spanning tree

2

4

4

33
3

3

3

3

3

4

4

7

semi−perimeter len = 11

10 7
8 8

complete graph len * 2/n = 17.5 chain len = 14

10

source−to−sink len = 17

8

Steiner tree len = 12

7

Spanning tree len = 13

Min-Cut Placement

• Breuer, “A class of min-cut placement algorithms,” DAC-77.

• Quadrature: suitable for circuits with high density in the center.

• Bisection: good for standard-cell placement.

• Slice/Bisection: good for cells with high interconnection on the periphery.

3a

1

3b

4a 2 4b

3a
2a
3b
1
3c
2b
3d

6a5a6b 4 6c5b6d

n/2

n/2

1
2
3
4
5
6
7

10a 9a10b8 10c9b10d

quadrature bisection slice/bisection

n/4

n/4
n/2

n/2

n/2

n/4

n/4

C1

C2

C1

C2
n/k

n/k

(k−2)n/k

C2

n/k

(k−1)n/k

C1

3

Algorithm for Min-Cut Placement

Algorithm: Min Cut Placement(N,n,C)
/* N: the layout surface */
/* n: # of cells to be placed */
/* n0: # of cells in a slot */
/* C: the connectivity matrix */

1 begin
2 if (n ≤ n0) then PlaceCells(N,n,C);
3 else
4 (N1, N2) ← CutSurface(N);
5 (n1, C1), (n2, C2) ← Partition(n,C);
6 Call Min Cut Placement(N1, n1, C1);
7 Call Min Cut Placement(N2, n2, C2);
8 end

4

Quadrature Placement Example

• Apply K-L heuristic to partition + Quadrature Placement: Cost C1 = 4, C2L = C2R = 2,
etc.

P
Q

R

Q1

Q2

Q3

1

2

3

4

5

6

7

8

9

11

10

12

13

14

15

16

C1

C2

2,4,5,7 8,12,13,14

1,3,6,9 10,11,15,16 1

2

3

4

5

6

8

9

13

14

15

16

7 12

10

11

P
C4a

C2

Q
C4b

R

O1
C4a

C2
O2
C4b
O3

C1 C3bC3a

5

Min-Cut Placement with Terminal Propagation

• Dunlop & Kernighan, “A procedure for placement of standard-cell VLSI
circuits,” IEEE TCAD, Jan. 1985.

• Drawback of the original min-cut placement: Does not consider the
positions of terminal pins that enter a region.

– What happens if we swap {1, 3, 6, 9} and {2, 4, 5, 7} in the previous
example?

L1

L2

R

S
L1

L2

S

prefer to have them in R1

R1

R2

6

Terminal Propagation

• We should use the fact that s is in L1!

L1

L2

R1

R2

L1

L2

R1

R2

center

p
p

dummy cell

Lower cost higher cost

P will stay in R1 for the rest of partitioning!

s s

• When not to use p to bias partitioning? Net s has cells in many groups?

h/3

p

h

Use p!

p
h/3h

 Don’t use p to bias the
solution in either direction!

R

L

p1
p2

p3

G

minimum rectilinear
 Steiner tree

7

Terminal Propagation Example

• Partitioning must be done breadth-first, not depth-first.

d

ba

c

S
a b

c d

S

RL

C1

a b

c d

C1

b

c d

a
p1

L1

L2

R1

R2

c

a d

C1

L1

L2

R1

R2

b

RL

C1

a b

c d

without terminal
 propagation

with terminal
 propagation

unbiased partition
 of R

8

Placement by Simulated Annealing

• Sechen and Sangiovanni-Vincentelli, “The TimberWolf placement and
routing package,” IEEE J. Solid-State Circuits, Feb. 1985; “TimberWolf
3.2: A new standard cell placement and global routing package,” DAC-
86.

• TimberWolf: Stage 1

– Modules are moved between different rows as well as within the same
row.

– Modules overlaps are allowed.

– When the temperature is reached below a certain value, stage 2
begins.

• TimberWolf: Stage 2

– Remove overlaps.

– Annealing process continues, but only interchanges adjacent modules
within the same row.

9

Solution Space & Neighborhood Structure

• Solution Space: All possible arrangements of the modules into rows,
possibly with overlaps.

• Neighborhood Structure: 3 types of moves

– M1: Displace a module to a new location.

– M2: Interchange two modules.

– M3: Change the orientation of a module.

overlap

3
4

1 2 12

3
4

M1 M2 M3

10

Neighborhood Structure
• TimberWolf first tries to select a move between M1 and M2: Prob(M1) = 0.8, Prob(M2) =

0.2.

• If a move of type M1 is chosen and it is rejected, then a move of type M3 for the same
module will be chosen with probability 0.1.

• Restrictions: (1) what row for a module can be displaced? (2) what pairs of modules
can be interchanged?

• Key: Range Limiter

– At the beginning, (WT , HT) is very large, big enough to contain the whole chip.

– Window size shrinks slowly as the temperature decreases. Height and width ∝
log(T).

– Stage 2 begins when window size is so small that no inter-row module interchanges
are possible.

WT

H
T

11

Cost Function

• Cost function: C = C1 + C2 + C3.

• C1: total estimated wirelength.

– C1 =
∑

i∈Nets (αiwi + βihi)

– αi, βi are horizontal and vertical weights, respectively. (αi = 1, βi = 1⇒ 1
2
× perime-

ter of the bounding box of Net i.)

– Critical nets: Increase both αi and βi.

– If vertical wirings are “cheaper” than horizontal wirings, use smaller vertical weights:
βi < αi.

• C2: penalty function for module overlaps.

– C2 = γ
∑

i6=j
O2
ij, γ: penalty weight.

– Oij: amount of overlaps in the x-dimension between modules i and j.

• C3: penalty function that controls the row length.

– C2 = δ
∑

r∈Rows |Lr −Dr|, δ: penalty weight.

– Dr: desired row length.

– Lr: sum of the widths of the modules in row r.

12

Annealing Schedule

• Tk = rkTk−1, k = 1,2,3, . . .

• rk increases from 0.8 to max value 0.94 and then decreases to 0.8.

• At each temperature, a total # of nP attempts is made. n: # of
modules; P : user specified constant.

• Termination: T < 0.1.

13

