
Placement

• The process of arranging the circuit components on a layout surface.

• Inputs: A set of fixed modules, a netlist.

• Goal: Find the best position for each module on the chip according to
appropriate cost functions.

– Considerations: routability/channel density, wirelength, cut size,
performance, thermal issues, I/O pads.
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Estimation of Wirelength

• Semi-perimeter method: Half the perimeter of the bounding rectangle
that encloses all the pins of the net to be connected. Most widely used
approximation!

• Complete graph: Since #edges in a complete graph (n(n−1)
2

) is n
2
× #

of tree edges (n− 1), wirelength ≈ 2
n

∑
(i,j)∈net dist(i, j).

• Minimum chain: Start from one vertex and connect to the closest one,
and then to the next closest, etc.

• Source-to-sink connection: Connect one pin to all other pins of the
net. Not accurate for uncongested chips.

• Steiner-tree approximation: Computationally expensive.

• Minimum spanning tree
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Min-Cut Placement

• Breuer, “A class of min-cut placement algorithms,” DAC-77.

• Quadrature: suitable for circuits with high density in the center.

• Bisection: good for standard-cell placement.

• Slice/Bisection: good for cells with high interconnection on the periphery.
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Algorithm for Min-Cut Placement

Algorithm: Min Cut Placement(N,n,C)
/* N: the layout surface */
/* n: # of cells to be placed */
/* n0: # of cells in a slot */
/* C: the connectivity matrix */

1 begin
2 if (n ≤ n0) then PlaceCells(N,n,C);
3 else
4 (N1, N2) ← CutSurface(N);
5 (n1, C1), (n2, C2) ← Partition(n,C);
6 Call Min Cut Placement(N1, n1, C1);
7 Call Min Cut Placement(N2, n2, C2);
8 end
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Quadrature Placement Example

• Apply K-L heuristic to partition + Quadrature Placement: Cost C1 = 4, C2L = C2R = 2,
etc.
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Min-Cut Placement with Terminal Propagation

• Dunlop & Kernighan, “A procedure for placement of standard-cell VLSI
circuits,” IEEE TCAD, Jan. 1985.

• Drawback of the original min-cut placement: Does not consider the
positions of terminal pins that enter a region.

– What happens if we swap {1, 3, 6, 9} and {2, 4, 5, 7} in the previous
example?
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Terminal Propagation

• We should use the fact that s is in L1!
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Terminal Propagation Example

• Partitioning must be done breadth-first, not depth-first.
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Placement by Simulated Annealing

• Sechen and Sangiovanni-Vincentelli, “The TimberWolf placement and
routing package,” IEEE J. Solid-State Circuits, Feb. 1985; “TimberWolf
3.2: A new standard cell placement and global routing package,” DAC-
86.

• TimberWolf: Stage 1

– Modules are moved between different rows as well as within the same
row.

– Modules overlaps are allowed.

– When the temperature is reached below a certain value, stage 2
begins.

• TimberWolf: Stage 2

– Remove overlaps.

– Annealing process continues, but only interchanges adjacent modules
within the same row.
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Solution Space & Neighborhood Structure

• Solution Space: All possible arrangements of the modules into rows,
possibly with overlaps.

• Neighborhood Structure: 3 types of moves

– M1: Displace a module to a new location.

– M2: Interchange two modules.

– M3: Change the orientation of a module.
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Neighborhood Structure
• TimberWolf first tries to select a move between M1 and M2: Prob(M1) = 0.8, Prob(M2) =

0.2.

• If a move of type M1 is chosen and it is rejected, then a move of type M3 for the same
module will be chosen with probability 0.1.

• Restrictions: (1) what row for a module can be displaced? (2) what pairs of modules
can be interchanged?

• Key: Range Limiter

– At the beginning, (WT , HT) is very large, big enough to contain the whole chip.

– Window size shrinks slowly as the temperature decreases. Height and width ∝
log(T ).

– Stage 2 begins when window size is so small that no inter-row module interchanges
are possible.
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Cost Function

• Cost function: C = C1 + C2 + C3.

• C1: total estimated wirelength.

– C1 =
∑

i∈Nets (αiwi + βihi)

– αi, βi are horizontal and vertical weights, respectively. (αi = 1, βi = 1⇒ 1
2
× perime-

ter of the bounding box of Net i.)

– Critical nets: Increase both αi and βi.

– If vertical wirings are “cheaper” than horizontal wirings, use smaller vertical weights:
βi < αi.

• C2: penalty function for module overlaps.

– C2 = γ
∑

i6=j
O2
ij, γ: penalty weight.

– Oij: amount of overlaps in the x-dimension between modules i and j.

• C3: penalty function that controls the row length.

– C2 = δ
∑

r∈Rows |Lr −Dr|, δ: penalty weight.

– Dr: desired row length.

– Lr: sum of the widths of the modules in row r.
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Annealing Schedule

• Tk = rkTk−1, k = 1,2,3, . . .

• rk increases from 0.8 to max value 0.94 and then decreases to 0.8.

• At each temperature, a total # of nP attempts is made. n: # of
modules; P : user specified constant.

• Termination: T < 0.1.
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