
Routing
placement

Generates a "loose" route for each net.

Assigns a list of routing regions to each net without 
specifying the actual layout of wires.

global routing

compaction

Finds the actual geometric layout of each net within 
the assigned routing regions.

detailed routing

Global routing

Detailed routing
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Routing Constraints

• 100% routing completion + area minimization, under a set of constraints:

– Placement constraint: usually based on fixed placement
– Number of routing layers
– Geometrical constraints: must satisfy design rules
– Timing constraints (performance-driven routing): must satisfy delay

constraints
– Crosstalk?
– Process variations?

Two−layer routing

w
s

Geometrical constraint
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Classification of Routing

routers

global

detailed

general
purpose

restricted

graph search

Steiner tree

hierarchical

iterative

Maze

line search

channel

switchbox

river

specialized

left−edge

greedy

hierarchical

over−the−cell

clock−tree

power & 
  ground
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Graph Models for Global Routing: Grid Graph

• Each cell is represented by a vertex.

• Two vertices are joined by an edge if the corresponding cells are adjacent
to each other.

• The occupied cells are represented as filled circles, whereas the others
are as clear circles.
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Graph Model: Channel Intersection Graph

• Channels are represented as edges.

• Channel intersections are represented as vertices.

• Edge weight represents channel capacity.

• Extended channel intersection graph: terminals are also represented as
vertices.

channel
intersection
graph

extended
channel
intersection
graph
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Global-Routing Problem

• Given a netlist N={N1, N2, . . . , Nn}, a routing graph G = (V,E), find a
Steiner tree Ti for each net Ni, 1 ≤ i ≤ n, such that U(ej) ≤ c(ej), ∀ej ∈ E
and

∑n
i=1L(Ti) is minimized,

where

– c(ej): capacity of edge ej;

– xij = 1 if ej is in Ti; xij = 0 otherwise;

– U(ej) =
∑n

i=1 xij: # of wires that pass through the channel corre-
sponding to edge ej;

– L(Ti): total wirelength of Steiner tree Ti.

• For high-performance, the maximum wirelength (maxni=1L(Ti)) is mini-
mized (or the longest path between two points in Ti is minimized).
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Global Routing in different Design Styles

flexible channels

most general problem

flexible channels

fixed feedthroughs
fixed channels

fixed routing tracks

switchbox constraints

global routing

full custom standard cell gate array FPGA 
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Global Routing in Standard Cell

• Objective

– Minimize total channel height.
– Assignment of feedthrough: Placement? Global routing?

• For high performance,

– Minimize the maximum wire length.
– Minimize the maximum path length.

failed
net

feedthroughs
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Global Routing in Gate Array

• Objective

– Guarantee 100% routability.

• For high performance,

– Minimize the maximum wire length.
– Minimize the maximum path length.

failed connection

2 tracks

Each channel has a capacity of 2 tracks.
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Classification of Global-Routing Algorithm

• Sequential approach: Assigns priority to nets; routes one net at a time
based on its priority (net ordering?).

• Concurrent approach: All nets are considered at the same time (com-
plexity?)

global−routing algorithm

sequential approach

two−terminal multi−terminal

line−search maze Steiner−tree based

Lee Hadlock Soukup

concurrent approach

hierarchical integer programming

10



The Routing-Tree Problem

• Problem: Given a set of pins of a net, interconnect the pins by a “rout-
ing tree.”

gate array standard cell building block

• Minimum Rectilinear Steiner Tree (MRST) Problem: Given n points
in the plane, find a minimum-length tree of rectilinear edges which con-
nects the points.

• MRST (P ) = MST (P ∪ S), where P and S are the sets of original points
and Steiner points, respectively.

Steiner 
points

MRSTminimum spanning tree
             MST
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Theoretic Results for the MRST Problem
• Hanan’s Thm: There exists an MRST with all Steiner points (set S) chosen from the

intersection points of horizontal and vertical lines drawn points of P .

– Hanan, “On Steiner’s problem with rectilinear distance,” SIAM J. Applied Math.,
1966.

• Hwang’s Theorem: For any point set P , Cost(MST (P ))
Cost(MRST (P ))

≤ 3
2
.

– Hwang, “On Steiner minimal tree with rectilinear distance,” SIAM J. Applied Math.,
1976.

• Best existing approximation algorithm: Performance bound 61
48

by Foessmeier et al.

– Foessmeier et al, “Fast approximation algorithm for the rectilinear Steiner prob-
lem,” Wilhelm Schickard-Institut für Informatik, TR WSI-93-14, 93.

– Zelikovsky, “An 11
6

approximation algorithm for the network Steiner problem,” Al-
gorithmica., 1993.

Hanan grid

MRST

MST

Cost(MST)/Cost(MRST) −> 3/2
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A Simple Performance Bound

• Easy to show that Cost(MST (P ))
Cost(MRST (P ))

≤ 2.

• Given any MRST T on point set P with Steiner point set S, construct a
spanning tree T ′ on P as follows:

1. Select any point in T as a root.

2. Perform a depth-first traversal on the rooted tree T .

3. Construct T ′ based on the traversal.
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T’T

depth−first traversal 
every edge is visited twice
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