Routing

Routing Constraints

- 100% routing completion + area minimization, under a set of constraints:
 - Placement constraint: usually based on fixed placement
 - Number of routing layers
 - Geometrical constraints: must satisfy design rules
 - Timing constraints (performance-driven routing): must satisfy delay constraints
 - Crosstalk?
 - Process variations?

Two-layer routing

Geometrical constraint

Classification of Routing

Graph Models for Global Routing: Grid Graph

- Each cell is represented by a vertex.
- Two vertices are joined by an edge if the corresponding cells are adjacent to each other.
- The occupied cells are represented as filled circles, whereas the others are as clear circles.

Graph Model: Channel Intersection Graph

- Channels are represented as edges.
- Channel intersections are represented as vertices.
- Edge weight represents channel capacity.
- Extended channel intersection graph: terminals are also represented as vertices.

Global-Routing Problem

- Given a netlist N={ N_1, N_2, \ldots, N_n }, a routing graph G = (V, E), find a Steiner tree T_i for each net N_i , $1 \le i \le n$, such that $U(e_j) \le c(e_j)$, $\forall e_j \in E$ and $\sum_{i=1}^n L(T_i)$ is minimized, where
 - $c(e_j)$: capacity of edge e_j ;
 - $x_{ij} = 1$ if e_j is in T_i ; $x_{ij} = 0$ otherwise;
 - $U(e_j) = \sum_{i=1}^{n} x_{ij}$: # of wires that pass through the channel corresponding to edge e_j ;

- $L(T_i)$: total wirelength of Steiner tree T_i .

• For high-performance, the maximum wirelength $(\max_{i=1}^{n} L(T_i))$ is minimized (or the longest path between two points in T_i is minimized).

Global Routing in different Design Styles

Global Routing in Standard Cell

- Objective
 - Minimize total channel height.
 - Assignment of feedthrough: Placement? Global routing?
- For high performance,
 - Minimize the maximum wire length.
 - Minimize the maximum path length.

Global Routing in Gate Array

- Objective
 - Guarantee 100% routability.
- For high performance,
 - Minimize the maximum wire length.
 - Minimize the maximum path length.

failed connection Each channel has a capacity of 2 tracks.

Classification of Global-Routing Algorithm

- Sequential approach: Assigns priority to nets; routes one net at a time based on its priority (net ordering?).
- Concurrent approach: All nets are considered at the same time (complexity?)

The Routing-Tree Problem

• **Problem:** Given a set of pins of a net, interconnect the pins by a "routing tree."

- Minimum Rectilinear Steiner Tree (MRST) Problem: Given *n* points in the plane, find a minimum-length tree of rectilinear edges which connects the points.
- $MRST(P) = MST(P \cup S)$, where P and S are the sets of original points and Steiner points, respectively.

Theoretic Results for the MRST Problem

- Hanan's Thm: There exists an MRST with all Steiner points (set S) chosen from the intersection points of horizontal and vertical lines drawn points of P.
 - Hanan, "On Steiner's problem with rectilinear distance," SIAM J. Applied Math., 1966.
- Hwang's Theorem: For any point set P, $\frac{Cost(MST(P))}{Cost(MRST(P))} \leq \frac{3}{2}$.
 - Hwang, "On Steiner minimal tree with rectilinear distance," SIAM J. Applied Math., 1976.
- Best existing approximation algorithm: Performance bound $\frac{61}{48}$ by Foessmeier et al.
 - Foessmeier et al, "Fast approximation algorithm for the rectilinear Steiner problem," Wilhelm Schickard-Institut f
 ür Informatik, TR WSI-93-14, 93.
 - Zelikovsky, "An $\frac{11}{6}$ approximation algorithm for the network Steiner problem," Algorithmica., 1993.

A Simple Performance Bound

- Easy to show that $\frac{Cost(MST(P))}{Cost(MRST(P))} \leq 2$.
- Given any MRST T on point set P with Steiner point set S, construct a spanning tree T' on P as follows:
 - 1. Select any point in T as a root.
 - 2. Perform a depth-first traversal on the rooted tree T.
 - 3. Construct T' based on the traversal.

