Routing

Routing Constraints

- 100% routing completion + area minimization, under a set of constraints:
- Placement constraint: usually based on fixed placement
- Number of routing layers
- Geometrical constraints: must satisfy design rules
- Timing constraints (performance-driven routing): must satisfy delay constraints
- Crosstalk?
- Process variations?

Two-layer routing

Geometrical constraint

Classification of Routing

Graph Models for Global Routing: Grid Graph

- Each cell is represented by a vertex.
- Two vertices are joined by an edge if the corresponding cells are adjacent to each other.
- The occupied cells are represented as filled circles, whereas the others are as clear circles.

Graph Model: Channel Intersection Graph

- Channels are represented as edges.
- Channel intersections are represented as vertices.
- Edge weight represents channel capacity.
- Extended channel intersection graph: terminals are also represented as vertices.

Global-Routing Problem

- Given a netlist $\mathrm{N}=\left\{N_{1}, N_{2}, \ldots, N_{n}\right\}$, a routing graph $G=(V, E)$, find a Steiner tree T_{i} for each net $N_{i}, 1 \leq i \leq n$, such that $U\left(e_{j}\right) \leq c\left(e_{j}\right), \forall e_{j} \in E$ and $\sum_{i=1}^{n} L\left(T_{i}\right)$ is minimized, where
- $c\left(e_{j}\right)$: capacity of edge e_{j};
$-x_{i j}=1$ if e_{j} is in $T_{i} ; x_{i j}=0$ otherwise;
$-U\left(e_{j}\right)=\sum_{i=1}^{n} x_{i j}$: \# of wires that pass through the channel corresponding to edge e_{j};
- $L\left(T_{i}\right)$: total wirelength of Steiner tree T_{i}.
- For high-performance, the maximum wirelength ($\max _{i=1}^{n} L\left(T_{i}\right)$) is minimized (or the longest path between two points in T_{i} is minimized).

Global Routing in different Design Styles

Global Routing in Standard Cell

- Objective
- Minimize total channel height.
- Assignment of feedthrough: Placement? Global routing?
- For high performance,
- Minimize the maximum wire length.
- Minimize the maximum path length.

Global Routing in Gate Array

- Objective
- Guarantee 100\% routability.
- For high performance,
- Minimize the maximum wire length.
- Minimize the maximum path length.

Each channel has a capacity of 2 tracks.

Classification of Global-Routing Algorithm

- Sequential approach: Assigns priority to nets; routes one net at a time based on its priority (net ordering?).
- Concurrent approach: All nets are considered at the same time (complexity?)

The Routing-Tree Problem

- Problem: Given a set of pins of a net, interconnect the pins by a "routing tree."

gate array

standard cell

building block
- Minimum Rectilinear Steiner Tree (MRST) Problem: Given n points in the plane, find a minimum-length tree of rectilinear edges which connects the points.
- $\operatorname{MRST}(P)=M S T(P \cup S)$, where P and S are the sets of original points and Steiner points, respectively.

minimum spanning tree MST

Steiner

MRST

Theoretic Results for the MRST Problem

- Hanan's Thm: There exists an MRST with all Steiner points (set S) chosen from the intersection points of horizontal and vertical lines drawn points of P.
- Hanan, "On Steiner's problem with rectilinear distance," SIAM J. Applied Math., 1966.
- Hwang's Theorem: For any point set $P, \frac{\operatorname{Cost}(M S T(P))}{\operatorname{Cost}(M R S T(P))} \leq \frac{3}{2}$.
- Hwang, "On Steiner minimal tree with rectilinear distance," SIAM J. Applied Math., 1976.
- Best existing approximation algorithm: Performance bound $\frac{61}{48}$ by Foessmeier et al.
- Foessmeier et al, "Fast approximation algorithm for the rectilinear Steiner problem," Wilhelm Schickard-Institut für Informatik, TR WSI-93-14, 93.
- Zelikovsky, "An $\frac{11}{6}$ approximation algorithm for the network Steiner problem," Algorithmica., 1993.

Hanan grid

$\operatorname{Cost}(M S T) / \operatorname{Cost}(M R S T)$-> 3/2

A Simple Performance Bound

- Easy to show that $\frac{\operatorname{Cost}(M S T(P))}{\operatorname{Cost}(M R S T(P))} \leq 2$.
- Given any MRST T on point set P with Steiner point set S, construct a spanning tree T^{\prime} on P as follows:

1. Select any point in T as a root.
2. Perform a depth-first traversal on the rooted tree T.
3. Construct T^{\prime} based on the traversal.

$\operatorname{Cost}\left(T^{\prime}\right)<=2 \operatorname{Cost}(T)$
