
Q. Zhu, H. Zhou, T. Jing, X. Hong, Y. Yang

Efficient Octilinear Steiner Tree Construction Based on Spanning Graphs
�

Qi Zhu
1, 3

, Hai Zhou
2
, Tong Jing

1
, Xianlong Hong

1
, Yang Yang

1

1
 Dept. of CST, Tsinghua Univ., Beijing 100084, P. R. China

2
 Dept. of ECE, Northwestern Univ., Evanston, IL 60208-3118, USA

3
 Dept. of EECS, UC Berkeley, Berkeley, CA 94720, USA

e-mail: zhuqi@eecs.berkeley.edu; haizhou@ece.northwestern.edu

e-mail: {jingtong, hxl-dcs, yycs99}@{mail, mail, mails}.tsinghua.edu.cn

 Abstract�--Octilinear interconnect is a promising technique to

shorten wire lengths. We present two practical heuristic octilinear

Steiner tree (OSMT) algorithms in the paper. They are both based on

octilinear spanning graphs. The one by edge substitution (OST-E)

has a worst case running time of O(nlogn) and similar performance

as the batched greedy algorithm[9]. The other one by triangle

contraction (OST-T) has a small increase in running time and better

performance. Experiments on both industry and random test cases

are conducted.

I. INTRODUCTION

 In an interconnect architecture, the Steiner minimal tree
(SMT) construction is one of the key problems, and it will be
computed hundreds of thousand times during floorplan and
placement. Many of them have very large input sizes for
increased emphasis on design for test and nets with pre-routes.
Therefore, the Steiner minimal tree problem definitely
deserves good performances and highly efficient solutions.
As the foundation of octilinear interconnect, an octilinear
Steiner minimal tree (OSMT) interconnects given points in
octilinear plane, which allows 45 degree diagonal
interconnections in addition to traditional horizontal and
vertical orientations.
 Some studies about octilinear Steiner tree have been made
since 1990�s [1]-[12]. Among the previous approaches, those
that have relatively better performances may not achieve
good efficiency.
 The main contributions of this paper are two efficient
octilinear Steiner minimal tree heuristic algorithms, which
are faster than previous algorithms and have similar
performances as the best heuristics such as the batched
greedy algorithm [9]. One approach (OST-E) derives its
efficiency from combining the edge substitution approach of
Borah et al. [13] and spanning graphs similar to Zhou et al.
[14]. The other one (OST-T) combines the triple contraction
[10] and spanning graphs. Both approaches run in O(nlogn)
time and take O(n) storage. The former one has a smaller
constant factor and the later one has a better performance.
Another advantage is that they are easy to be implemented
since all the stages of these two algorithms can be integrated
together, rather than using several separate complicated
algorithms. Furthermore, because they are graph-based, they
can be extended to any O-geometry easily.

� * This work was supported partly by the National Natural Science

Foundation of China under Grant No.60373012, the NSF of USA under

Grant No.CCR-0238484, the SRFDP of China under Grant No.20020003008,

and Key Faculty Support Program of Tsinghua Univ. under Grant

No.[2002]4.

R1

R2

R3

R4 R5

R6

R7

R8

S

Fig.1. Equi-distant Points in octilinear plane.

 The rest of this paper is organized as follows. In Section 2,
we show how to define and generate spanning graphs on the
octilinear plane. Then in Section 3, the two approaches of
octilinear Steiner tree construction are presented. Section 4
gives experimental results and the last section is the
concluding remarks.

II. OCTILINEAR SPANNING GRAPHS

 We construct an octilinear Steiner tree from a minimal
spanning tree, so the first step is constructing an octilinear
minimal spanning tree efficiently. Using Prim�s or Kruskal�s
algorithm on a complete graph will take at lease :(n2) time.
Although Delaunay triangulation can be an efficient way to
reduce the number of candidate edges, it may not be easily
defined in rectilinear or octilinear metric. Zhou et al. [14]
introduced the spanning graph as a base for the minimal
spanning tree construction. Given a set of points on the plane,
a spanning graph is a graph that contains at least one minimal
spanning tree. They presented an O(nlogn) algorithm to
construct a spanning graph of cardinality (that is, the number
of edges) O(n).
 In the octilinear case, we first consider the contour of
equidistant points from point s, as shown in Fig.1. We can
divide the plane into eight regions based on the octagonal
contour.
 Theorem 1: Each region Ri in Fig.1 has the uniqueness
property. That is, for any points p, q� Ri, ||pq||4 d max (||sp||4,
||sq||4).
 Since each region R0 has the uniqueness property, we can
design a sweep line algorithm with a worst-case running time
of O(nlogn) to construct the spanning graph. It works as
follows. First, the points will be sorted in non-decreasing
order of their distance to an imaging point, in order to find the
closest points in each region. For example, in region R1, we set
the imaging point at the position (-f, -f) and sort the points of

xyx ��*2 . In this order, after each point p is swept, the
first point seen in its Ri region will be its closest point in that
region, which will be connected to p. We use an active set Ai
to keep the swept points waiting for closest points. When a

1/4

ASP-DAC 2004 Proceedings (8A-5)

new point is swept, we search Ai to find points with the new
point in their Ri region. These founded points will be deleted
from Ai after adding edges from the new point to them. And
that new point will be added to Ai to wait for its closest point.
We just need to consider regions R1 through R4 in our
algorithm because other regions have been implied by
connections in these regions.
 After the spanning graph is constructed by adding edges in
the above way, we can get octilinear minimal spanning tree
easily by using some greedy approaches, such as Prim�s
algorithm or Kruskal�s algorithm.

III. OCTILINEAR STEINER TREE CONSTRUCTION

 We choose Kruskal�s algorithm to construct a minimal
spanning tree on the spanning graph because it can be used
with margining binary tree to find the longest edges in formed
cycles [18], which is a crucial part both in OST-E and in
OST-T algorithm.

Kruskal�s algorithm first sorts all the edges of a spanning
graph by non-decreasing length and then considers them in
the order. If the ends of the current edge have not been
connected, the edge will be included in the minimal spanning
tree; otherwise, it will be excluded. We can represent these
connection operations by a binary tree, where the leaves
represent the points and the internal nodes represent the edges.
For each internal node, its two children represent the two
components connected by the corresponding edge in the
minimal spanning tree. To illustrate this, a spanning tree and
its merging binary tree are shown in Fig.2. As we can see, the
longest edge between any two points is the lease common
ancestor of the two points in the binary tree. For example, the
longest edge between p and b in Fig.2 is (b, c).
 In our OST-E (octilinear Steiner tree by edge substitution)
algorithm, to find the longest edge in the cycle formed by
connecting a point to an edge, we should find which end of
the edge is in the same component with the point. For
example, while connecting p with edge (a, b), because p and
b are in the same component, the longest edge to be deleted
in the cycle is (b, c).
 In the OST-T (octilinear Steiner tree by triple contraction)
algorithm, while we contract a triple, that is, connect 3 points
by a Steiner point, two cycles will be formed in the graph.
Thus we should find two longest edges, corresponding to two
least common ancestors in the binary tree. Then we need to
choose two two-point pair. One way is to find the least
common ancestors of the lowest point with the other two. For
example, in Fig.2, if the triple of points p, a, b is contracted,
we can consider pairs p, a and p, b to get two longest edges
(a, b) and (b, c). The other way is to find the lease common
ancestor of each two-point pair. Among the three edges we
got, there are two same edges. For above example, the three
edges corresponding to three two-point pair are (a, b), (a, b)
and (b, c). We can omit the repeat edge and get two longest
edges to delete.

 a

b

c

d

e

p

(a,b)

(b,c)

(c,e)

(e,p)

(d,e)

d e

p

c

b

a

Fig.2. A minimal spanning tree and its merging binary tree.

a

b

p

c

Fig.3. An empty triple usually has at least two connected edges in the

spanning graph.

 It is crucial to find point-edge pairs in OST-E and to find
triples in OST-T algorithm. We can utilize spanning graph to
greatly reduce the number of candidates.
 Our two approaches are both based on spanning graphs,
which can be used not only to construct octilinear minimal
spanning trees, but also to get point-edge pairs in OST-E or
triples in OST-T. Here, point-edge pairs and triples are units
to be optimized, similar as in Borah et al.�s edge substation
algorithm [13] and in Zelikovsky�s triple contraction
algorithm [10], respectively.
 For edge substitution, in order to reduce the number of
point-edge candidates from O(n2) to O(n), Borah et al. [13]
suggested using the visibility of a point from an edge, that is,
only a point visible from an edge can be connected to that edge.
This requires a sweep line algorithm to find visibility relations
between points and edges. A crucial observation is that if a
point is visible to an edge then the point is usually connected to
at lease one end of that edge in the spanning graph. Thus, for
each edge in the minimal spanning tree, we may just consider
the points that are neighbors of either end of the edge to form
point-edge pairs. Since the cardinality of the spanning graph is
O(n), the number of possible point-edge pairs generated by
this way is also O(n).
 For triple contraction, Kahng et al. [9] proposed a
divide-and-conquer algorithm, which can compute in O(nlogn)
time a set of O(nlogn) triples containing all empty tree triples
[15]. As shown in [15], there are at most 36n empty tree triples,
which do not contain any other terminals in the minimum
rectangle bounding each triple. These triples are sufficient to
get a nearly optimal solution by triple contraction. We
observed that an empty triple usually has at least two
connected edges in the spanning graph. As shown in Fig.3,
triple (p, a, b) and triple (p, b, c) are two examples. Therefore,
in our algorithm, we use the edges of a spanning graph to get
triples. For each edge in the spanning graph, all points that are
neighbors of either end point will be considered to form triples
with this edge. Because the cardinality of a spanning graph is
O(n), we will have a set of O(n) triples, which nearly contains
all the empty triples. Furthermore, if point-edge pairs are
considered as triples, they are a subset of triples considered in
the OST-T. Thus, the OST-T theoretically has a better
performance than OST-E, but it will be slower since it
considers more triples.
 Based on the above discussion, the pseudo-code of these two
algorithms is described in Fig.4. At the beginning of each
algorithm, the octilinear spanning graph is generated. Then
Kruskal�s algorithm is used on the graph to generate a minimal
spanning tree and the corresponding merging binary tree. In
OST-E, during this process, point-edge pairs will also be
added to query list by lcd_add_query. And by using Tarjan's
off-line least common ancestor algorithm [16], we can get the
longest edge for each pair in lcd_answer_queries. Thus the
gain of each point-edge pair can be calculated and sorted. If
neither the connection edge nor the deletion edge has been

2/4

Q. Zhu, H. Zhou, T. Jing, X. Hong, Y. Yang

deleted, a Steiner point can be added and a connection will be
realized.
 The running time of these two algorithms are dominated by
spanning graph generation and edge sorting, which takes
O(nlogn). And since the number of edges in the spanning
graph is O(n), both Kruskal�s algorithm and Tarjan�s offline
least common ancestor algorithm take O(nD(n)) time, where
D(n) is the inverse of Ackermann�s function [16], which grows
extremely slow.

IV. EXPERIMENTAL RESULTS

 We implement the Octilinear Spanning Graph (OSG)
algorithm and the two Octilinear Steiner Tree algorithms
(OST-E and OST-T) in the C language, following the
pseudo-code in Fig.4, with the exception that the program
starting from the first �for� loop will be repeated if there are
improvements in the previous iteration.
 In TABLE I, we compare our octilinear Steiner tree results
with rectilinear minimal spanning tree. The results in TABLE
I show that our two octilinear approaches can greatly reduce
the wire length for test cases with different size.
 In TABLE II, we report the comparisons between our two
programs with Kahng�s octilinear Steiner tree program�the
batched greedy aglorithm, which theoretically has a O(nlog2n)
running time and a good performance. For fair comparison, we

compiled and run all the programs on the same machine--a
Sun V880 running UNIX operating system. The test bed for
the experiments consists of two categories: random test cases
ranging from 10 to 100000 terminals; and test cases extracted
from recent industrial designs, ranging in size from 330 to
23000. For each input size, we report the average
improvement ratio of the Steiner tree over minimal spanning
tree (in percentage) and the average running time (in seconds)
of 10 repeated experiments.
 TABLE II shows that the OST-E is faster than Kahng�s
batched greedy algorithm and has a similar performance. The
main reason why the OST-T is slower than the batched
greedy algorithm is that the implementation of the OST-T is
highly structural and has much overhead. Furthermore, its
running time can be greatly reduced by pruning the generated
redundant triples. We plan to make these improvements in
future work.

V. CONCLUSIONS

 In summary, we developed two efficient octilinear Steiner
tree algorithms which are based on Zhou et al.�s spanning
graph, and combined with Borah et al.�s edge substitution and
Zelikovsky�s triple contraction, respectively. The
implementations have a runtime of O(nlogn) and a storage
requirement of O(n), without large hidden constant.

Fig.4. OST-E and OST-T algorithms.

3/4

ASP-DAC 2004 Proceedings (8A-5)

REFERENCES

[1] M. Sarrafzadeh and C. K. Wong, �Hierarchical Steiner tree construction

in uniform orientations�, IEEE Trans on CAD, 1992, 11(9): pp.1095.

[2] C. K. Koh, �Steiner Problem in octilinear routing model�, Master�s

thesis, National University of Singapore, 1995

[3] D. T. Lee, C. F. Shen, and C. L. Ding, �On Steiner tree problem with

45û routing�, In: Proc. of IEEE ISCAS, Seattle, WA, USA, 1995:

pp.1680.

[4] G. Robins, �On Optimal Interconnections�, Ph.D. thesis, University of

California, Los Angels, 1992

[5] C. K. Koh and P. H. Madden, �Manhattan or non-Manhattan? a study

of alternative VLSI routing architectures�, In: Proc. of GLSVLSI, San

Diego, CA, USA, 2000: pp.47.

[6] S. L. Teig, �The X architecture: not your father�s diagonal writing�, In:

International Workshop on System Level Interconnect Prediction

(SLIP), San Diego, CA, USA, 2002: pp.33.

[7] C, Chiang and C. S. Chiang, �Octilinear Steiner tree construction�, In:

Proc. of IEEE MWSCAS, Tulsa, USA, 2002: pp.TAM1l-216.

[8] http://www.xinitiative.org/

[9] A. B. Kahng, I. I. Mandoiu, and A. Z. Zelikovsky, �Highly Scalable

Algorithms for Rectilinear and Octilinear Steiner Trees�, In: Proc. Of

ASP-DAC, 2003: pp.-.

[10] A. Zelikovsky, �An 11/6-approximation algorithm for the network

Steiner problem�, Algorithmica, 1993, 9: pp.463

[11] A. B. Kahng and G. Robins, �A new class of Steiner tree heuristics with

good performance�, IEEE Trans on CAD, 1992, 11(7): pp.893

[12] Chris S. Coulston, �Constructing Exact Octagonal Steiner Minimal

Tree�, In: Proc. of GLSVLSI, Washington DC, USA. 2003: pp.-.

[13] M. Borah, R. M Owens, and M. J. Irwin, �An edge-based heuristic for

Steiner routing�, IEEE Transactions on CAD, 1994,13: pp.1563.

[14] H. Zhou, N. Shenoy, and W. Nicholls, �Efficient spanning tree

construction without Delaney triangulation�, Information Processing

Letter, 2002, 81(5): pp.-.

[15] F. K. Hwang, �An)log(nnO algorithm for rectilinear minimal

spanning trees�, Journal of the ACM, 1979, 26(2): pp.177.

[16] U. Foßmeier, M. Kaufmann, and A. Zelikovsky, �Faster approximation

algorithms for the rectilinear Steiner tree problem�, Discrete &

Computational Geometry, 1997, 18(1): pp.93.

[17] T. H. Cormen, C. E. Leiserson, and R. H. Rivest, �Introduction to

Algorithm�, MIT Press, 1989

[18] H. Zhou, �Efficient Steiner Tree Construction Based on Spanning

Graphs�, In: Proc. of ACM ISPD, Monterey, CA, USA, 2003: pp.-.

TABLE I
PERCENT IMPROVEMENT OVER RECTILINEAR MINIMAL SPANNING TREE (RMST)

Input Size RMST OST-E OST-T

 Length Improve (%) Improve (%)

Random Instances (average results over 10 experiments)

10 24215 20.16932 20.16932

100 81679 18.10012 18.16256

300 143930 18.49163 18.52081

1000 259277 19.42826 19.45487

3000 443622 19.0739 19.10816

10000 81190917 19.01136 19.03157

50000 181146384 19.14284 *

100000 255478245 19.13443 *

VLSI Instances (average results over 10 experiments)

337 24773 14.23727 14.23727

1944 45225 12.86014 12.9508

2437 57879 12.68681 12.78011

12052 265274 13.79404 13.84041

22373 1.396E+09 16.80561 16.82782

TABLE II

PERCENT IMPROVEMENT OVER OCTILINEAR MINIMAL SPANNING TREE (OMST) AND CPU TIME OF EACH PROGRAM

Input OMST OST-E Batched Greedy OST-T

 Length Imp (%) CPU (sec.) Imp (%) CPU (sec.) Imp (%) CPU (sec.)

Random Instances (average results over 10 experiments)

10 20040 3.537924 0 3.5379242 0 3.537924 0

100 70167 4.663161 0.02 4.6631607 0.03 4.735844 0.05

300 122122 3.936228 0.07 3.9943663 0.18 3.97062 0.19

1000 218222 4.269964 0.33 4.298375 0.75 4.301583 0.75

3000 375336 4.350768 1.10 4.3680862 3.40 4.391265 4.85

10000 68720982 4.315372 6.22 4.335769 14.43 4.339244 43.89

50000 153045172 4.296345 47.86 4.325813 199.39 * *

100000 215853782 4.289864 93.12 * * * *

VLSI Instances (average results over 10 experiments)

337 21900 2.986301 0.06 2.9863014 0.13 2.986301 0.11

1944 40723 3.226678 0.70 3.4697837 1.58 3.327358 1.54

2437 52311 3.393168 0.92 3.7774082 1.64 3.496397 3.10

12052 237228 3.602442 9.03 3.7137269 13.20 3.65429 26.06

22373 1.207E+09 3.759414 13.52 3.7414225 40.69 3.7851 270.56

(Asterisk * indicates that the results cannot be calculated in the given time, i.e., 1000 seconds)

4/4

