
Complete-k-Distinguishability for Retiming and Resynthesis Equivalence Checking
Without Restricting Synthesis∗

Nikolaos Liveris
Northwestern University

Evanston, IL 60208

Hai Zhou
Fudan University, China

Northwestern University, USA

Prithviraj Banerjee
HP Labs

Palo Alto, CA 94301

Abstract

Iterative retiming and resynthesis is a powerful way to optimize se-
quential circuits but its massive adoption has been hampered by the
hardness of verification. This paper tackles the problem of retiming
and resynthesis equivalence checking on a pair of circuits. For this
purpose we define the Complete-k-Distinguishability (C-k-D) prop-
erty for any natural number k based on C-1-D. We show how the
equivalence checking problem can be simplified if the circuits satisfy
this property and prove that the method is complete for any number
of retiming and resynthesis steps. We also provide a way to enforce
C-k-D on the circuits without restricting the optimization power of
retiming and resynthesis or increasing their complexity. Experimen-
tal results demonstrate that enforcing C-k-D property can speed up
the verification process.

1 Introduction

A powerful optimization technique for sequential circuits is a se-
quence of retiming and resynthesis operations [11] (RnR sequence).
Resynthesis is a combinational transformation that can be applied to
blocks of logic between registers. Retiming is a sequential transfor-
mation that moves registers across gates to expose new logic blocks,
giving resynthesis new opportunities for optimization. The optimiza-
tion power of the RnR sequence has been discussed in many works [15].
Despite its optimization power, the RnR sequence is not widely used
due to the complexity of checking sequential equivalence [7] be-
tween the initial and final design. There is a need, therefore, for
efficient verification methods that preserve the optimization power
of the retiming and resynthesis sequence.

Van Eijk developed an efficient method for checking sequen-
tial equivalence based on finding equivalent signals in the two cir-
cuits [14]. Jiang et. al. showed that the method is complete for
sequences of retiming and resynthesis transformations with at most
one resynthesis step [8]. If more than one resynthesis step has been
applied and the verification procedure shows that the outputs are not
equivalent, no conclusion can be drawn.

Ashar et al. [1] demonstrated that circuits with the Complete-1-
Distinguishability (C-1-D) property can be verified with an efficient
and complete method. In a C-1-D circuit, each pair of distinct states
produces different output values for some input and, therefore, each
state is distinguishable from any other in a single cycle. If one of
the two circuits satisfies the C-1-D property, sequential equivalence
checking can be reduced to combinational equivalence checking. Not
all circuits satisfy C-1-D, thus the authors developed a method to en-
force this property by modifying the structure of the circuit. How-
ever, a side effect of the modifications is that the optimization power
of retiming and resynthesis is reduced.

A complete method to check sequential equivalence of two cir-
cuits without restrictions on the synthesis part is reachability analy-
sis [5]. Starting with the initial state of the circuits a forward traversal
of the state space can be performed to check whether a “bad state”,
i.e., a state where the two circuits are not equivalent, can be reached.
During each iteration, the method uses the next state relation to in-
crease the set of reachable states. In backward reachability analysis,

∗Supported by NSF under CNS-0613967.

the process starts from the set of bad states and checks whether an
initial state is reachable using the inverse of the next state relation.
The number of iterations required to produce a useful answer is gen-
erally large and hard to bound. When the set of reachable states does
not converge after some number of iterations, no conclusion can be
drawn for the correctness of the transformations.

To improve the efficiency of reachability analysis and reduce the
number of iterations without destroying completeness, a number of
structural optimizations have been proposed [9, 6]. For example,
retiming can be used to reduce the number of registers before the
traversal starts. These techniques can be used in conjunction with
the ideas proposed in this paper.

The approach described in this paper targets the equivalence check-
ing of a pair of circuits, one of which has been obtained from the
other by a sequence of retiming and resynthesis transformations. We
extend the C-1-D property to C-k-D, where k ∈ N. A circuit fulfills
the C-k-D property if every two non-equivalent states can be distin-
guished within k clock cycles. The contributions of this paper are the
following:

1. We show how to check sequential equivalence for circuits with
C-k-D property by unrolling the product circuit a bounded num-
ber of times. This verification technique is complete; if it fails
then the circuits are not RnR equivalent.

2. We provide an approach to modifying a circuit to be C-k-D.

3. We design a method for applying retiming and resynthesis trans-
formations to the modified circuit, so that the optimization
power is not restricted. Moreover, the complexity of retiming
and resynthesis is not increased by the modification.

The modification of the circuit to enforce the C-k-D property is
similar to target enlargement [2]. However, the method we propose is
applicable even when BDD construction cannot be completed. More-
over, it is a structural transformation applied before synthesis, and it
improves the verification running-time without affecting the synthe-
sis result.

2 Problem Formulation

Two formalisms, namely netlists and finite state machines (FSMs),
are used for representing circuits. Netlists are structural and consist
of an interconnection of gates and registers. Finite state machines
are behavioral and specify how the system changes its states and pro-
duces outputs responding to inputs.

A netlist is a directed graph, where the nodes correspond to el-
ementary circuit elements, and the edges correspond to wires con-
necting these elements. The three basic circuit elements are primary
inputs, registers, and gates. Primary input nodes have no fanins;
registers have a single input. Associated with a gate g on n-inputs
w1,w2, . . . ,wn is a function from Bn to B, where B = {0,1}. Some
nodes are designated as primary outputs.

A Finite State Machine (FSM) is a quintuple (Σ, I,O,λ,δ) where
Σ is a finite set of states, I and O are finite sets of inputs and outputs
respectively, δ : Σ× I → Σ gives the next-state function, and λ : Σ×
I → O the output function.

The output and next-state functions can be extended transitively
to the domains Σ× I+ → O+ and Σ× I+ → Σ, respectively, where

A+ is the set of finite non-empty sequences of elements in set A. We
continue to use λ and δ to denote these extended functions.

Two circuits are called compatible if they have the same set of
primary inputs and primary outputs. For two compatible circuits Ca
and Cb the product circuit Cx = Ca ×Cb is defined. The netlist of the
product circuit is built by joining the corresponding primary inputs
and connecting the corresponding outputs to xor-gates forming the
outputs of the product circuit. These outputs are all zero if and only
if the outputs of the two circuits are equal.

A State Transition Graph (STG) of the circuit can be built for its
FSM. The STG has one node for each state and its edges represent
the transitions between states in one clock cycle. The longest path
between any two nodes of the STG is called the diameter of the
circuit.

For any circuit element o, we denote as o(x) the value of the el-
ement after x clock cycles. For a predicate φ over circuit elements
(e.g., registers, inputs), φ(x) is obtained by replacing each circuit ele-
ment by its value after x clock cycles.

Retiming and resynthesis are structural operations on netlists.
Retiming consists of moving a given number of registers between
the inputs and outputs of each combinational node [10]. A retim-
ing can be described mathematically by a lag function, which gives
for each combinational node, the number of registers that are moved
from fanout to fanin. Resynthesis restructures the netlist within reg-
ister boundaries without changing its functionality. It leaves the FSM
of the design unchanged.

Retiming becomes very powerful when interspersed with resyn-
thesis of the netlist within the changing register boundaries. This is
the basis for the retiming and resynthesis (RnR) paradigm proposed
in [11].

A state s of a circuit is dangling, if and only if either it has no
predecessor state or all its predecessor states are dangling [7]. Let
D represent the set of dangling states. The states in Σ−D are called
non-dangling. Two states sa and sb are equivalent, denoted as sa ≈
sb, if and only if

∀i ∈ I+ : λa(sa, i) = λb(sb, i)

Two compatible circuits with a designated initial state are se-
quentially equivalent, if and only if their initial states are equivalent.
Two compatible circuits are RnR equivalent , if and only if one can
be obtained from the other by a sequence of retiming and resynthesis
transformations.

Problem 1 (Complete RnR Equivalence Checking) Given two cir-
cuits, check whether they are sequentially equivalent or one cannot
be obtained from the other by a sequence of retiming and resynthesis
operations.

For the rest of this paper we will refer to the Complete RnR Equiva-
lence Checking Problem as RnR checking for simplicity. Obviously,
this problem can be solved by model checking. However, we are
interested in forcing a bound on the number of iterations to give a
solution to the RnR checking problem. This bound should be forced
without restricting the optimization power of the retiming and resyn-
thesis sequence.

3 State Characterization via Output Equivalence

Given two compatible circuits Ca and Cb, our first step for proving
their equivalence is to build the product circuit Cx. In this section
we show how to explore the structure of Cx starting from the outputs
to derive a relation between the registers of Ca and Cb (Section 3.1).
Then we define C-k-D and show how it is related to the characteristic
predicate of the relation between the registers (Section 3.2). This
predicate is used to derive an invariant for Cx. By modifying the
structure of the circuit, we can enforce C-k-D (Section 3.3).

3.1 Output Equivalence

Every output of the product circuit Cx has the value 0 in all reachable
states if and only if Ca and Cb are sequentially equivalent. By con-
struction of Cx, this is equivalent to corresponding outputs oa and ob
being equal in all those states. Outputs oa and ob can be expressed
as functions of the registers and inputs that drive them. The function
can be extracted by traversing the netlist backwards from the outputs
until a register or a primary input is met. Since the inputs cannot
be restricted, this is a relation over the registers of the two circuits
that must hold for all input values. More precisely, let λa, λb be
the combinational functions that give the values of oa and ob, and
Ra = {p1, p2, ..., pm}, Rb = {q1,q2, ...,qn}, Ia, Ib be the set of reg-
isters and inputs that are connected to oa and ob by a combinational
path, then

oa = ob ⇔ ∀i ∈ I : λa(p1, p2, ..., pm, i) = λb(q1,q2, ...,qn, i) (1)

where I = Ia ∪ Ib.
We define as χ0 the characteristic predicate over the registers in

Ra ∪Rb that are connected to the outputs by a path of 0 registers, i.e.,

χ0
∆
= ∀i ∈ I : λa(p1, p2, ..., pm, i) = λb(q1,q2, ...,qn, i)

Predicate χ0 characterizes states of the product circuit that have an
output value of 0 for any input.

The next state function δ is composed of a number of δi func-
tions, each giving the value of a register in the next state as a func-
tion of the registers and the input. Function δri of register ri can be
extracted from the circuit by traversing the signal that drives ri back-
wards until a register or an input is met. By replacing the registers of
(1) with the functions giving their value in the next state, predicate
χ1 is generated.

Predicate χ1 defines a relation between the register values of the
two circuits that are connected by a path of exactly one register to the
outputs oa and ob. The predicate uses the inputs connected to those
outputs by a path of 0 or 1 register to determine which states of the
product circuit cause oa = ob in the next cycle for any input, i.e.,

χ1 ⇒ o(1)
a = o(1)

b ⇔ χ(1)
0

As an example, consider the two circuits shown in Figure 1. For
those circuits we have

χ0 = (p1∨ p2) ↔ (q1∧q2)

χ1 = ∀i ∈ {0,1} : ((i∧ p4)∨ p3) ↔
(

(i∧q4)∨q3
)

States sa =< p1 = 0, p2 = 0, p3 = 0, p4 = 1 > and sb =< q1 =
1,q2 = 0,q3 = 1,q4 = 0 > satisfy χ0. Therefore, the output of the
product circuit is zero in state (sa,sb). However, (sa,sb) does not sat-
isfy χ1. For input i = 1 the next state of the product circuit violates
χ0 and the output is 1.

p1

p2
p3

p4

i

q1

q2
q3

q4

i

Figure 1: Two example circuits.

Similarly, by processing the circuit structure we extract χk from
χk−1 for any k ∈ N. Moreover, we build the predicates in the same
way for all outputs and for each k ≥ 0 we take their conjunction.
Therefore, the states that satisfy χk guarantee that for all xor-ed out-
put pairs (oa,ob) and for all input values, oa = ob after k cycles. By

construction, it holds

χk ⇒ χ(1)
k−1 (2)

for all k ≥ 1. By the definition of χk, for a pair of states satisfying
¬χk there exists an input sequence of length k, such that a pair of
corresponding outputs are different after k cycles.

States of the product circuit satisfying the conjunction

ψk
∆
=

∧

i∈0..k

χi

have the same output values for the first k cycles. States of the two
circuits that are equivalent must satisfy ψk for any k, i.e.,

∀(sa,sb) ∈ Σa ×Σb : sa ≈ sb ⇒ (sa,sb) |= ψk (3)

In the worst case the evaluation of ψk for a state requires Ik+1 input
values. However, by the method described above only the inputs
relevant to producing the output values are processed in each of the
k +1 cycles.

3.2 Complete-k-Distinguishability

In this section we define the C-k-D property and show how we can
find whether a circuit satisfies it. First, we define a property for states.

Definition 1 A pair of states s1 and s2 of circuit C are k-Distinguishable
if and only if there exists some input sequence i of length m ≤ k, such
that λ(s1, i) 6= λ(s2, i).

Definition 2 A circuit C satisfies the C-k-D property, if and only if
every pair of non-equivalent states s1 and s2 is k-Distinguishable.

If we take the product Cx of C with itself, then states s1 and s2 are k-
Distinguishable, if and only if (s1,s2) 6|= ψk−1. Therefore, circuit C
has the C-k-D property, if and only if

∀(s1,s2) ∈ Σx : s1 ≈ s2 ⇔ (s1,s2) |= ψk−1 (4)

which follows from the definition of C-k-D and (3).
Note that when k = 1 our definition of C-1-D property is more

general than previous approaches [1], since we require that distin-
guishable be non-equivalent states, not necessarily distinct states as
required by [1].

By the definition of C-k-D, if any circuit satisfies the C-k-D prop-
erty, it also satisfies the C-m-D property for all m ≥ k. Therefore,
C-1-D is the most restricted property of this class. More specifically,
the circuits satisfying C-1-D are a subset of the circuits satisfying
C-k-D for any k ≥ 1.

Lemma 1 For every circuit C there exists k ∈ N such that C has the
C-k-D property, where k is bounded from above by the diameter of
Cx = C×C.

3.3 Convergence

For verification purposes it is useful to have an invariant of the prod-
uct circuit that implies correctness. Property ψk−1 implies output
equivalence in the current state by construction. In this section we
show that for a circuit C that satisfies C-k-D, ψk−1 is also an invari-
ant of the product of C with itself (Lemma 2). Moreover, we show
how we can transform the product circuit Cx = C ×C, so that for-
mula (4) holds for Cx. Then in Section 4 we show how we can use
ψk−1 to check equivalence between the original and the transformed
circuit.

Lemma 2 If C fulfills the C-k-D property, then ψk−1 is an invariant
of Cx.

Proof: From (4) we know that (s1,s2) |= ψk−1 if and only if s1 and
s2 are equivalent. The equivalence of these states implies that for any
input i ∈ I their next states are also equivalent, and, therefore, satisfy
ψk−1 (Formula 3).

As we can see from the proof of Lemma 2, it is sufficient that Cx
satisfies formula (4) for ψk−1 to be an invariant of Cx.

In Figure 2 a Venn diagram of the state space of the product
circuit can be seen. The sets of states satisfying ψk−1, .., ψ0 are
displayed. The set of states satisfying ψm is a subset of the states
satisfying ψm−1, as ψm = ψm−1 ∧ χm. In order for ψk−1 not to be
an invariant, there must be a state s satisfying ψk−1 and having a
next state s1, such that s1 6|= ψk−1. That means that s1 |= ¬χk−1,
since s |=

∧
i∈0..k−1 χi implies that all states that we can reach from

s in one cycle, including s1, satisfy
∧

i∈0..k−2 χi, which is equiva-
lent to ψk−2. This follows from (2). Moreover, from the fact that
s1 |= ¬χk−1 ∧ψk−2 we know that the path from s to a state that vi-
olates output equivalence is exactly of length k. Each state on that
path satisfies a different ψ predicate and, therefore, each state on that
path is distinct.

0
=x
0

1
=x
0
 /\ x
1

k-2
=x
0
 /\ x
1
/\ .../\x
k-2

k-1
=x
0
 /\ x
1
/\ .../\x
k-2
/\ x
k-1

.
.
.

Figure 2: A Venn diagram of the states with output equivalence for
the next 0 ≤ m ≤ k−1 cycles.

It is possible to enforce any circuit to satisfy the C-k-D predicate,
e.g., by the method described in [1]. However, this is not the only
method. Methods to achieve this goal can be applied not only on
C, but also on the product Cx = C ×C of the circuit with itself. In
Section 5 we provide a way to apply retiming and resynthesis without
restrictions, which is independent of the method with which the C-k-
D property was enforced.

r1

r2

r3

r5

r4

Figure 3: An example circuit.

r1

r2

r3

r5

r4

Figure 4: The circuit after the
transformation.

As an example, consider the circuit of Figure 3. We take the
product Cx of that circuit with itself and denote the registers of the
first and second copy as r1a, ...,r5a and r1b, ...,r5b respectively. For
Cx we have

χ0 = (r1a ∧ r2a) ↔ (r1b ∧ r2b)

χ1 = (r3a ∧ r4a ∧ r5a) ↔ (r3b ∧ r4b ∧ r5b)

χ2 = (r1a ∧ r2a) ↔ (r1b ∧ r2b)

States sa =< r1a = 0,r2a = 0,r3a = 0,r4a = 1,r5a = 0 > and sb =<

r1b = 1,r2b = 0,r3b = 0,r4b = 1,r5b = 0 > satisfy ψ1 = χ0 ∧ χ1,
but not χ2. In order to enforce ψ1 as an invariant, we create pseudo-
outputs and connect to them the registers with a path of 2 registers
to an existing output. The set of registers satisfying this requirement
is R2 = {r1,r2}. The new circuit can be seen in Figure 4. After
simplifications, on the new product circuit we have

χ′
0 = (r1a ↔ r1b)∧ (r2a ↔ r2b)

χ′
1 = (r3a ↔ r3b)∧ ((r4a ∧ r5a) ↔ (r4b ∧ r5b))

States sa and sb do not satisfy χ′
0 and as a result they cannot satisfy

ψ′
1 = χ′

0 ∧χ′
1. It can be shown that ψ′

1 is an invariant of the modified
product circuit and, therefore, the new circuit has the C-2-D property.
Next, we formally describe the transformation.

Given a k ∈ N and a circuit C we modify the product Cx = C×C
of the circuit with itself, so that formula (4) holds for Cx. This has
the same effect as enforcing the C-k-D property on C. Assume that
Cx is the product of the circuit with itself. We build ψk−1 and check
whether it is an invariant. This check can be formulated as

∀(sa,sb) ∈ Σx : (sa,sb) |= ψk−1 ⇒ (sa,sb) |= χk

The reason we do not need to check
∧

j∈0..k−1 χ j is that we know
that it is satisfied by formula (2) and the definition of ψk−1. We as-
sume that k is chosen in such a way that the above check is tractable.
The above formula cannot be false unless the circuit C is not C-k-
D. Then we chose 1 ≤ m ≤ k, so that the number |Rm| of registers
connected by a path of m registers to an output is minimum (m = 2
in Figures 3, 4). We create for each register r ∈ Rm a pseudo-output
with the name orm and connect the register to the output.

Let us denote as χ′
0,ψ

′
k−1 the predicates of the circuit after the

first modification. For each state (sa,sb) with (sa,sb) 6|= χm we know
that there must be at least one register in Rm that has a different value
in sa than in sb. By connecting those registers to outputs, when we
consider χ′

0, we have that (sa,sb) 6|= χ′
0. Therefore, if we start again

the process of deriving ψ′
k−1, this time ψ′

k−1 implies ψk+m−1. If
ψ′

k−1 fails the invariant test, we repeat the same process after identi-
fying another number m′. Then the next predicate ψ′′

k−1 tried implies
ψk+m+m′−1. This process continues until ψk−1 becomes an invariant.
During this process the number of input variables for the computation
of ψk−1 remain bounded by k · |I| and the number of state variables
are bounded by the number |R| of registers in the product circuit.
Since for the number m chosen in each iteration we have m ≥ 1 and
the diameter is an upper bound for k, eventually this process termi-
nates. The advantage of this approach is that it is easy to apply as
it does not require the BDD construction for ψn−1 for some n. For
example, if for some n ∈ N the BDD construction of ψn−1 cannot be
completed, by applying the transformation we can enforce ψl−1 as
an invariant with l < n. Then ψl−1 could be easier to compute. The
choice of k for the target invariant ψk−1 should be made in such a
way that ψk−1 can be computed.

The modification we described is applied to the product circuit.
However, it does not prevent us from obtaining the transformed cir-
cuit by applying a sequence of retiming and resynthesis operations.
In Section 5 we show how we can apply these operations without
restricting their optimization power or increasing their complexity.

4 RnR Equivalence Checking Under C-k-D
In this section we show how we can check the equivalence between
the original and the transformed circuit when we know that the orig-
inal circuit fulfills the C-k-D property. The check can be done by
unrolling the product circuit a bounded number of times. First, we
prove some properties for the non-dangling states of the original Ca
and the transformed circuit Cb. Using these properties we show that

ψk−1 is an invariant of those circuits in the non-dangling state space,
if Ca satisfies the C-k-D property. Based on this result we prove the
completeness of our method, i.e., if the checks fail, Cb cannot be ob-
tained from Ca using retiming and resynthesis operations. Finally,
we show how to check sequential equivalence between Ca and Cb.

Lemma 3 If the original circuit Ca is RnR equivalent to the trans-
formed circuit Cb, then for every non-dangling state of Cb there exists
an equivalent non-dangling state in the STG of Ca.

Proof: We prove the theorem by induction. The base case, before
any step of the RnR sequence, is trivial as the transformed circuit is
identical to the original circuit and the STGs are isomorphic. Assume
that the lemma holds after m steps of the RnR sequence, we prove
that it holds after the m+1 step has been applied.

The first case is that the m + 1 step is a resynthesis step. Then
the STG of the transformed circuit is preserved. Therefore, for ev-
ery non-dangling state of Cb, there exists an equivalent non-dangling
state in the STG of Ca.

The second case is that the m+1 is a retiming step. Let Cm
b , Cm+1

b
be the transformed circuits before and after the m step, respectively.
Retiming does not create new non-dangling states, but merges equiv-
alent non-dangling states or splits non-dangling states to equivalent
non-dangling states [7]. Consequently, for every non-dangling state
in the STG of Cm+1

b , there exists an equivalent non-dangling state in
the STG of Cm

b .

Lemma 4 If the original circuit Ca has the C-k-D property and the
transformed circuit Cb is RnR equivalent to Ca, then ψk−1 is an in-
variant of the product circuit Ca×b = Ca ×Cb in the non-dangling
state space.

Proof: Let us assume Ca has the C-k-D property and Cb is RnR
equivalent, but ψk−1 is not an invariant of Ca×b. Then there exist k
distinct states (s1, t1), ..., (sk, tk) in Ca×b such that

∀m ∈ 1..k−1 : ∃i ∈ I : (δa(sm, i),δb(tm, i)) = (sm+1, tm+1)

∀m ∈ 1..k−1 : (sm, tm) |= ψk−m

(sk, tk) |= ¬χ0

Since Ca has the C-k-D property, there is no state x such that
(s1,x) |= ψk−1 and s1 6≈ x. This implies that t1 is either non-equivalent
to any state of Ca or t1 is equivalent to some state y of Ca for which
(s1,y) 6|= ψk−1. In the first case we have that t1 is a dangling state or
Cb is not RnR equivalent to Ca (Lemma 3), which is a contradiction.
Therefore, t1 is equivalent to y with (s1,y) 6|= ψk−1. This implies
that there exists m < k − 1, such that (s1,y) 6|= χm. However, then
there exists an input i ∈ Im for which λb(t1, i) = λa(y, i) 6= λa(s1, i).
Consequently, (s1, t1) 6|= ψk−1, which is a contradiction.

Based on the lemmas above, if we are given an initial state (sia,sib)
for the product circuit, we can use the following method

∃sa ∈ Σa,∃i ∈ Ind : δa(sa, i) = sia (5)
∃sb ∈ Σb,∃i ∈ Ind : δb(sb, i) = sib (6)

(sia,sib) |= ψk−1 (7)
∀(sa,sb) ∈ Σa×b,∀i ∈ Ind : δ(sa,sb, i) |= ψk−1 ⇒

δ(sa,sb, i) |= χk (8)

where nd is the register depth of the initial circuit. The first two
formulas check that the initial states of the two circuits are non-
dangling. They can be posed as SAT problems. The third formula
checks the initial state of the product circuit satisfies ψk−1. Finally,
the last formula checks that ψk−1 is an invariant in the non-dangling
state space. By considering only states reachable after nd cycles, the
check is restricted to non-dangling states.

If Ca×b satisfies formulas (5)–(8), then Ca and Cb are sequen-
tially equivalent. This is because the product circuit starts from non-
dangling states. Then dangling states are not reachable. Moreover,
ψk−1 is an invariant and it implies output equivalence by construc-
tion. The following theorem shows that if Ca is a C-k-D circuit and
one of the formulas does not hold, then either Ca and Cb are not RnR
equivalent or the initial states include dangling states.

Theorem 1 If Ca satisfies the C-k-D property, the initial state of the
product circuit is non-dangling and either formula (7) or (8) does not
hold, then Ca and Cb are not RnR equivalent.

Proof: Since the initial state of the product circuit is non-dangling,
formulas (5) and (6) must hold. Then from Lemma 4, it follows that
the circuits are RnR equivalent only if (8) holds. Moreover, if (7)
does not hold, either dangling states are included in the initial state
set (contradiction), or the circuits are not RnR equivalent.

We believe that the assumption for (sia,sib) is reasonable. If sia
is a dangling state, then the problem of finding a corresponding state
after retiming may be unsolvable.

From Theorem 1 and the discussion above, we know that if (5)–
(8) hold, then Ca and Cb are sequentially equivalent. If one of them
does not hold, then Cb cannot have been obtained from Ca by a se-
quence of retiming and resynthesis transformations, i.e., Cb is not
RnR equivalent to Ca. There may be a case that Cb is not RnR equiv-
alent to Ca, but the two circuits are sequentially equivalent. In that
case the checks for (7) and (8) may succeed or fail. In such a case
a failure of the checks can point to an error of our RnR transforma-
tion implementation. A success is also a good result, because even
though there may be a problem in the way the RnR transformation
was implemented, the two circuits are sequentially equivalent. Ide-
ally, in this case we would like to get both results. Our method gives
only one of the results.

5 Retiming and Resynthesis Without Restrictions

We are given a modified product circuit Cx that has been augmented
with additional logic and outputs by a method enforcing the C-k-D
property such as the method of Section 3.3. Assume that predicate
ψk−1 is an invariant of Cx, and in Cx we can distinguish the two
copies of C, namely, C1 and C2, and the additional logic and outputs
C3. More specifically, each node and edge of the product circuit is
colored by {c1,c2,c3}. A c3 edge can be driven by a gate of any
color. However, a c1 or c2 edge can only be driven by a node of
the same color. Our purpose is to apply a sequence of retiming and
resynthesis transformations on C2, the second copy of C, without
being restricted by the additional logic. Moreover, after the transfor-
mation we want the product circuit to have ψm−1 as an invariant for
a known m.

Before a resynthesis step we extract C2 from Cx by considering
all circuit nodes and edges marked with c2. All c3 edges that are
driven by a c2 node are left hanging, i.e., not driven by any node,
by this transformation. We express each of these edges as a function
of c2 registers and primary inputs. Then we add logic to C3, so that
the only edges hanging, i.e., not driven by a node, are the edges that
would be driven by a C2 register or a primary input. It is easy to
extract the additional logic by traversing backwards a c2 node that
drives a c3 edge until a register or a primary input is met in each
path. Then this logic is replicated and added to C3. Then we apply
resynthesis on C2. The resynthesis optimization is unrestricted as
only nodes and edges of C2 are considered. Resynthesis does not re-
move registers or inputs and after the step we can bring the modified
version of C2 back in Cx by connecting c2 nodes (registers, inputs) to
the corresponding hanging c3 edges.

Before a retiming step we extract C2 from Cx again. We maintain
a mapping between the hanging c3 edges and the c2 nodes that drive
those edges. We retime C2 as an independent circuit. Retiming does

not change the circuit structure, so we reconnect the modified C2 to
obtain Cx by preserving the mapping. Nodes belonging to C2 that
drive c3 edges may have a lag value r that is different than 0. In such
a case, the number of registers on the c3 edges need to be adjusted, so
that the weights of the edges are consistent with the lag (r-) values.

If for a c2 node v that drives a c3 edge we have r(v) < 0, then we
add to the c3 edge −r(v) number of registers. These registers have
been moved across v from its fan-in, which are c2 edges. There-
fore, this move is based on pre-existing registers. Based on the re-
sults proved on Section 4, we know that after such a retiming move
ψk−1 should still be an invariant of the product circuit Cx in its non-
dangling state space.

In the case that r(v) > 0 for a c2 node v driving a c3 edge, then
we remove r(v) registers from the c3 edge. If the weight of the edge
becomes negative, we try to adjust the r(u) value of the head u of
the edge, which is a c3 node. This may cause other edges to have
negative values. The paths from all these edges terminate at a single
pseudo output o.The end result may be that we have to adjust the
value of the pseudo output o. In that case the effect of the additional
logic is moved in the past. Therefore, instead of ψk−1 the predicate
that must be an invariant of the product circuit is ψk−1+r(o). Every
time we retime a pseudo output, we adjust the number m, for which
ψm−1 must be an invariant of the modified product circuit. Using
this number, at the end of the retiming and resynthesis sequence, we
will derive ψm−1 and require that the checks described in Section 4
succeed, in order for the two circuits to be sequentially equivalent.

The method described in this section resembles recording the
transformation history of retiming and resynthesis. In [13] a sim-
ilar method is presented. There are important differences between
that approach and our method. First, in [13] verification relies on
synthesis to record the candidate problems to be solved. If the prob-
lems are solved successfully, then the circuits are assumed equiva-
lent. However, it is unclear whether a bug in recording synthesis
history can result in a false positive. Moreover, that technique is de-
scribed for a tool that uses a specific data structure to represent a
logic network, namely And-Inverter-Graphs. Our technique is gen-
eral in that the data passed from synthesis to verification are in the
form of a circuit. Therefore, synthesis and verification can use differ-
ent data structures. In terms of efficiency, our approach creates new
nodes only when required for the fan-in cones of the pseudo-outputs,
while the approach in [13] stores every node created during synthe-
sis. Moreover, it stores one node for each move of a register over a
gate during a retiming operation. Because of that, restrictions on the
synthesis part may become necessary for the approach in [13] to be
practical.

The product circuit obtained by the method of the previous sec-
tion can be used for verification purposes. However, after verification
we want to extract only the optimized copy C2 of the product circuit.
It is easy to see that by taking only the nodes and edges colored by
c2, we have the optimized version. The extracted C2 circuit is the
same as the circuit obtained by applying retiming and resynthesis to
C1. The reason is that during the optimization the additional edges
and nodes were not considered.

6 Experimental Results

We used the ABC framework [3] and VIS [4] to test our ideas. Check-
ing formula (8) is the most difficult step of our approach, so we focus
on the implementation and results for that part. With ABC we im-
plemented the check as a SAT problem on a miter. More specifically,
the predicate ψk−1 is built as a BDD after unrolling the product cir-
cuit and applying universal quantification on the inputs. The result
is appended to the circuit specifying χk using the utility of ABC that
implements a BDD as a circuit of muxes. Then we check whether
for any input sequence and state ψk−1 ∧¬χk is satisfiable. The ap-
proach in [2] for building the BDD for target enlargement or the SAT
approach for quantification [12] could be more efficient for check-

SAT on miter with ABC VIS: backward traversal VIS: forward traversal
Without Addit. Logic With Addit. Logic Without Addit. Logic With Addit. Logic Without Addit. Logic With Addit. LogicBench Exec Time (sec) k Exec Time (sec) k Exec Time (sec) Exec Time (sec) Exec Time (sec) Exec Time (sec)

s635 4 >4 4 2 > 2000 1.2 > 2000 > 2000
s838 9.8 >4 6.5 2 2.9 1.0 1.2 1.0
s938 26.4 >4 8.6 2 >2000 1.9 > 2000 > 2000
s953 40.2 3 3.6 2 5.1 2.9 3.3 2.9
s967 9.6 3 5.6 2 3.1 5.5 1.7 2.4
s1196 4.0 2 3.8 1 1.2 1.1 1.0 0.9
s1512 >2000 >4 27.25 2 > 2000 14 > 2000 > 2000
s3271 >2000 >4 >2000 2 > 2000 > 2000 > 2000 > 2000

Table 1: Running-time of different verification methods with and without additional logic. In the SAT on the miter case, k is the value
for which ψk becomes an invariant. The computation is terminated if the running-time is greater than 2000 secs, or k is greater than 4
(SAT-on-the-miter case).

ing formula (8). However, we do not expect that another method
will significantly change the improvement shown in the results or the
conclusions drawn by them.

Verified are a number of ISCAS benchmarks, with and without
additional logic to enforce the C-k-D property. Each pair of circuits
to verify are retiming and resynthesis equivalent. The results are re-
ported in Table 1. The first two columns display the running time and
the k value of the verification process without the additional logic and
output. The value k is such a number that ψk first becomes an invari-
ant. The next two columns give the results with additional logic and
output. Except for the additional outputs and the logic driving them
the pairs of circuits are in both cases the same. The circuits with and
without the additional logic were then checked with VIS. We tried
both backward (columns 5 and 6) and forward traversal (columns 7
and 8) traversal with VIS. The VIS-command we used on the circuits
is “seq verify” with option “-r” for variable reordering.

In most cases the running time has been substantially reduced
when additional logic and output are introduced. Examples are the
cases of s635, s938, and s1512. VIS does not terminate in 2000 secs
without the additional logic. However, the computation of ψk−1 with
additional logic takes a few seconds in those cases. Enforcing ψk−1
can speed up the verification in VIS, as well, when it operates in
backward traversal. The additional logic does not have any signif-
icant effect for the forward traversal. For the check of ψk−1 as an
invariant, the speed up obtained by enforcing a small k is significant
in most cases.

From the results we conclude that by using the additional logic
we can significantly speedup the checking procedure in some cases.
The described procedure is based on BDDs and, therefore, does not
scale well compared to SAT based procedures, e.g., [8]. However,
those procedures are not proved complete for retiming and resyn-
thesis sequences with more than one resynthesis step. We conclude
that enforcing the C-k-D property can simplify the verification task
without restricting the synthesis part.

7 Conclusions

In this paper we extended the property of C-1-D to C-k-D and we
showed how we can check circuits for equivalence if one of them sat-
isfies the C-k-D property. We also presented a technique to enforce
the C-k-D property on a circuit and then apply a sequence of retiming
and resynthesis transformations without restricting their optimization
power or increasing their complexity. Our method provides a bound
to the number of timeframes that need to processed during verifica-
tion and is complete in the sense that any result provides useful in-
formation. Our experimental results show that enforcing the C-k-D
property can speed up the verification process.

References

[1] ASHAR, P., GUPTA, A., AND MALIK, S. Using complete-1-
distinguishability for FSM equivalence checking. ACM Trans. Des. Au-

tom. Electron. Syst. 6, 4 (2001), 569–590.

[2] BAUMGARTNER, J., KUEHLMANN, A., AND ABRAHAM, J. A. Prop-
erty checking via structural analysis. In CAV ’02: Proceedings of the
14th International Conference on Computer Aided Verification (Lon-
don, UK, 2002), Springer-Verlag, pp. 151–165.

[3] BERKELEY LOGIC SYNTHESIS AND VERIFICATION GROUP. ABC:
A System for Sequential Synthesis and Verification, Release,
70930,http://www.eecs.berkeley.edu/̃alanmi/abc/.

[4] BRAYTON, R. K., HACHTEL, G. D., SANGIOVANNI-VINCENTELLI,
A. L., SOMENZI, F., AND ET. AL., A. A. Vis: A system for verification
and synthesis. In CAV ’96: Proceedings of the 8th International Con-
ference on Computer Aided Verification (London, UK, 1996), Springer-
Verlag, pp. 428–432.

[5] CLARKE, E. M., GRUMBERG, O., AND PELED, D. A. Model Check-
ing. The MIT Press, 1999.

[6] HASTEER, G., MATHUR, A., AND BANERJEE, P. Efficient equiva-
lence checking of multi-phase designs using retiming. Computer-Aided
Design, 1998. ICCAD 98. Digest of Technical Papers. 1998 IEEE/ACM
International Conference on (8-12 Nov 1998), 557–562.

[7] JIANG, J.-H. R., AND BRAYTON, R. K. Retiming and resynthesis: A
complexity perspective. Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on 25, 12 (Dec. 2006), 2674–2686.

[8] JIANG, J.-H. R., AND HUNG, W.-L. Inductive equivalence check-
ing under retiming and resynthesis. In ICCAD ’07: Proceedings of
the International Conference on Computer-Aided Design (ICCAD’07)
(2007).

[9] KUEHLMANN, A., AND BAUMGARTNER, J. Transformation-based
verification using generalized retiming. In CAV ’01: Proceedings of
the International Conference on Computer Aided Verification (London,
UK, 2001), Springer-Verlag, pp. 104–117.

[10] LEISERSON, C. E., AND SAXE, J. B. Retiming synchronous circuitry.
Algorithmica 6, 1 (1991), 5–35.

[11] MALIK, S., SENTOVICH, E., BRAYTON, R., AND SANGIOVANNI-
VINCENTELLI, A. Retiming and resynthesis: optimizing sequential
networks with combinational techniques. Computer-Aided Design of In-
tegrated Circuits and Systems, IEEE Transactions on 10, 1 (Jan 1991),
74–84.

[12] MCMILLAN, K. L. Applying sat methods in unbounded symbolic
model checking. In CAV ’02: Proceedings of the 14th Interna-
tional Conference on Computer Aided Verification (London, UK, 2002),
Springer-Verlag, pp. 250–264.

[13] MISHCHENKO, A., AND BRAYTON, R. K. Recording synthesis history
for sequential verification. In IWLS (2008).

[14] VAN EIJK, C. A. J. Sequential equivalence checking based on struc-
tural similarities. IEEE Transactions on Computer Aided Design of In-
tegrated Circuits and Systems 19, 7 (2000), 814–819.

[15] ZHOU, H., SINGHAL, V., AND AZIZ, A. How powerful is retiming?
In IWLS (1998).

