3004

[12] L. P. Carloni and A. L. Sangiovanni-Vincentelli, “Performance analy-
sis and optimization of latency insensitive protocols,” in Proc. DAC,
pp- 361-367.

[13] Y. I. Ismail and E. G. Friedman, “Effects of inductance on the propagation
delay and repeater insertion in VLSI circuits,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 8, no. 2, pp. 195-206, Apr. 2000.

[14] W. Dai, L. Wu, and S. Zhang, GSRC T2 Bookshelf at UCSanta Cruz.
2003. [Online]. Available: www.cse.ucsc.edu/research/surf/GSRC/
progress.html

[15] M. Singh and M. Theobald, “Generalized latency insensitive systems for
single-clock and multi-clock architectures,” in Proc. DATE, Paris, France,
2004, p. 21 008.

[16] S. Adya, H. H. Chan, and I. Markov Parquet, Fixed-Outline Floorplanner,
(2006). [Online]. Available: http://vlsicad.eecs.umich.edu/BK/parquet/

[17] S. N. Adya and I. L. Markov, “Fixed-outline floorplanning: Enabling
hierarchical design,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 11, no. 6, pp. 1120-1135, Dec. 2003.

[18] M. Ikeda et al., “A hardware/software concurrent design for real-time
SP@ML MPEG?2 video-encoder chip set,” in Proc. Eur. Des. and Test
Conf., Mar. 1996, pp. 320-326.

An Efficient Data Structure for Maxplus Merge in
Dynamic Programming

Ruiming Chen and Hai Zhou

Abstract—Dynamic programming is a useful technique to handle slic-
ing floorplan, technology mapping, and buffering problems, where many
maxplus merge operations of solution lists are needed. Shi proposed an
efficient O(nlogn) time algorithm to speed up the merge operation.
Based on balanced binary search trees, his algorithm showed superb
performance with the most unbalanced sizes of merging solution lists. The
authors propose in this paper a more efficient data structure for the merge
operations. With parameters to adjust adaptively, their algorithm works
better than Shi’s under all cases, unbalanced, balanced, and mix sizes.
Their data structure is also simpler.

Index Terms—Data
optimization.

structure, dynamic programming, timing

I. INTRODUCTION

Dynamic programming is an effective technique to handle slicing
floorplan [1], technology mapping [2], and buffering [3] problems.
For example, van Ginneken [3] proposed a dynamic programming
method to complete buffer insertion in distributed RC-tree networks
for minimal Elmore delay, and his method runs in O(n?) time and
space, where n is the number of legal buffer positions. An essential
operation in van Ginneken’s algorithm is to merge two candidate lists
into one list where inferior candidates are pruned. Shi [4] proposed
an efficient algorithm that improves Stockmeyer’s algorithm [1] for
the merge operation in slicing floorplan. Based on it, Shi and Li [5]
presented an O(nlog®n) algorithm for the optimal buffer insertion
problem. In these algorithms, a balanced binary search tree is used to
represent a list of solution candidates, and it avoids updating every

Manuscript received April 8, 2005; revised August 19, 2005 and
November 23, 2005. This paper was recommended by Associate Editor J. Lillis.

The authors are with the Department of Electrical Engineering and Computer
Science, Northwestern University, Evanston, IL 60208 USA (e-mail: haizhou@
ece.northwestern.edu).

Digital Object Identifier 10.1109/TCAD.2006.882479

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 12, DECEMBER 2006

balanced situation unbalanced situation

linked-list /ﬁ'l;:mced binary tree

(totally skewed tree) maxplus-list

Fig. 1. Flexibility of maxplus-list.

candidate during the merge of two candidate lists. However, as shown
in [4], the merge of two candidate lists based on balanced binary
search trees can only speed up the merge of two candidate lists of
much different lengths (unbalanced situation), but not the merge of
two candidate lists of similar lengths (balanced situation).

Fig. 1 illustrates the best data structure for maintaining solutions
in each of the two extreme cases: the balanced situation requires a
linked list that can be viewed as a totally skewed tree or the unbalanced
situation requires a balanced binary tree. However, most cases in
reality are between these extremes, where neither data structure is the
best. As we can see, the most balanced situation requires the most
skewed data structure while the most unbalanced situation requires the
most balanced data structure. Therefore, we need a data structure that
is between a linked list and a balanced binary tree for the cases in the
middle. We discovered that a skip-list [6] is such a data structure as
it migrates smoothly between a linked list and a balanced tree. In this
paper, we propose an efficient data structure called maxplus-list based
on the skip-list and corresponding algorithms for merge operations in
the dynamic programming. As shown in Fig. 1, we can migrate the
maxplus-lists to suitable positions based on how balanced the routing
tree is; a maxplus-list becomes a linked-list in balanced situations
or it behaves like a balanced binary tree in unbalanced situations.
Therefore, the performance of our algorithm is always very good.
The maxplus-merge algorithm based on maxplus-list has the same
asymptotic time complexity as the merge algorithm used in [4] and [5].
Our experimental results show that it is even faster than the balanced
binary search tree in unbalanced situations, and it is much faster in
balanced situations. Besides, the maxplus-list data structure is much
easier to understand and implement than balanced binary search tree.

The rest of this paper is organized as follows. In Section II, the
general problem of merging two candidate lists is formulated, and the
skip-list data structure is reviewed. In Section III, the maxplus-list data
structure and an efficient algorithm to merge two maxplus-lists are
shown. In Section 1V, the approach for finding the optimal solutions
after the bottom-up merge operations is shown. The experimental
results are reported in Section V. Finally, the conclusion and future
work are given in Section VI.

II. PRELIMINARY

A. Maxplus Problem

The following three different problems have the similar algorithmic
structure, the merge of candidate solution lists.

Given a slicing tree representing a floorplan, the problem of area
minimization is to select the size of each module such that the chip
area is minimized [1]. The dynamic programming approach [1] builds
the solutions bottom up. Each solution (h.,, w,,) at a node v represents
a floorplan at v having h,, as the height and w,, as the width. As shown
in Fig. 2(a), given the solutions (h.,,w.), (hn,w,) of the two
subtrees and a parent node with vertical cut, a candidate solution
at the parent node can be constructed as (max (b, fp), Wi + Wy).
The optimal structure of dynamic programming requires that there are
no solutions (hy,w;) and (ha,ws) such that h; < hy and wy < wo
for the same subtree.

0278-0070/$20.00 © 2006 IEEE

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 12, DECEMBER 2006

‘(max(hmvhn)'wm*'wn)v-- ‘ ‘(max(dm,dn),Cm+Cn),... ‘ (d+max(dp,,d.).a+An+An),...
|(hm,wm),...| |(hn,wn),... | |(dm,Cm),... | |(dn,Cn),... ||(dm,Am),...| | (d,,,An),...|
(a) (b) (©
Fig. 2. Similar merge operations in three different problems: (a) cell orienta-

tion in minimal area slicing floorplan; (b) buffer insertion for maximal required
departure time; and (c) time-driven technology mapping.

It is very interesting to note that such an operation also appears in
many other optimization problems, such as the single net buffering
problem. Given a routing tree as a distributed RC' network, a dy-
namic programming approach to buffer insertion will build noninferior
solutions bottom up from the sinks to the root. The objective is to insert
buffers such that the maximal delay Dgoyrce from the root to sinks is
minimized. Each solution (d,,, C,,) at a node v represents a buffering
of the subtree rooted at v having d,, as the maximal delay to the sinks
and C,, as the loading capacitance. When a tree at u is composed of a
wire (u,v) and a subtree at v, its solution (d,,, C',) can be computed
as follows:

dy, =dy + 7(u,v)(Cy + c(u,v)/2)
C.=C, + c(u,v)

where 7(u,v) and c(u,v) are the resistance and capacitance of wire
(u,v), respectively. When a buffer is inserted at the node v, a new
solution (d,, C?) can be computed similarly

d'lu :dv + db + rbCu
CL =0Cp

where dp, 75, and ¢, are the internal delay, output resistance, and
input capacitance of the buffer, respectively. The most interesting case
happens when two branches are combined at a node. As shown in
Fig. 2(b), assuming that (d,,,C,,) is a solution in one branch and
(dn, Cy,) in the other, the combined solution is given as

d = max(dny,,d,)
C=C, +C,.

The optimal structure of dynamic programming requires that there are
no solutions (dy, C4) and (dz, Cs) such that d; < dy and C; < Cy for
the same subtree.

Also, the technology mapping problem involves the merge of two
candidate solution lists. Given a generic gate-level netlist, the technol-
ogy mapping needs to map the circuit into a netlist composed of cells
from a library. A popular heuristic [2] is to decompose the circuit into
trees and apply a dynamic programming on each tree. Each solution
(dy, A,) atanode v represents a technology mapping at v having d,, as
the maximal delay to the sinks and A, as the area. When the objective
is to minimize the area under a delay constraint [7], the generation of
solutions at a node from those of its subtrees is shown in Fig. 2(c),
where (d,,, Ay,) and (d,, A,) are the solutions at the fan-ins of a
possible mapping, and d and a are the delay and area of the mapped
cell at node v, respectively. The mapping can be decomposed into two
steps, first compute (max(d,,,dy,), Am + A,) and then add d and a
to the solutions.

3005

Algorithm STOCKMEYER(A, B, C)
C+— 0
while A#£QAB#0

if Al.m Z Bl.m

P(—Al
QB
}
else
{
P<—Bl
Q+—4A

}

Pp«— Pp+Q.p

Append P to C

Delete P from its original list

if Pm=Q.m
delete Q@
}
return O

Fig. 3. Stockmeyer’s algorithm.

One common operation in the above dynamic programming ap-
proaches can be defined as follows.

Problem 1 (Maxplus problem): Given two ordered lists A =
{(A1.m, A1.p),...,(Aa.-m,Ay.p)} and B = {(Bi.m,B1.p),...,
(By.m, By.p)}, that is, A, m < A;.m AN A;.p < Aj.p and B;.m <
B; m A B;.p < Bj.pforanyi < j, compute another ordered list C' =
{(C1.m,C1.p),...,(Cec.m,C..p)} such that it is a maxplus merge of
A and B, thatis, forany 0 < k < cthereare 0 < i < aand0 < j <b
such that

Cr.m = max(A;.m, B;.m)
Cvp=A;p+ Bjp

and forany 0 < ¢ < aand 0 < 5 < bthereis 0 < k < ¢ such that
max(A;.m, B;.m) > Cx.m

and

B. Stockmeyer’s Algorithm

A straightforward approach to the maxplus problem is to first
compute (max(A4;.m,B;.m),A;.p+ B;j.p) for every 0<i<a
and 0 < 7 < b and then delete all inferior solutions. However, it
takes at least {2(ab) time. Stockmeyer [1] proposed a O(a + b) time
algorithm where inferior solutions can be directly avoided. The idea
is as follows. First, since A;.p + Bi.p is the smallest, the solution
(max(A;.m, By.m), A1.p+ B1.p) must be assigned to Cj.
Then, if A;.m = Ci.m, any solution (max(A;.m,B;.m),
A1.p+ B;.p) = (C1.m,A1.p+ B;.p) for any 1 < i < b is inferior
to C;, thus should not be generated. Since all combinations
with A; have been considered (even though not generated), we can
proceed with As. This process can be iterated and the pseudocode is
given in Fig. 3, where () represents an empty list.

C. Skip-List

The advantage of a balanced binary search tree over a linked list
is its capability to quickly find an item ranked around the middle.

3006

head

1

Il
— 7
5
?Hr Qi 'Ei
Py I3 |

14 4 Is

J ’ NIL
INGEEREEN
ls I7 Ig

Fig. 4. Skip-list.

Skip-list [6] is an alternative data structure to a balanced binary search
tree. It can be viewed as a combination of multiple linked lists, each
on a different level. The list on the lowest level includes all the items
while that on a higher level has fewer items. An example skip-list is
illustrated in Fig. 4. An item on k linked lists, that is, with k& forward
pointers, is called a level-k item. As we can see, if the level-k items
are evenly distributed among the level-(k — 1) items, a skip-list can
achieve the function of a balanced binary search tree, that is, finding
any item in O(log n) time.

It is expensive to modify item levels during operations to maintain
the balance among levels. An effective way is to randomly choose an
item level during insertion and keep it fixed thereafter. Therefore, a
skip-list has two parameters, the maximal permitted level MaxLevel
and the probability P, that an item with level k£ forward pointers
also has level-(k + 1) forward pointers. Different values of MaxLevel
and P, may lead to different costs for operations. In [6], it is suggested
that P, = 0.25 and MaxLevel = log, ,p (), where N is the upper
bound on the number of items in the skip-list. Each skip-list has a
head that has forward pointers at levels one through MaxLevel. The
expected running time of search, insertion, and deletion of one item in
a skip-list with n items is O(logn) [6].

III. MAXPLUS-LIST

Even though Stockmeyer’s algorithm takes linear time to combine
two lists, when the merge tree is skewed, it may take n? time to
combine all the lists even though the total number of items is n.
For example, a list A of size n/2 and a list B of size one may be
combined in one stage, which may take O(n/2) time in Stockmeyer’s
algorithm. For a skew tree with n items, the total number of merging
stages could be n/2, giving a total running time of O(n?). How-
ever, if we can quickly find 0 < ¢ < n such that A;.m > B;.m and
A;r1.m < By.m, the new list will have the first 4 items in A with
their p properties incremented by B;.p. This is the idea explored
by Shi [4]. He proposed to use a balanced binary search tree to
represent each list so that the search can be done in O(logn) time.
To avoid updating the p properties individually, the update was anno-
tated on a node for the rooted subtree. Shi’s algorithm is faster when
the merge tree is skewed since O(nlogn) time comparing with
Stockmeyer’s O(n?) time. However, Shi’s algorithm is complicated
and also much slower than Stockmeyer’s when the merge tree is
balanced.

Instead of a balanced binary tree, we proposed a data structure called
maxplus-list based on the skip-list for keeping candidate solutions.
Since a maxplus list is similar to a linked list, its merge operation
is just a simple extension of Stockmeyer’s algorithm. As shown in
Fig. 3, during each iteration of Stockmeyer’s algorithm, the current
item with the maximal m property in one list is finished, and the new
item is equal to the finished item with its p property incremented by the
p property of the other current item. The idea of the maxplus-list is to
finish a sublist of more than one item at one iteration. Assume that
A;m > Bj.m,we wanttofindai < k < asuchthat A,.m > B;.m
but Ayiq1.m < Bj.m. These items A,, ..., A are finished and put
into the new list after their p properties are incremented by B;.p. The
speedup over Stockmeyer’s algorithm comes from the fact that this

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 12, DECEMBER 2006

Algorithm ML-MERGE(A, B, C)
C—0
CUT « C.head
while AZOWAB #£0
{
if Al‘m > Bl.m

{

list — A
item «— By
}
else
{
list — B
item «— A,

cut + ML-SEARCHSUBLIST(list, item)
sublist «— ML-EXTRACTSUBLIST(cut)
ML-APPENDSUBLIST(sublist, CUT)
CUT « cut

if cut[1].m = item.m

Clear the adjust array of item
Delete item from the maxplus-list
h
}
return (7

Fig. 5. Merge of two maxplus-lists.

sublist is processed (identified and updated) in a batch mode instead of
item by item. The forward pointers in a maxplus-list are used to skip
items when searching for the sublist, and an adjust field is associated
with each forward pointer to record the incremental amount on the
skipped items.

A. Data Structure

A maxplus-list is a skip-list with each item defined by the fol-
lowing C code:

struct maxplus_item{
int level; /*the level® /
float m, p; /*two properties®/
float *adjust;
struct maxplus_item **forward; /*forward pointers* /

}

The size of adjust array is equal to the level of this item, and adjust[7]
means that p properties of all the items jumped over by forward][i]
should add a value of adjust[s].

B. Merge Operation

We define a cut after item I in a maxplus-list, denoted by cut;, as
an array of size MaxLevel with the ¢th item being the last item with its
level larger or equal to ¢ before item [(including I). For example,
in Fig. 4, the cut after I7 is, cut[1] = I7, cut[2] = I, cut[3] = I5,
cut[4] = I5. We can see that the items in a cut form stairs.

ML-MERGE, the algorithm to solve Maxplus problem, is shown
in Fig. 5. It is very similar to Stockmeyer’s algorithm. As we have
mentioned before, the basic idea is to find and update a sublist with
A;.m > B, m efficiently, or a sublist with B,,.m > A,.m efficiently.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 12, DECEMBER 2006

ML-SEARCHSUBLIST(list, item)
cut «+ list.head
iteml «— NIL
for i — MazxLevel downto 1

{

while cut[i].forward[i].m > item.m

cut(t].adjust[i] «— cut[i].adjust[i] + item.p

cutli].forward[i].p — cut[i].forward[i].p +
item.p

item1 «— cut[i] < cut[i].forward[i]

cut[i] « iteml;

}

return cut,

Fig. 6. Procedure ML-SEARCHSUBLIST.

ML-APPENDSUBLIST(sublist, CUT)
for i « MazLevel downto 1

{
CUT|i].forward[i] + sublist.head.forward]i]
diff — CUTi].adjust[i] — sublist.head.adjust[i]
CUT|i].adjust[i] < sublist.head.adjust[i]
item «— CUTYi]
ifi>2

while item # CUT[i — 1]. forward[i — 1]

item.adjust[i — 1] « item.adjust[i — 1] + diff
if ¢tem.forward[i — 1] # NIL
item.forward[i — 1].p «— item.forward[i — 1].p+
diff
item « item. forward[i — 1]
}
}
}

Fig. 7. Procedure ML-APPENDSUBLIST.

Suppose initially the maxplus-lists A and B are both sorted in the
decreasing order of m and increasing order of p, and have no redundant
items. The pseudocode of procedure ML-SEARCHSUBLIST(list, item)
is shown in Fig. 6. It starts from the head of the list to search for the
longest sublist R satisfying

VI € R:I.m > gitem.m.

During this search, the p property of every visited item is increased
by item.p, and the adjust[¢] of every visited item is also increased by
item.p if the corresponding forward pointer is used for jumping. It
returns a cut after the last item L in R.

Then, all the items (including the head) before the next item of cut[1]
are moved to a new list sublist in procedure ML-EXTRACTSUBLIST.
A new head of the original list is generated, and for each level <,
adjust[¢] in the new head is set to be adjust[¢] of cut[i]. Now, we have
successfully extracted the sublist. The number of forward pointers
visited in ML-EXTRACTSUBLIST is O(MaxLevel).

Now, we can start to append the sublist to the maxplus-list C'. The
procedure ML-APPENDSUBLIST accomplishes this. The pseudocode
of ML-APPENDSUBLIST is shown in Fig. 7. The argument CUT is
the cut after the last item in C'. From ML-SEARCHSUBLIST and ML-
EXTRACTSUBLIST, we can see that the adjust fields of the head of
a maxplus-list may not be equal to zero, so the most important step

3007

L L A
] I 1
' 1
Ny No N3 Ng Ng Ne ; N7 Ng Ng N1g

Fig. 8. Flow of ML-APPENDSUBLIST.
in ML-APPENDSUBLIST is to update the adjust fields of the items
in cut.

The operations of ML-APPENDSUBLIST are illustrated in Fig. 8.
Here, we want to append sublist R to L. The current CUT
is {Ng, Ng, N5, Ny, Ny, Ny, N1 }. We walk down along the stairs
formed by cut. First, we set N;.forward[7] to be N1o. We compute
the difference diff between Nj.adjust[7] and R.head.adjust[7], and
set IN;.adjust[7] to be R.head.adjust[7]. If diff is not zero, then the
actual p properties of the items from N, to Ng is no longer correct.
We need to propagate this difference to the next level to correct the
p properties. Increasing N .adjust[6], Ny.adjust[6], and N4.p by diff
will handle that. Such a procedure successfully appends R to L at
level 7. At level 6, we set N,.forward[6] to be Nig, compute the
difference between N,.adjust[6] and R.head.adjust[6], and propagate
the difference to level 5. Similarly, we can append R to L from level 5
to 1 using the same difference propagation technique. At the end, for
each level ¢, adjust[i] of CUT/[¢] is equal to adjust[¢] of the head of R.
The reason that we choose to update the adjust fields of CUT instead of
the adjust fields of the items in the rising stairs of R is that the forward
pointers visited during the update of the CUT have already been
visited by ML-SEARCHSUBLIST, which can help the time complexity
analysis.

After we finish all the merge operations, we need to evaluate the p
properties of items in the candidate solution lists at the root of the tree.
To evaluate the p property of any item I, first we search for item [
and simultaneously find the cut after /, then

>

I-level<i<MaxLevel

Ip=1Ip+ cut[i].adjust[4].

C. Complexity Analysis

Pugh [8] proposed an algorithm to merge two skip-lists. For two
skip-lists with sizes n, and nq, respectively, without loss of generality,
we assume that n; < no. The merge algorithm in [8] runs in O(n; +
ny logna/ny) expected time. Pugh [8] also claimed that in almost all
cases the skip-list algorithms are substantially simpler and at least as
fast as the algorithms based on balanced trees.

The merge procedure in our algorithm is similar to the merge
procedure in [8], but we need to update the adjust fields in ML-
APPENDSUBLIST. The running time of the skip-list merge algorithm
in [8] is proportional to the number of jump operations. The running
time of the maxplus merge algorithm in this paper is also proportional
to the number of the involved jump operations. Considering this, we
have the following theorem concerning the number of jump operations
in ML-MERGE.

Theorem 1: The number of jump operations in ML-MERGE is a
constant times of the number of jump operations in the skip-list merge
algorithm in [8].

Proof: Let Pt(proc) denote the number of jump operations in an
execution of the procedure proc. As mentioned before

Pt(ML-EXTRACTSUBLIST) < 2 X MaxLevel

3008

and
Pt(ML-ApPENDSUBLIST) < Pt(ML-SEARCHSUBLIST).
So
Pt(ML-MercESUBLIST) < 2(MaxLevel+Pt(ML-SEARCHSUBLIST))

while the number of jump operations in the corresponding iteration of
the skip-list merge algorithm proposed by [8] is at most

MaxLevel + Pt(ML-SEARCHSUBLIST).

Therefore, the number of jump operations in ML-MERGE is no more
than constant times of the number of jump operations in the skip-list
merge algorithm in [8]. A

Further, since the skip-list merge algorithm proposed by Pugh
takes O(ny + ny log na /ny) expected time [8], we have the following
corollary.

Given two maxplus-lists with sizes n; and nq such thatn; < no, the
expected time complexity of ML-MERGE is O(n; + ny logna /ny).

Therefore, the expected time complexity of the merge algorithm
based on maxplus-list is the same as the time complexity based on
balanced binary tree.

D. Determination of MaxLevel

Our experiments show that different values of MaxLevel may lead
to different running times. For example,when MaxLevel is equal to 1,
the algorithm runs fastest in balanced situations, while it becomes
much worse in unbalanced situations. As shown in Fig. 1, the method
based on linked-list is faster in balanced situations, while the method
based on binary search trees is faster in unbalanced situations. An
important property of maxplus-list is that it is a flexible data structure,
that is, when MaxLevel = 1, it becomes a linked-list, while when
MaxLevel increases, it behaves like a binary search tree. In order to
get the best speedup, we use different values of MaxLevel in different
situations. Here, we presented a simple strategy to determine the value
of MaxLevel. Based on the results of the statistical experiments in [6],
the value of P, is always fixed at 0.25.

In the problems of floorplan, technology mapping, or buffering, the
input is always a tree. We define basic elements as the realizations of
basic blocks in floorplan, the mappings in technology mapping, and
the buffer positions in buffer insertion. During the read of input files,
we record the maximal and minimal depths of leaves in the tree, D, ax
and D,,;,. Then, we can set

15 ifDmin Zl)max/2

MaxLevel = {bg%(n/g)J, otherwise

where n is the number of basic elements.

IV. SOLUTION EXTRACTION

We use the slicing floorplan problem as an example to show how
to extract the best solution after the bottom-up dynamic programming
procedure.

In order to record the composition of each solution, we modify our
data structure to include a pointer array comp of size level in each so-

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 12, DECEMBER 2006

Ik.comp[2]
v — s o

Fig. 9. Configuration graph construction. (Dashed lines represent the
original pointers; solid lines represent the pointers after merge.)

lution. During the bottom-up calculation of nonredundant candidates,
we maintain a configuration graph to record the composition of each
item. The pointers in comp array point to the vertices representing
compositions in a configuration graph. Similar to the adjust array,
compl¢] means that all the items between the current item and the first
item with level larger or equal to ¢ are composed partly by the pointed
composition.

We introduce one vertex into the configuration graph to represent
each basic block. We can update the comp array similar with the update
of the adjust array in the merge operations, and at the same time build
the configuration graph. For example, as shown in Fig. 9, if the items
from item m to item n in a maxplus-list are merged with an item k,
then we create a new vertex v in the configuration graph, and add edges
from v to the vertex pointed by the comp[3] of item m and all the
vertices pointed by comp array of item k, then let comp[3] of item m
point to v. Then, traverse from any vertex v in the configuration graph,
and the leaves visited represent part of a solution.

After the bottom-up calculation of nonredundant candidates, we first
evaluate the m and p properties of each item and select an optimal
item. At the same time, we merge all the pointers in comp array for
each item. Therefore, after evaluation, each item has a single pointer
pointing to its composition. Traversing the configuration graph starting
from the vertex pointed by the optimal item, we get all the basic blocks
in this optimal solution.

V. EXPERIMENTAL RESULTS

Since maxplus merge is the only operation involved in slicing
floorplanning, we use slicing floorplanning as an example to test the
performance of our maxplus-list-based merge operation. We designed
many test cases with each case corresponding to a tree, and every leaf
in a tree has four basic options. We implement a bottom-up algorithm
in C based on our merge algorithm to calculate the nonredundant
candidate list at the root of each tree. We implement Stockmeyer’s
algorithm and download the code of Shi’s merge algorithm from
his web page [9] for comparison. The running time is the total
time for executing each algorithm 100 times and does not include
the time for reading input files and printing final results. All the
experiments were run on a Linux PC with 2.4-GHz Xeon CPU and
2.0-GB memory.

For unbalanced trees, the comparison of our algorithm,
Stockmeyer’s algorithm, and Shi’s algorithm is shown in Table I
Columns 3 and 4 are the running time of Stockmeyer’s algorithm and
Shi’s algorithm, respectively. We use MaxLevel = 4, and P, = 0.25
in the maxplus-list. The results indicate that our algorithm is much
faster than Stockmeyer’s algorithm, and with the increasing sizes of
cases, it gets faster. Most importantly, our algorithm is about 1.5 times
faster than Shi’s algorithm, on average.

For balanced trees, the comparison of our algorithm, Stockmeyer’s
algorithm, and Shi’s algorithm is shown in Table II. The fifth col-
umn is the running time of our method with MaxLevel =4, P, =
0.25, and the sixth column is the running time of our method with
MaxLevel = 1, P, = 0. The results shows that our algorithm with
MaxLevel = 1 is even faster than Stockmeyer’s algorithm in some

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 12, DECEMBER 2006

3009

TABLE 1
COMPARISON RESULTS FOR UNBALANCED TREES
Name # Leaves || Stockmeyer’s Alg. Shi’s Alg. Our Alg.
time (77 s) time (712 s) time (T3 s) | 1T1/13 To/T5
U100 100 0.083 0.033 0.033 2.52 1.00
U200 200 0.233 0.083 0.067 3.48 1.24
U300 300 0.567 0.150 0.100 5.67 1.50
U400 400 1.033 0.200 0.133 7.77 1.50
U500 500 1.530 0.250 0.180 8.50 1.39
U600 600 2.080 0.333 0.217 9.59 1.53
U700 700 2.900 0.485 0.267 10.86 1.82
U800 800 3.533 0.433 0.317 11.15 1.37
U900 900 4.500 0.500 0.333 13.51 1.50
U1000 1,000 5.633 0.767 0.383 14.71 2.00
TABLE II
COMPARISON RESULTS FOR BALANCED TREES
Name Leaves || Stockmeyer’s Shi’s Our Alg.
Ty || Ta) || T3506) [Ta) | T1/T3 | To/T5 | Th /Ty | T2]Ty
B128 128 0.033 0.083 0.033 0.033 1.00 2.52 1.00 2.52
B256 256 0.100 0.317 0.100 0.133 1.00 3.17 0.75 2.38
B512 512 0.167 0.883 0.217 0.183 0.77 4.07 0.91 4.83
B1024 1,024 0.350 1.433 0.466 0.267 0.75 3.08 1.31 5.37
B2048 2,048 0.717 2.950 0.983 0.583 0.73 3.01 1.23 5.06
BLARGE || 32,768 12.730 || 50.390 || 18.550 | 10.700 0.69 2.72 1.19 4.71
Average 0.82 3.10 1.07 4.15

note: T’ is the running time of our algorithm when MaxzLevel = 4 and P,. = 0.25, and T} is the running time of our algorithm

when MaxLevel = 1 and P, = 0.

TABLE 1II

COMPARISON RESULTS FOR MIXED TREES
Name # Leaves Stockmeyer’s Alg. Shi’s Alg. Our Alg.

time(T7y s) time(7% s) MaxLevel | time(T3 s) | T1/13 | Ta/13
Mdatal 82 0.017 0.067 2 0.033 0.52 2.03
Mdata2 296 0.483 0.300 3 0.117 4.13 2.56
Mdata3 1236 0.633 1.750 4 0.616 1.03 2.84
Mdata4 2196 11.633 2.767 S 1.333 8.73 2.08
Mdata5 8046 3.317 11.383 5 4.550 0.73 2.50
Mdata6 21892 9.200 37.233 1 9.533 0.97 391

cases. This is because when MaxLevel = 1, the skip-list becomes
an ordinary linked-list, but our method moves a series of items in
each iteration while Stockmeyer’s algorithm moves one item at a
time. When MaxLevel = 4, our algorithm is slower than Stockmeyer’s
algorithm but more than 2.5 times faster than Shi’s algorithm.

For mixed trees that contain both balanced subtrees and unbalanced
subtrees, we use our strategy mentioned before to determine the
value of MaxLevel. The comparison of our algorithm, Stockmeyer’s
algorithm, and Shi’s algorithm is shown in Table III. We can see that
our algorithm is always more than two times faster than Shi’s algo-
rithm. Especially for Mdata6, our strategy for determining MaxLevel
improved the efficiency greatly.

VI. CONCLUSION AND FUTURE WORK

The common merge operations of solution lists in the dynamic
programming technique for the slicing floorplan, technology mapping,
and buffering can be formulated as maxplus merge operations. In this
paper, we presented an efficient data structure called maxplus-list to
represent a solution list. With parameters to adjust automatically, our
maxplus merge algorithm based on maxplus-list works better than
Shi [4] under all cases, unbalanced, balanced, and mix sizes. Our data
structure is also simpler to implement.

Many other operations (e.g., attach wires and buffers) are involved
in the buffering problem, so we plan to use maxplus-list data struc-
ture to implement all these operations, and test the performance of
maxplus-list in buffering problem in the future.

REFERENCES

[1] L. Stockmeyer, “Optimal orientations of cells in slicing floorplan de-
signs,” Inf. Control, vol. 57, no. 2-3, pp. 91-101, 1983.

[2] K. Keutzer, “Technology binding and local optimization by DAG
matching,” in Proc. Des. Autom. Conf., Jun. 1987, pp. 617-623.

[3] L. P. P. P. van Ginneken, “Buffer placement in distributed RC-tree net-
works for minimal Elmore delay,” in Proc. Int. Symp. Circuits Syst., 1990,
pp. 865-868.

[4] W. Shi, “A fast algorithm for area minimization of slicing floorplans,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 15, no. 12,
pp. 550-557, Dec. 1996.

[5] W. Shi and Z. Li, “An O(nlogn) time algorithm for optimal buffer
insertion,” in Proc. Des. Autom. Conf., 2003, pp. 580-585.

[6] W. Pugh, “Skip lists: A probabilistic alternative to balanced trees,”
Commun. ACM, vol. 33, no. 6, pp. 668—676, Jun. 1990.

[7] K. Chaudhary and M. Pedram, “A near optimal algorithm for technology
mapping minimizing area under delay constraints,” in Proc. Des. Autom.
Conf., Jul. 1992, pp. 492-498.

[8] W. Pugh, “A Skip List Cookbook,” Univ. Maryland, College Park, MD,
Tech. Rep. CS-TR-2286.1, 1990.

[9] W. Shi’s homepage. [Online]. Available: http://ece.tamu.edu/~wshi

