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Abstract—With aggressive scaling down of feature sizes in VLSI
fabrication, process variation has become a critical issue in de-
signs. We show that two necessary conditions for the “Max” op-
eration are actually not satisfied in the moment matching based
statistical timing analysis approaches. We propose two correlation-
aware block-based statistical timing analysis approaches that keep
these necessary conditions, and show that our approaches always
achieve the lower bound and the upper bound on the timing yield.
Our approach combining with moment-matching based statistical
static timing analysis (SSTA) approaches can efficiently estimate
the maximal possible errors of moment-matching-based SSTA ap-
proaches.

Index Terms—Process variations, statistical static timing anal-
ysis (SSTA), statistical timing.

I. INTRODUCTION

WITH aggressive scaling down of feature sizes in VLSI
fabrication, process variation has become a critical issue

in designs. The corner-based deterministic static timing anal-
ysis (STA) becomes pessimistic and inefficient because of the
complicated correlations among component delays and the huge
number of corners.

The emerging statistical static timing analysis (SSTA) ap-
proaches [1]–[7] greatly speed up the analysis by propagating
the distributions instead of single values. An essential problem
in SSTA is how to compute the maximum of random variables.
Assuming that process variations are not very prominent, [3]
and [4] used Clark’s approach [8] to approximate the max-
imum of two random variables with Gaussian distribution as a
Gaussian variable, and achieved good efficiency and accuracy.
Random variables are represented in a linear canonical form,
and the first two moments (that is, the mean and the variance)
are matched for the maximum. The essential of the approach is
the least-squares fitting.

The delay of a gate or a wire is affected by more than one
type of process variations, and a linear form may not be accurate
enough to capture important information. So, [5]–[7] extended
the linear model to nonlinear models. For example, random vari-
ables in [7] are represented in a quadratic model. These ap-
proaches are shown to be more accurate than those based on
the linear model.
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Fig. 1. Our approach is useful for the fast estimation of the maximal errors in
moment-matching-based SSTA approaches.

With the development of SSTA tools, many statistical timing
optimization works also emerged. These works optimize the
timing yield (the probability that a circuit satisfies timing con-
straints) using SSTA approaches to compute timing informa-
tion. But how accurate is the timing yield estimation? Without
this information, the designers have to over-design in order to
make sure that the yield objective is satisfied. Monte Carlo sim-
ulation, an expensive approach, is widely used in the existing
literatures to verify the results from SSTA. As shown in Fig. 1,
if we can efficiently estimate the lower bound and upper bound
of the yield, comparing these bounds with the yield estimation
by moment matching based SSTA approaches will tell how ac-
curate the estimation is. Agarwal et al. [9], [10] proposed tech-
niques to compute the bounds on yield, but they did not consider
correlations: [9] ignored the correlations between components,
while [10] ignored the correlations due to path reconvergence,
therefore, it is not clear if the computed bounds are close to the
actual yield when correlations are considered.

In this paper, we consider how to compute the lower bound
and upper bound of timing yield. The existing SSTA works
use the linear model or the second order model to approx-
imate process variations. Even the yield computed by the
Monte Carlo simulation is not the exact yield. However, the
designers can select parameters in the models such that the
described process variations are the lower bound or the upper
bound of actual process variations. As shown in Fig. 1, our
approach computes the bounds of timing yields based on a
model that bounds process variations instead of the fitting
techniques widely used in literatures. Thus, the accurate com-
putation of the lower and upper bounds of the yield can tell
whether the yield objective is satisfied. Enforcing two neces-
sary conditions for the statistical “max” operation that were
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not satisfied by moment-matching-based approaches [3], [4],
our approaches achieve tight bounds of yield. Furthermore, for
upper bound computation, our techniques can also be used with
the second-order model.

The rest of this paper is organized as follows. Section II
briefly reviews the existing works on SSTA. Section III
presents the relations between the results and the operands
in the statistical “Max” operation, and discusses problems in
moment-matching-based approaches. Section IV presents our
correlation-aware approaches for the statistical “Max” opera-
tion. The experiments on the proposed approaches and their
comparison with the Monte Carlo simulation are reported in
Section V. Finally, the conclusions are drawn in Section VI.

II. PRELIMINARY

The combinational circuit is represented by a directed acyclic
graph (DAG) with a vertex (or node) set and an edge
set . Each vertex represents a primary input (PI), a primary
output (PO), or a gate; each edge represents an interconnection
from the source vertex to the target vertex; and the edge weight
gives its delay. Two dummy nodes and are introduced into the
graph: is connected to all the primary inputs, and is connected
from all the primary outputs. The weights of the edges from to
PIs are the arrival time of the corresponding PIs, and the weights
of the edges from POs to are the negative of the required arrival
time at the corresponding POs.

All the delays (or weights), slacks and arrival time are repre-
sented in a first-order canonical form as in [3]

where is the mean value, ’s are the principal components
[11], and ’s are their coefficients. Principal component anal-
ysis [11] may be performed to get this canonical form [3].

We define the following for two Gaussian random variables
and with correlation coefficient :

(1)

(2)

(3)

(4)

Given any two random variables and , [4] defined the
tightness probability of the variable as the probability
that it is larger than , and . Thus

when .
In block-based SSTA, the moment matching is performed to

compute the canonical form representing . For ex-

ample, [4] matches the mean, variance and covariance, while [6]
matches the raw moments.

Chang et al. [3] compute the maximal of two Gaussian
random variables as follows. Suppose

Let represent . Then according to [8],

(5)

(6)

The moment matching [3] gives

where

III. STATISTICAL “MAX” OPERATION

We introduce two concepts for relations among random vari-
ables.

Definition 1 (Dominance Relation): A random variable
dominates variable when

Definition 2 (Comparison Relation): A random variable
has comparison relation with variables and when

The following theorem shows that both the dominance rela-
tion and the comparison relation are necessary conditions for
the statistical “Max” with its operands.

Theorem 1: Suppose and are random variables and
, then dominates and , and has the comparison

relations with them.
Proof: Since is the maximum of and , , and

, so dominates and
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Similarly, we can prove

The block-based SSTA approaches [3], [4] assume that all the
random variables have Gaussian distribution. They use a canon-
ical form

to represent a random variable, where is the nominal value
and ’s are independent random variables with standard
normal distribution. When they compute the maximum of
Gaussian variables, they use Clark’s approach [8] to match the
mean and the variance. But during this match, the dominance
and comparison relations are not kept. For example, compute
the maximum of the following two Gaussian random variables
using the approach in [4]:

Suppose , then theoretically,

But the results computed from the moment matching based ap-
proach in [4] are

So the dominance relations are not kept. Also, theoretically

but the moment-matching-based approach gets

which has a big difference from . So the
comparison relations are not kept either.

We also took the approach in [6] to approximate the max-
imum of two Gaussian variables as a non-Gaussian variable, and
find that neither the dominance nor comparison relation is kept.
For example, using the approach in [6], for the dominance rela-
tions, we get

and for the comparison relations, we get

Thus, the existing approximation approaches have not kept the
necessary conditions in the statistical “Max” operation.

Fig. 2. CDF Q(x) is an upper bound of CDF P (x).

A timing analysis approach may be used in timing optimiza-
tions. In statistical timing optimization, we need to compute the
yield, that is, the probability that the constraint is satisfied. Since
the moment-matching-based SSTA approaches [3], [4] are ap-
proximation approaches, there is no guarantee whether they are
conservative or optimistic. For example, given a timing con-
straint for the maximal delay from the primary input to the pri-
mary output, we do not know if the computed yield is larger or
smaller than the actual yield.

Definition 3: For any two cumulative distribution functions
and , is the upper bound of (and

is the lower bound of ) if and only if .
As shown in Fig. 2, using the upper bound of , the yield

according to the upper bound of is
higher than the yield according to . We will show later that
the approaches based on the dominance relations or the com-
parison relations give the lower bound or the upper bound of
the yield, respectively.

IV. SSTA WITHOUT MOMENT MATCHING

“Max” and “Add” are the two fundamental operations in
timing analysis. In SSTA, all random variables are represented
in the canonical form. The “Add” operation is simple and
exact. For the “Max” operation, we plan to enforce either the
dominance relation or the comparison relation.

A. Theory

Our SSTA approach traverses a circuit in the topological
order and computes the distribution of the arrival time at
each node. Depending on what relations the procedure keeps,
our approach has two variants. The first one, denoted as LB-
DomSSTA, keeps the dominance relations, while the second
one, denoted as UBCompSSTA, keeps the comparison rela-
tions.

Note that the theory in this subsection holds for random vari-
ables of any distributions, not only limited to Gaussian.

For the dominance relation, we have the following theorem.
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Theorem 2: In a combinational circuit, when a “max” oper-
ation is encountered, if a random variable that dominates the
operands is used for their maximum, the computed yield will be
a lower bound of the actual yield.

Proof: Suppose and are operands of the “max” oper-
ation, and dominates and . Then and ,
so . If is used as the maximum of and ,
the computed maximal delay is no less than the actual maximal
delay, so the yield is not larger than the actual yield.

Therefore, LBDomSSTA is guaranteed to get the lower bound
of yield.

The comparison relations can be transformed into

(7)

(8)

For the comparison relation, we have the following.
Theorem 3: Suppose and are two random variables, and

let

where , then always satisfies the comparison con-
ditions

Now we prove the following lemma.
Lemma 1: Suppose and are two random variables, and

where , then

Proof:

Thus, if , , so ; if
, , so .

According to Lemma 1, we know that the “max” of two
random variables as computed in Theorem 3 is not larger than
their actual maximum. Therefore, we have the following lemma
based on the monotonicity property of the “max” operation.

Lemma 2: The maximal delay from the primary inputs to the
primary outputs computed in UBCompSSTA is not greater than
the actual maximal delay.

For two random variables and , if , then
for any constant . Thus, we have

the following theorem.
Theorem 4: The yield computed by UBCompSSTA gives the

upper bound of the actual yield.

B. Lower Bound

Most of the existing SSTA approaches assume that random
variables have Gaussian distributions. In this subsection, we
consider the LBDomSSTA under this assumption. Suppose
and are two Gaussian variables. Let

Unfortunately, we have the following theorem.
Theorem 5: Let and be two Gaussian variables repre-

sented in the first-order canonical form. Then

cannot be satisfied unless with a non-negative
constant number.

Proof: Suppose

If

If , obviously . So

But is not equal to 1, so
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Therefore, it is almost impossible to find a Gaussian random
variable to dominate all the operands simultaneously. However,
if the dominance relation is relaxed to

(9)

with , it is possible to find a satisfying this condi-
tion. With increasing , we have increasing confidence that the
computed yield is a lower bound.

Clark [8] stated that the covariance between
and any random variable can be expressed in terms of covari-
ances between and and between and as

As suggested in [4], in order to preserve the covariance, for
every , we must have

(10)

Our approach adjusts the mean value to satisfy the dom-
inance relations given by the following inequalities:

(11)

(12)

Let be a constant satisfying . Then the two inequal-
ities can be transformed to

(13)

(14)

By solving this inequality set, we can find the minimal . The
dominance relations are then satisfied.

C. Upper Bound

1) Gaussian Variables: In this subsection, we also assume
that random variables have Gaussian distributions. According
to Theorem 3 and the discussion in Section IV-B, if we select

, the comparison relations are kept, and the covariance
is also preserved.

In order to check whether the upper bound is tight, we com-
pare the mean and the variance computed by our approach and
those by the moment-matching-based approach. Let represent
the maximum of the two Gaussian random variables and
computed by our approach, and represent com-
puted by [8]

Assuming that all the random variables have at most 10% devi-
ation from their nominal values, we get

Thus

Since the random variables in our problem represent delay or
arrival time, if we set the arrival time at the PIs to 0, their mean
values should be non-negative. Without loss of generality, we
assume . So . Let ,
so . Thus

(15)

In addition, , so the relative error of the mean is
at most

From this derivation, we can see that if the variance is smaller,
or the correlation is positive and larger, the result will be more
accurate. In practice, this relative error is even smaller because
of the highly positive correlation between delays and the small
variance.

Even though the mean plays a major role in the yield, we will
also estimate the error on the variance

(16)

If
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Thus

or

So

If (note )

(17)

According to [12], when , the right-hand side of (16)
approaches 0. So when , the error approaches 0.

When , according to [12]

While according to (15), when and

Thus

(18)

Therefore

Therefore, the error on variance is at most 0.02% of the square
of mean value. If the correlation coefficient is more posi-
tive, this error gets even smaller. For example, when , the
error is less than 0.01%. Note that moment-matching-based ap-
proaches are doing approximations, so the errors computed here
are not the errors from the actual values.

In summary, the results computed in UBCompSSTA are very
close to the results from the moment-matching approach. Note
that the moment-matching approach is also an approximation
approach, so it is possible for UBCompSSTA to have better re-
sults than the moment-matching approach.

2) Non-Gaussian Variables: In this part, we consider the
cases where the random variables do not have Gaussian distribu-
tions. The delay of a gate or an interconnect may be affected by
not only one kind of process variation, so there may exist non-
linear relations between the delays and the process variations.
For example, the delay of a wire is affected by the process vari-
ations on the wire length, the wire width, and the wire thick-
ness. Zhang et al. [7] has proposed a quadratic delay model for

a wire. The delay random variable is represented in the fol-
lowing quadratic model:

where represents the local variances,
represents the global variances, and

are sensitivity vectors, and is a sensitivity matrix. All these
’s and ’s are independent and have the standard Gaussian

distribution. The random variables represented in this form do
not have a Gaussian distribution. We will show that our approach
also gets results close to the results from [7].

Suppose random variables and are represented in the
quadratic model

(19)

(20)

In the computation of the maximum of two random variables
and represented in the quadratic model, Zhang et al. [7] ap-
proximated the random variables as Gaussian variables by mo-
ment matching and computed the skewness of the output. If the
skewness is greater than a threshold, the “max” operation is de-
layed, otherwise, the approach got

where

(21)

(22)

(23)

(24)

The output of our approach differs from the output of [7] only
in the part. Our approach gets

Since affects only the mean value, we only need to compute
the difference on the mean value in our approach. Let and

represent the outputs of [7] and our approach, respectively.
The difference between and is . We can show
similarly that the relative error of the mean is at most 2.66%.

Thus, our approach can also be applied to methods where the
variables do not have Gaussian distributions, and get an upper
bound of the yield that is close to the result from [7].

V. EXPERIMENTAL RESULTS

We have implemented LBDomSSTA and UBCompSSTA
in C++. Experiments were performed on the large cases in
ISCAS85 benchmark. We use the cases where all the random
variables have the Gaussian distributions as examples to show
the effectiveness of our approaches. We also implemented the
Monte Carlo simulation to compute the maximal delay from
to . We made 10 000 trials for each test case. All the random
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TABLE I
COMPARISON RESULTS OF UBCompSSTA, LBDomSSTA, [3] AND MONTE CARLO SIMULATION ON LINEAR MODEL

variables have at most 10% deviation from their nominal values.
All the experiments were run on a Linux PC with a 2.4 GHz
Xeon CPU and 2.0 GB memory.

The comparison results of UBCompSSTA, LBDomSSTA,
[3], and the Monte Carlo simulation are shown in Table I.
We perform Monte Carlo simulations to compute the 90%
percentile point of the maximal delay from to , and select
this point as the timing constraint. We have in LB-
DomSSTA. The columns 2–5 show the running time, the mean
of the maximal delay, the standard deviation of the maximal
delay, and the yield computed by UBCompSSTA, respectively.
The columns 6–9 show the running time, the mean of the max-
imal delay, the standard deviation of the maximal delay, and the
yield computed by LBDomSSTA, respectively. The 10th and
11th columns show the mean and the standard deviation of the
maximal delay from the Monte Carlo simulation, respectively.
The results show that our approaches always get tight bounds
of the yield. The errors on the yield are 1.68% and 1.43% on
average for UBCompSSTA and LBDomSSTA, respectively.
The relative errors on the mean and the variance are also quite
small. The [3] gets more accurate results than ours since it
is doing the fitting instead of the bounding. The significant
contribution of our work is that it provides an efficient way to
estimate the maximal errors of the SSTA approaches without
doing the expensive Monte Carlo simulation. For example, for
these testcases, if we do not know the Monte Carlo simulation
results, we can also conclude that [3] gets very accurate results
since the yields from [3] are very close to the bounds computed
from our approaches.

Fig. 3 shows the cumulative distribution functions from LB-
DomSSTA, UBCompSSTA, and the Monte Carlo simulation for
the case “c6288”. The CDF from UBCompSSTA stays on the
left side, while the CDF from LBDomSSTA stays on the right,
and the actual CDF stays between them. It demonstrates that our
approaches achieve the bounds in the whole range.

UBCompSSTA is also tested based on the quadratic model.
Table II shows the comparison results between UBCompSSTA
and the Monte Carlo simulation. The results show that UB-
CompSSTA has an error of 1.50% on average.

VI. CONCLUSION

The state-of-the-art statistical static timing analysis ap-
proaches cannot tell whether the computed yield is smaller or
larger than the actual yield. In this paper, we proposed two
block-based statistical static timing analysis approaches by
satisfying each of the two necessary conditions for “max”

Fig. 3. CDFs from different approaches for “c6288”.

TABLE II
COMPARISON RESULTS OF UBCompSSTA AND MONTE CARLO

SIMULATION ON QUADRATIC MODEL

operation. We showed that our approach achieves a tight
upper-bound of the actual yield. Furthermore, for the upper
bound computation, our approach achieves the bound even
without the assumption of Gaussian distributions for the
random variables.
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