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Abstract— There is a long history of investigations and debates
on whether a sequence of retiming and resynthesis is complete
for all sequential transformations (on steady states). It has been
shown that the sweep operation, which adds or removes registers
not used by any output, is necessary for some sequential trans-
formations. However, it is an open question whether retiming
and resynthesis with sweep are complete. This paper proves
that the operations are complete, but with one caveat: at least
one resynthesis operation needs to look through the register
boundary into the logic of previous cycle. We showed that this
one-cycle reachability is required for retiming and resynthesis
to be complete for re-encodings with different code length. This
requirement comes from the fact that Boolean circuit is used
for a discrete function thus its range needs to be computed
by a traversal of the circuit. In theory, five operations in the
order of sweep, resynthesis, retiming, resynthesis, and sweep
are already complete. However, some practical limitations on
resynthesis must be considered. The complexity of retiming and
resynthesis verification is also discussed.

I. INTRODUCTION

Logic synthesis algorithms originally targeted the optimiza-
tion of PLA implementations; this was followed by research in
synthesizing more general multilevel logic implementations.
Currently, the central thrust in logic synthesis is sequential
synthesis, i.e., the automatic optimization of the entire system.
This is for designs specified at the structural level in the form
of netlists, or at the behavioral level, i.e., in the form of finite
state machines. DeMicheli [12] gives an excellent introduction
to logic synthesis.

In this paper, we will be concerned with sequential designs.
These can be specified at the behavioral level, as finite state
machines (FSMs), or at the structural level, as netlists of gates
and registers.

Retiming is a powerful sequential optimization step that
can be applied to sequential designs described at the netlist
level. It can be used to optimize the clock period or the
registers area of a design. Logic synthesis is an operation that
changes the circuit structure without changing the function
of the combinational logic. It has been shown that given two
designs, one of netlists has been derived from the other by a
sequence of retiming and resynthesis, a certain equivalence re-
lation (namely, steady-state equivalence) exists between them.
However, the converse is not well understood, and there is
a long history of investigations and debates on whether a
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sequence of retiming and resynthesis is complete for any
sequentially equivalent transformation.

Malik [11] gave the first (partial) positive answer to this
question. He proved that retiming and resynthesis are complete
for any state re-encoding, and for some other transformations.
Zhou et al. [18] provided the first negative answer by prov-
ing that some sequentially equivalent transformations cannot
be done by retiming and resynthesis, which also helped to
discover and fix an error in Malik’s result [13]. The sweep
operation, which adds or removes registers not used by any
output, is needed for these transformations. However, it is an
open question whether retiming and resynthesis with sweep
are complete for general sequential transformations.

In this paper, we provide a complete answer to the open
question. We proved that retiming and resynthesis with sweep
are complete, but with one caveat: at least one resynthesis
operation needs to look through the register boundary into
the logic of previous cycle. We even showed that this one-
cycle reachability is required for retiming and resynthesis to be
complete for re-encodings with different code length, an exten-
sion to Malik et al. [10]. It also demonstrates that reachability
information cannot be captured by these structural operations.
Therefore, they are complete for transformations based on
all steady states unless reachability information is provided.
Our completeness proof is a constructive one that applies
five operations in the order of sweep, resynthesis, retiming,
resynthesis, and sweep. We will discuss the implications of
such a result and some practical limitations on resynthesis.

Zhou et al. [18] also started an investigation on the com-
plexity of retiming and resynthesis verification problem. Since
the general sequential equivalence verification is PSPACE-
complete, a different complexity category may indicate that
the gap between retiming and resynthesis and sequential
transformation is big. Jiang and Brayton [6] later showed that
the complexity of retiming and resynthesis verification is also
PSPACE-complete. We examine their proof and point out parts
that are unclear. Based on those we consider the membership
of retiming and resynthesis verification an open question.

Our results have very important practical implications. Since
retiming and resynthesis with sweep are complete, sequential
optimization tools can be centered around them. If any reach-
ability information is provided to the optimization, it is also
critical to be supplied to the verification. Our completeness
proof also indicates that the resynthesis needs to generate
exponential-size circuits to complete some transformations
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Fig. 1. Netlist and corresponding FSM.

(including some re-encoding ones). However, no practical
resynthesis is so powerful. Under realistic limitations, retiming
and resynthesis verification is much simpler. Indeed, the recent
sequential equivalence checking algorithms [15], [17], [7]
effectively try to show that two circuits are equivalent by
deriving the retiming relationships between them.

II. BACKGROUND

Netlists and FSMs: We introduce two formalisms for
representing designs, namely netlists and finite state machines
(FSMs). Netlists are structural and consist of an interconnec-
tion of gates and registers. Finite state machines are behavioral
and specify how the system changes its states and produces
outputs responding to inputs. We leave for the readers to
ponder which representation is more abstract.

Before giving formal definitions to netlists and FSMs, we
illustrate them by means of examples. The netlist in Figure 1
has one primary input, one primary output, two registers, and
two gates. The FSM for the same design is shown beside it;
it consists of 4 states.

Definition 1: A Finite State Machine (FSM) is a quintuple
(Q, I,O, λ, δ) where Q is a finite set referred to as the states,
I , and O are finite sets referred to as the set of inputs and
outputs respectively, δ : Q× I → Q is the next-state function,
and λ : Q× I → O is the output function.

The output and next state functions can be inductively
extended to the domains Q × I+ → O+ and Q × I+ → Q,
respectively; we continue to use λ and δ to denote these
extended functions. For example, for the FSM in Figure 1,
λ(10, 1 · 0) = 0 · 1 and δ(01, 0 · 1 · 0) = 01.

Definition 2: A netlist is a directed graph, where the nodes
correspond to elementary circuit elements, and the edges
correspond to wires connecting these elements. Each node is
labeled with a distinct variable wi. For simplicity, we will
assume that the netlist is Boolean, i.e. all variables take values
in B = {0, 1}. The three basic circuit elements are primary
inputs, registers, and gates. Primary input nodes have no
fanins; registers have a single input. Associated with a gate
g on n-inputs w1, w2, . . . , wn is a function from Bn to B.
Some nodes are designated as being primary outputs.

Given a value to each input and a state (an assignment of
values to registers), one can uniquely compute the value of
each node in the netlist by evaluating the functions at gates.
A netlist η on inputs i1, i2, . . . , in, outputs o1, o2, . . . , om and
registers r1, r2, . . . , rk bears a natural correspondence to an
FSM Mη on inputs X = Bn, outputs Y = Bm, and state
space Q = Bk. The next-state function of Mη is defined
by the composed logic gates in the following manner: for
each register ri we can find a function fi : Q × X → B
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Fig. 2. Example of retiming and resynthesis.

by composing the functions of the gates from the inputs
and register outputs to the input of the register. We will
refer to fi as the next-state function of the register i. Then
δMη

: Q × X → Q is simply (f1, f2, . . . , fk). Similarly, the
output function is defined by composing the functions of gates
from inputs and registers to output nodes.

Retiming, Resynthesis, and Sweep: Retiming, resynthesis,
and sweep are structural operations applied on netlists.

Retiming consists of moving a given number of registers
between the inputs and outputs of each combinational node.
A retiming can be described mathematically by a lag function,
which gives for each combinational node, the number of
registers that are moved from each fanout to each fanin.

Combinational synthesis restructures the netlist within the
register boundaries without changing its functionality. It leaves
the FSM of the design unchanged. Retiming becomes very
powerful when it is interspersed with resynthesis of the netlist
within the changed register boundaries. Resynthesis provides
new signals for retiming to place registers on while retiming
provides new combinational blocks for resynthesis to manip-
ulate. This is the basis for the retiming and resynthesis (RnR)
paradigm proposed in [4], [10].

Sweep, the simplest among the operations, adds or removes
registers not used by any output. Since synthesis normally
simplifies the circuit structure, sweep is usually met as an
operation removing redundant registers and logic.

An example of a design transformation using this RnR
paradigm is shown in Figure 2. At the first retiming step, we
have the following lag function: r(w1) = 1, r(w3) = r(w4) =
−1, r(w2) = r(w5) = 0.



Sequential Equivalence:
Definition 3: Two states s and t are equivalent, denoted as

s ∼= t, if and only if for every finite input sequence π, the
outputs resulting on applying π are equal.
For example, in circuits D0 and D3 of Figure 2, state 00 in
D0 is equivalent to state 01 in D3.

Definition 4: Two netlists C and D are FSM-equivalent if
and only if every state c ∈ C is equivalent to some state
d ∈ D, and every state d ∈ D is equivalent to some state
c ∈ C.
Thus the two designs D0 and D3 in Figure 2 are FSM-
equivalent.

Definition 5: The steady state set of a design D, denoted
by D∞ is the subset of states such that for each state s
there is an input sequence π which drives this state to itself,
i.e., λD(s, π) = s. The remaining set of states is called the
transient state set.
For example, the steady state set for the design in Figure 1
is {00, 01, 10} and the transient state set is {11}. Notice that
once a design starts up in any state, it will eventually be and
remain in steady states.

Theorem 1 ([8]): If design C has been obtained from de-
sign D by a sequence of retiming moves, the steady state set
of C is FSM-equivalent to the steady state set of D.

Retiming becomes very powerful when it is combined with
(combinational) resynthesis operations (the RnR paradigm).
However, since resynthesis itself does not change the state
transition graph of a design, we have the following corollary.

Corollary 1: If design C has been obtained from design
D by a sequence of retiming and combinational resynthesis
moves, the steady state set of C is FSM-equivalent to the
steady state set of D.

Designated Initial State: We will not assume a designated
initial state for our circuits. If we do want to force a circuits
into a designated initial state we can explicitly model the reset
circuitry along with the registers: indeed, this is the approach
suggested for retiming initial states in [14], as opposed to the
approach in [16], [5], where the implicit initial state values
have to be retimed across gates.

One optimization advantage of considering designated ini-
tial states is that the synthesis algorithms have greater flexi-
bility since the synthesis tool can potentially take advantage
of don’t cares arising from the set of states unreachable from
the initial state. However, it is easy to show that for designs
which have designated initial state, retiming and resynthesis is
strictly weaker than a sequential optimization algorithm which
uses unreachability don’t cares (for example, [9]).

Consider circuits C and D in Figure 3 with 00 as the
designated initial state for both C and D. Clearly the two
circuits C and D are equivalent from the initial state 00.
However, from Corollary 1, it is clear that C and D are not
RnR equivalent (since state 10 ∈ C∞, the steady state set of
C, but there is no equivalent state in D∞).

However, in general, commercial synthesis tools do not use
unreachability don’t cares. This is simply because computing
the set of unreachable states is computationally very expensive
on real designs; the theoretical complexity of this problem is
PSPACE-complete:
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Fig. 3. Circuits C and D are equivalent from designated initial state 00.

Theorem 2 ([2]): Given two netlists C and D, and two
states s from MC , t from MD, checking whether s and t
are equivalent is PSPACE-complete in the size of the netlists.

III. SWEEP IS NECESSARY

Even though it is commonly suspected that retiming and
resynthesis are not complete for all steady state equivalent
transformations, Zhou et al. [18] was the first giving such a
proof. They designed two pairs of circuits and proved that the
first pair cannot be transformed to each other even though they
are FSM-equivalent. The second pair was also conjectured so.
We show here that both pairs are incomplete, using the same
reasoning they used for the first pair. The two pairs of circuits
are shown in Figure 4.
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Fig. 4. Examples showing incompleteness of retiming and resynthesis.

Lemma 3: Retiming and resynthesis cannot transform one
circuit to the other for either pair in Figure 4.

Proof: The next state function of the left circuit in
each pair contains a permutation on the set {0, 1}2, which
has cardinality of 4. No matter what resynthesis does, the
smallest cut size, in terms of the number of signals, on the
combinational part must be at least 2, in order to encode all the
information. Therefore, the next retiming step cannot reduce
the number of registers. Since the next state function of the
new circuit still has the property as the old one, any later
retiming and resynthesis steps cannot reduce the number of
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registers, either. This means that no sequence of retiming and
resynthesis can transform the left circuits to the right ones.

However, it was also noted in [18] that with the sweep
operation, the first pair of circuits are transformable to each
other, as shown in Figure 5. We investigate whether the sweep
is also of help in the second pair of circuits and find that, with
re-encoding and sweep, they can be transformed, as shown
in Figure 6. However, when trying to design a sequence of
retiming and resynthesis to do the re-encoding, instead of
direct applying Malik’s theorem, we found that re-encoding
is harder than previous thought and resynthesis needs to be
slightly enhanced for retiming to be complete for re-encoding.
The details will be presented in the next section.
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Fig. 6. Second pair is completed by re-encoding and sweep.

IV. RE-ENCODING IS HARD

The first attempt to relate re-encoding and retiming-and-
resynthesis was made by Malik et al. [10] via the following
result which relates designs with different state encoding:

Theorem 4 ([10]): If two circuits have the same symbolic
FSM, then one circuit can be obtained from another by a
sequence of retiming and resynthesis.

However, the above theorem cannot be applied to re-
encodings with different code length. we have the following
result. This result also shows a sharp difference between
reachability and retiming-and-resynthesis.

Lemma 5: Without any reachability information, some re-
encodings with different code length cannot be completed by
any sequence of retiming and resynthesis.

Proof: As we already mentioned in previous section, in
Figure 6, even though the second circuit is a re-encoding of

the first one, it cannot be transformed from the first one by a
sequence of retiming and resynthesis. This can be proved by
considering all the states in the second circuit, including all
the ignored unreachable states, as shown in Figure 7. Since
new cycles are created in this STG of the second circuit,
retiming an resynthesis simply cannot produce such a circuit
from the first one. This is based on Jiang and Brayton [6]’s
characterization of STG transformations by retiming, in which
no cycle can be generated or canceled.
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Fig. 7. Unreachable states need to be considered in re-encoding of different
length.

Although re-encodings with same code length can be done
by retiming and resynthesis, their verification problem is
not easy. The following theorem shows that the problem is
PSPACE-hard by reducing reachability problem to it.

Theorem 6 ([3]): Checking whether two circuits with the
same number of registers are re-encoding of each other is
PSPACE-hard.

In [6] an answer about the membership of retiming and
resynthesis equivalence in PSPACE is explored. Retiming and
resynthesis equivalence is reduced to immediate equivalent
state minimization of the two machines and then graph iso-
morphism starting from known initial states. It is unclear
though how graph isomorphism can be checked in PSPACE.
Moreover, the proof for completeness is based on the reduction
of reachability to checking whether the State Transition Graphs
of the two circuits are isomorphic including the transient
states. The assumption is that all dangling1 states can be
merged to non-dangling states. However, due to the binary
representation of the FSM, this is not always possible. An
example can be seen in Figure 8 in which no retiming and
resynthesis transformation can merge the immediate equivalent
states s1 and s3 . The reason is that for n registers the number
of states in the State Transition Graph must be 2n. When
binary representation is used and the dangling states cannot
be ignored, the State Transition Graphs of two retiming and
resynthesis equivalent circuits may not be transformable to
isomorphic graphs.

V. COMPLETENESS UNDER REACHABILITY

We first show a revised result for re-encoding transforma-
tion.

1Dangling states are inductively defined as states that have no predecessors
or states whose predecessors are all dangling. All other states are considered
non-dangling.
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cannot be merged using retiming and resynthesis in a circuit with binary
representation.

Lemma 7: When the resynthesis is allowed to use the reach-
ability information generated from one cycle, retiming and
resynthesis are complete for all re-encoding transformations,
including those with different coding lengths.

Proof: The proof is similar to Malik et al. [10], using
schematics for circuits in Figure 9. Starting with a circuit C
with the smaller encoding length n, the identity function at
the register outputs is resynthesized to f · f−1 where f is the
one-to-one mapping from states of C to the target states of
circuit D. Please note that f may not be an onto function,
thus f−1 may be different depending on how to map the
don’t care states in D. Then retiming moves the registers
forward over f . The third step resynthesizes f−1 ·C ·f into D.
However, if D is encoded on a longer length m, the one-cycle
reachability information needs to be used to identify the target
states corresponding to states in C, which has to be used for
generating D in the last step.

f

f-1

C
I

O

f

f-1

C
I

O
D

I

On bits

m bits

n bits
m

n

m

n

Fig. 9. One-cycle reachability makes retiming and resynthesis complete for
re-encodings.

The key to the completeness of retiming and resynthesis for
re-encodings is the existence of a mapping from the states of
one machine to those of the other that preserves the transitions.
Such a mapping is called refinement mapping [1].

Definition 6: For two equivalent finite state machines
(Q1, I, O, λ1, δ1) and (Q2, I, O, λ2, δ2), a refinement mapping
is a function f : Q1 → Q2 such that for any s ∈ Q1, s and
f(s) are equivalent, and further for any i ∈ I ,

f(δ(s, i)) = δ(f(s), i).
Abadi and Lamport [1], studying the verification of one system
implementing another, proved that, if S1 implements S2, then
one can add auxiliary history and prophecy variables to S1 to
form an equivalent system Shp1 and find a refinement mapping

from Shp1 to S2 under three very general hypotheses: S1

is machine closed, S2 has finite invisible nondeterminism,
and S2 is internally continuous. For deterministic finite state
machines, they are always true. The following result is simply
a corollary of the main theorem of Abadi and Lamport [1].
But we will give a direct proof to avoid detouring via general
(infinite nondeterministic) system models.

Theorem 8: If two deterministic FSMs C and D are equiv-
alent, then one can add history variables to C to form an
equivalent FSM C ′, and find an onto refinement mapping from
C ′ to D.

Proof: For C = (QC , I, O, λC , δC) and D =
(QD, I, O, λD, δD), we can have

QC′ , {(c, d) ∈ QC ×QD : c ∼= d}
λC′((c, d), i) , λC(c, i)
δC′((c, d), i) , (δC(c, i), δD(d, i))

It is straight-forward to check that f(c, d) = d for any (c, d) ∈
QC′ is a refinement mapping from C ′ , (QC′ , I, O, λC′ , δC′)
to D.

The proof only gives a simple construction without consid-
ering efficiency; for any states c and d such that c ∼= d, we
need only add a history variable to record the part of d that is
independent of c, instead of the whole d. In the special case
where each d is totally dependent on c, no history variable is
needed, and the refinement mapping is the generating function
of d from c.

With the refinement mapping, a completeness result can be
given as follows.

Theorem 9: If two circuits are equivalent, then one of them
can be transformed to the other by a sequence of sweep
(inverse), resynthesis, retiming, resynthesis, and sweep, given
that the second resynthesis operation is allowed to use one-
cycle reachability.

Proof: For two equivalent circuits C and D, their
corresponding FSMs are deterministic and equivalent. Based
on Theorem 8, a set of history registers and their next state
functions can be added to C to make it C ′, and an onto
refinement mapping can be found from C ′ to D. Denote the
mapping by F . Adding unobservable registers and their next
state functions is just an inverse of the sweep operation.

If F is an one-to-one mapping, then F−1 exists. Otherwise,
we expand F with the register outputs of C and denote by
F−1 the function that generate the state of C ′ from the output
of F . Resynthesis can generate F and F−1 connected at the
register output of circuit C ′. Then retiming moves the registers
to the outputs of F . Since F is a refinement mapping from
C ′ to D, the relocated registers give the states of circuit D
in parallel with (possibly partial) states of circuit C. The
circuit composed of F−1, H (the history transition), and F can
be re-synthesized into the circuit D in parallel with another
circuit (partial C). Then a sweep operation will remove all
unobservable part to produce circuit D. The sequence of the
five operations are shown in Figure 10. A key operation in the
second re-synthesis operation is to have the output from D,
instead of C. This cannot be done if the register vectors Vc and
Vd are assumed to be independent (as in pure combinational
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synthesis). However, with the observation that Vd = F (Vc)
from the previous cycle, the output O can be synthesized out
solely from Vd.

VI. CONCLUSIONS

We have shown in this paper that retiming and resynthesis
with sweep are almost complete for all steady state equivalent
transformations, in the sense that resynthesis needs to get
one-cycle reachability information by looking into previous
phase. Without such information, they cannot even complete
re-encodings with different code length. It suggests that a
powerful sequential optimization tool can be built around
retiming, resynthesis, and sweep, and also suggests to enhance
each resynthesis step to employ one-cycle reachability by
looking into previous phase. In practice, resynthesis may
not generate exponential-size circuits and may have other
restrictions. Those restrictions can make the retiming and
resynthesis equivalence checking easier.
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