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Abstract— Routing is one of the most complex stages in the
back-end design process. Simple routing algorithms based on
two stages of global routing and detailed routing do not offer ap-
propriate opportunities to address problems arising from signal
delay, cross-talk and process constraints. An intermediate stage
of track assignment between global and detailed routing proves
to be an ideal place to address these problems. With this stage
it is possible to use global routing information to efficiently ad-
dress these problems and to aid the detailed router in achieving
the wiring completions. In this paper we formulate routing as
a three stage process; global routing, track assignment and de-
tailed routing. We describe the intermediate track assignment
problem and suggest an efficient heuristic for its solution. We
introduce cost metrics to model basic effects arising from con-
nectivity. We discuss extensions to include signal integrity and
process constraints. We propose a heuristic based on weighted bi-
partite matching as a core routine. To improve its performance
additional heuristics based on lookahead and segment splitting
are also suggested. Experimental results are given to highlight
the efficacy of track assignment stage in routing process.

I. INTRODUCTION

As VLSI technology reaches deep submicron (DSM) dimen-
sions and gigahertz clock frequencies, interconnect has become
the dominant factor in determining performance, power, and re-
liability of a system [1]. Even though some optimizations such
as buffering, wire sizing, and wire spacing can be done after wire
routing to improve system performance, routing is still the most
important step to do the optimizations or make them feasible
during later stages. Besides wiring completion, a DSM router
should also consider wire delays, signal integrity, and reliability
issues. Designing a router with many conflicting requirements
is a big challenge.

Traditionally, a router usually consists of two stages: global
routing and detailed routing [2]. In the global routing stage,
the whole routing region is divided into an array of rectangu-
lar subregions, each of which may accommodate tens of routing
tracks in each dimension. These subregions are usually called
global cells. Pins of nets are then mapped to subregions, and
routing resources and obstructions are modeled as capacities on
boundaries of subregions. For each net, a route is constructed
as a set of rectangular subregions within which a physical con-
nection can be embedded. Usually Steiner tree and maze search
techniques are used here to generate a global routing. In the
detailed routing stage, a physical connection is constructed for
each net within the global routing cells determined in the pre-
vious step. Since detailed routing must deal with geometries of
design objects (pins, pre-routes and obstructions) and different
design rules (metal spacing, metal width etc.) confining the con-
nection within given global routing regions greatly prunes the
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search space and speeds up the search time.

There are generally two approaches to do detailed routing.
One is to use a sequential area router to connect each net at a
time (see [3]). The global route for the concerned net is used as
a guide to constrain the detailed route to be within the given
region. The other approach is to partition the problem into a
sequence of switch-box routings on each global cell. For each net
crossing a global cell, a set of cross-points is determined dictated
by the global routing. This will fix the position through which
a net crosses a given global cell boundary. Tseng et al [4] and
Chang et al [5] study the cross point assignment problem to
optimize crosstalk noise. Tseng et al [4] address interconnect
delay in their optimization problem. Even though they both
try to straighten a route by aligning the cross points of the
same net, that goal may not be fully achieved since crosstalk or
interconnect delay is given the highest priority. Also, since layers
are already fixed during global routing, the option to assign nets
to different layers to avoid crosstalk is not available.

Detailed routing stage usually takes a long time searching en-
tire subregions given by the global router. Also observe that
the maze search in the detailed routing is done in a sequential
net-by-net fashion. Consequently there exist paths with many
detours even though the global route is straight. Paths with
detours consume more routing resources and in many cases re-
duce routability of other nets, specially in congested regions.
Routability problems can be addressed with a smart rip-up and
re-route stage. However it is a time consuming solution. Based
on these observations, we strongly believe that it is important
to integrate a track (and layer) assignment between global and
detailed routing. We propose to assign long global routes, i.c.,
routes running over at least one whole global cell, to underly-
ing routing resources. We call these long paths as iroutes (as a
short name for interval of global route). The routing resources
are present in the form of gridlines and vias. We call these grid-
lines as tracks. They represent candidate locations where iroutes
can be assigned.

The first benefit of such a track assignment is that it fully
utilizes the information generated by the global router. With a
negligible fraction of the original detailed router’s running time,
it embeds a large part of the routes. The second benefit is the
efficient usage of routing resources since most of the routes are
laid in straight lines. The third benefit is that track assign-
ment introduces a stage where nets are routed in parallel. This
becomes especially important when both global and detailed
routing route nets in a sequential manner. Lastly, since a signif-
icant portion of all the global routes are realized as iroutes to be
assigned on the tracks, the neighborhood information for large
nets can be easily calculated. Thus track assignment provides a
suitable stage to optimize DSM issues that require neighborhood
information.

Track assignment has been a well studied problem from vari-



ous aspects. The first application of track assignment can be
found in the context of constrained via minimization. Kuo
et al [6] focus on the two layer problem. Extensions to multi-
layer are provide by Shi [7] and Chang and Cong [8]. These
approaches improve an existing routing of a design, while we
are concerned about constructing a routing. Track assignment
has found use in Multi-Chip Module (MCM) routing although
the constraints are somewhat different. Sriram and Kang [9]
and Ho et al [10] discuss the track assignment problem in this
context. The freedom of track assignment has also been utilized
to improve the delay of global interconnects by Ciesielski [11]
and Saxena and Liu [12]. Cho et al [13] assign cross-talk sen-
sitive nets to different layers, while simultaneously minimizing
the number of vias and layers. Cong et al [14] have proposed a
three stage routing system which performs global routing, wire
planning and detailed routing for variable width and variable
spacing designs. The wire planning stage is very similar to the
track assignment which we do. Though, the focus during wire
planning is only congestion minimization and is done on a net
by bet basis. Obviously the quality of wire planning is depen-
dent on net ordering. We however believe that in order to best
address the DSM problems all nets should be planned simul-
taneously. An independent work similar to our proposed track
assignment has been described by Kay et al [15]. However, their
work is motivated only by crosstalk optimization. It does not
consider routability issues such as pin positions and obstruc-
tions. Formulating crosstalk constraints as forbidding pairs of
wires to be assigned to adjacent tracks, they use an integer linear
programming (ILP) to solve the assignment problem. We also
draw the attention of the readers to U.S. patent by Groeneveld
and van Ginneken [16] which describes a system similar to the
one we propose. However none of the references in literature or
the patent describe the issues and impact of incorporating track
assignment in a routing flow. Our approach verifies that the
incorporation such a step in the routing flow is possible without
any undue burden on the quality of results.

The rest of the paper is organized as follows. In Section II
we briefly describe our routing system. In Section III, we will
discuss different possible requirements on track assignment. Its
subsections contain, problem formulation (Section III-A), cost
metrics to model the desirability of assigning iroutes to tracks
(Section III-B), underlying graph model for the track assign-
ment problem (Section ITI-C), an algorithm based on weighted
bipartite matching as a sub-optimal solution for the problem
(Section III-D), a look-ahead heuristic to improve the perfor-
mance of the algorithm (Section III-E) and and iroute splitting
scheme to reduce the detailed routing times (Section III-F). In
Section IV, we present some experimental results. We conclude
the paper in Section V.

II. BRIEF OVERVIEW OF OUR ROUTING SYSTEM

We now give a very brief outline of the routing system which
we have developed. We number the routing layers (also called
planes) from zero upwards, layer zero being the first layer of
metal. On a plane we model routing resources as a set of par-
allel gridlines. Gridlines on a plane can be either horizontal
or vertical, depending on the preferred routing direction of that
plane. They can be non-uniformly spaced on a plane and can be
spaced differently on different layers. Even though the gridlines
are either vertical or horizontal on a plane, connections perpen-
dicular to them are allowed at a slightly higher cost. These
connections are called jogs. The routing process starts with a
netlist which needs to be routed. Each net in the netlist is a
bag of components, such as pins and pre-routes (called netes)

that are to be connected together. The geometry of these netcs,
and routing obstructions, etc. is first read and stored in the
routing database. These geometries are mapped onto intervals
on gridlines. The database facilitates all the necessary queries
and provides for efficient manipulation of these intervals. The
routing process begins with global routing wherein the routing
region is partitioned into global cells (GCs). A global route is
built over the grid graph of GCs for each net. It consists of a set
of paths comprising of GCs. It defines a region in which a metal
path has to be constructed to complete routing of the net. Post
global routing, we do track assignment wherein contiguous rows
(columns) on the global route paths are identified and space
is reserved for them on the underlying gridlines in these rows
(columns). We will discuss more about the track assignment in
subsequent sections. Since we use a two-dimensional model for
global routing, we use the track assignment step to also obtain
a layer assignment. Post track assignment, we make the final
connections to connect all the netcs and iroutes of a net in the
detailed routing stage. After one pass of detail routing with
no rip-up, we perform a few iterations of rip-up and re-route.
Iroutes are ripped up with a higher cost than the metal seg-
ments created by detail routing. If an iroute is ripped up, then
the GCs that led to the creation of the iroute are used by the
detailed router to find the connections.

III. TRACK ASSIGNMENT

An objective for track assignment is that it should be fast and
yet provide a good starting point for the detail router to com-
plete with relative ease. To do so we free the track assigner from
tedious details of local connections. We only assign iroutes on
global routes which span more than one complete global cell in
a row or column. Local connections with pins and bends within
global cells are delegated to the detailed router. This results in
a formulation for the track assigner that can be solved quickly
and provides large improvement on the run-time for the whole
routing flow. A benefit of having an area router after track
assignment is that some iroutes can be left unassigned. Any
unassigned iroutes will be picked up and connected by the area
router using the global route as a guide. Since iroutes within a
row or column interact with each other, it is natural to formu-
late the track assignment problem on a whole row or column of
global cells. Figure 1(A) depicts the global cells with horizontal
and vertical tracks on the top row and left column of the global
route cell layout. As input to the track assignment, we have
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Fig. 1. Global cells and markings of horizontal and vertical grid lines
in row and column respectively. Marking for a net shown in shaded
GCs.

a partition of the routing area as a two dimensional array of
global cells, and a global route for each net. The track assigner
works on a full row or column of the GC array at a time. Each
row (column) is called a panel. A panel has routing resources



in the form of gridlines (called tracks). Note that for a hori-
zontal (vertical) panel, all tracks are horizontal (vertical). A
track inside a horizontal (vertical) panel can be identified with
its ¥ (z) and z coordinate. The z-coordinate identifies the plane
that the track lies on, and the y-coordinate (z-coordinate) gives
its position on that plane. The length of horizontal (vertical)
iroute is the absolute difference between the x-coordinates (y-
coordinates). We exclude tracks that are not sufficiently spaced
(at least line-to-line and preferably via-to-line apart) so that
two iroutes can be placed on adjacent tracks without any spac-
ing violations. A track can have obstructions marked onto it.
These are caused by pre-routes, routing obstructions, macro-
blocks etc. The global route for a net is typically represented
by the set of GCs wherein the net’s final physical connection
has to be achieved. Figure 1(B) shows the GCs for a net with
4 netcs in shaded form. The global route of the net can also
be visualized as a set of connections to be realized. In this ex-
ample, these connections are (1,2) to (1,4), (1,4) to (6,4) to
(6,6) and (3,4) to (3,5). Note that these connections collec-
tively cover all the GCs in the global route for the net. Note
that the representation of a global route by a set of connections
is not unique. Any representation works well for us, as long as
it doesn’t have unnecessarily small connections. We then break
these connections into segments called iroutes. These iroutes are
marked in solid dashed lines in Figure 1(B). Note that the small
connection from (3,4) to (3,5) does not result in any iroute as
it does not traverse a complete global cell. The three resulting
iroutes belong to three different panels, two horizontal and one
vertical. The coordinates of these iroutes determine the panels
that contain them. The track assigner assigns iroutes in a panel
to the available tracks in the same panel. It does so one panel
at a time. For the rest of the paper, we will assume without loss
of generality that the panels are horizontal. The mathematical
formulation of the track assignment problem is as follows.

A. Problem Formulation

Let 7 be the set of tracks inside a panel. Let Z be the set of
iroutes which need to be track assigned in this panel. Each track
tr € T can be represented by its set of constituent contiguous
intervals. Denoting these intervals by z;, we have tr = Wz;.
Each of this z; is either

e a blocked interval, where no iroute from Z can be assigned,

e an occupied interval, where an iroute from Z has been as-

signed or

o a free interval, where no iroute from the set Z has yet been

assigned.
An iroute ir € 7 is said to be assignable to tr € T, tr = Wa;,
iff z; Nir # O implies that either z; is a free interval or is an
interval occupied by an iroute of the same net (as iroute r).
The track assignment problem can be defined as:

Track Assignment Problem: Given a set of tracks 7 and
a set of iroutes Z, and a cost function F' : Z x T — N which
represents the cost of assigning an iroute to a track, find an as-
signment that minimizes the sum of the costs of the assignment.

B. Cost Metrics

We now describe the various factors that play a role in deter-

mining the cost of assigning an iroute ir to a track ¢r.

« Plane cost: In typical routing instances with standard
cells, a large number of pins lie on layer zero. In order
to connect to these pins, the resources on layer one must
be carefully utilized. Placing long iroutes onto layer one
(the layer immediately over the pins) hinders subsequent
connections to pins on other nets (than the iroute). So it

is desirable to put longer iroutes on higher layers. This is
modeled through a plane cost. If tr is on plane p, and [ is
the length of the iroute ir, then this cost is proportional
to |l — p|. This way longer iroutes are penalized if they are
assigned to lower planes.

o Track obstruction cost: This component captures the
assignability of an iroute ir to a track ¢r. If ir is assignable
to tr, then this cost is zero. If this assignment is forbidden
due to some blockages, pre-routes (say power or ground)
etc. then its track obstruction cost is set to infinity. Note
than once an iroute gets assigned to a track, it becomes
an obstruction for iroutes belonging to other nets. The
track obstruction cost for other iroutes overlapping onto
this track becomes infinity.

¢ Via obstruction cost: An assigned iroute ir will connect
with the rest of the net components and other assigned
iroutes on the same net in the regions defined by the GCs.
Sometimes global cells (in which connections have to be
realized) are congested in layers above or below the track
with pre-routes such as power or ground straps. In such a
case, realizing a vertical connection will be impossible. The
via obstruction cost prevents iroutes from being assigned
to tracks that will be hard to connect.

¢ Planar anchoring cost: From the detailed routing per-
spective there are definitely preferred tracks for each iroute
that help it to find a better solution. In the interest of
minimizing jogs and wire length it is desirable to assign
iroute 4r as close as possible to other net components and
assigned iroutes of its underlying net. For this, we would
like to assign #r to a track ¢r whose y-coordinate mini-
mizes the sum of the distances of connections to be made
in the y direction. If y; is the y-coordinate of the track tr
and Y; = {y1,¥2,--.,Ym} is the set of y-coordinates of the
gridlines where some net components and assigned iroutes
of the same net are already marked, then this cost is pro-
portional to E?h’EYi lye — il

o Via anchoring cost: In the interest of minimizing vias
it is desirable to assign iroute ¢r on a plane as close as
possible to other net components and assigned iroutes of its
underlying net. This cost is similar to the planar anchoring
cost, except that it is in the z-direction.

As a simple example consider the iroute in Figure 2. It is an-
chored to the pin on the right and the vertical assigned iroute
A on layer four. Iroute A crosses tracks 3 and 4 on layer three.
There is also an obstruction on track 4. For the horizontal
iroute, track 1 has a cost of 3 (1 from the pin and 2 from the
iroute A). Similarly tracks 2, 3 and 4 have a cost of 1, 1, and
oo respectively. Note that some of these costs (or parts thereof)

Assigned iroute on layer 4
A

JE5 it ~Obstruction on layer 3
Track 4.7, L

Candidate tracks on layer 3

Track 1,7

Iroute to be assigned on layer 3

Fig. 2. Anchor costs and obstruction costs

are static, i.e. given Z and T the costs can be calculated and
stay unchanged. Example of such costs are plane costs. Also
the components of track obstruction cost, via obstruction cost,
planar anchoring cost and via anchoring cost due to net com-
ponents are static. The dynamic portion of cost depends on



assignment of other iroutes. Components of the last four costs
that rely on assigned iroutes belong to this category.

As mentioned in Section I, track assignment also lends itself as
a suitable place to address several other DSM issues. Crosstalk
avoidance, congestion minimization, process antennae issues etc.
are to name a few of these. From the crosstalk perspective, one
would like to put an iroute ¢r on a track tr whose neighboring
tracks are relatively less populated. A cost metric capturing
the presence of iroutes onto the neighboring tracks can easily
be constructed. Preference to placing certain nets together (like
placing a sensitive net near a ground strap for shielding) can also
be modeled easily. Further, with the use of dummy obstacles (or
dummy iroutes) extra spacing can be introduced wherever nec-
essary. Similar measures can be taken to address the congestion
issues. The issues related to process rules can also be addressed
during track assignment. For example, the process antenna rule
requires that there should be an upper bound on the metal be-
ing laid on a plane if the metal has a connection to a gate of a
transistor. This translates to the the upper limit on lengths of
the iroutes. If an iroute is of length longer than this upper limit,
then the iroute can be split and it can be ensured that the split
iroutes are laid on different planes. It is easy to construct cost
metrics for other DSM issues as well. In our implementation
we have considered the basic cost metrics mentioned in bullet
points above.

Before concluding our discussion on cost metrics we would
like to emphasize that there exists a strong interplay across
these cost components. The overall cost of assigning ir to tr
can be taken as a weighted sum of all these cost components.
The weights need to be chosen with extreme care to prevent
any extreme biasing towards one of the costs. The weights have
to be chosen with appropriate consideration of various technol-
ogy parameters and fine level implementation details. Further,
the weights should be verified with extensive experiments over
industrial benchmark circuits.

The track assignment problem has subtle nuances. With ob-
struction free tracks and without the cost metrics attached with
each iroute-track assignment it can be easily solved using an
O(n.log n) algorithm [17]. However, with obstructions on tracks
and the attached costs, even the feasibility part of the track
assignment problem becomes intractable. It is NP complete to
decide if all the iroutes in Z are assignable to the available tracks
in 7. The optimization problem of finding a minimum cost so-
lution is harder than the feasibility problem and hence it is also
NP complete. The proof for NP completeness follows from a
reduction from Circular Arc Coloring Problem [18]. Since the
details of the proof are not central to our discussion we defer
this to Appendix A.

C. Underlying Graph Model

Fig. 3. Iroutes {a, b, ¢, d, e} and tracks {1, 2, 3} in the track assignment
problem.

We now detail a graph model similar to the horizontal con-
straint graph model given in [19]. We add a weighted bipartite
graph to model the iroute to track assignments. First we note
that if the tracks are horizontal then each of the iroutes are also
horizontal. Each iroute ir € Z can equivalently be represented
by its underlying interval (I, u), where [ is the smaller endpoint
of the interval and u is the larger endpoint of the interval. The
density of a point p on a track, denoted by d, is equal to the
number of iroutes in Z whose corresponding interval contain this
point. The density d of the set Z is the maximum of d, over
all points p on the tracks. In order to have a feasible solution
to the track assignment problem, we should have d < |T|. We
now build the graph model for the problem. We do this vis a
vis an illustrative example. Let us consider the track assign-
ment problem given in Figure 3. We have Z = {a,b,¢,d,e} and
T = {1,2,3}. Further, note that track 1 has an obstruction
marked on it which prevents iroutes a and e to be assigned to
it. We first build the sroute overlap graph G(Vi, E,). This is es-
sentially the horizontal constraint graph. Each node v € V7 cor-
responds to an iroute in Z. Two nodes v;1 and v;2 are connected
by an edge e € E, iff these iroutes belong to two different nets
and their spans overlap. An edge indicates that the two iroutes
can not be assigned to the same track simultaneously. In such
cases we call nodes v;1 and v;2 as conflicting nodes or conflict-
ing iroutes. The graph G(Vi, E,) for the iroutes of example in
Figure 3 is depicted in Figure 4. Let Vr denote the set of tracks
in panel. Then the assignability of iroutes in V; to the tracks
in Vr is denoted by a bipartite graph B(Vr, Vr, E;), where E.
represents its edge set. The cost of an edge connecting iroute
v; to a track v is the cost of this assignment. The bipartite
graph B(Vi, Vr, E;) for our illustrative example is also given in
Figure 4. To be able to work in a unified model we merge these
two graphs to get a unified graph model as illustrated in the
same Figure. Note that the edges E, of G(V1, E,) are added
to B(Vi,Vr, E;). Looking at this model, the track assignment
problem reduces to matching nodes in V; to the nodes in Vr,
such that no two conflicting nodes in V; are matched to same
track in V. Note that multiple nodes from V; can be matched
to a single node in Vr as long as these nodes are not conflicting
with each other. We are interested in minimum cost matching,
amongst the ones which maximize the length of iroutes assigned
to tracks. We have a polynomial algorithm for standard bipar-
tite graph matching, but for this modified problem the problem
is NP-complete. We hence solve the problem through a heuristic
method based on weighted bipartite matching over the subprob-
lems built from the main problem.

¢ 1
b

d a e c 2
d

Fig. 4. Iroute overlap graph, bipartite assignment graph and the com-
bined graph model.



D. Weighted Bipartite Matching

If we focus on one iroute, it is easy to sort the tracks accord-
ing to its assignment costs. However, if two iroutes overlap each
other they can not be assigned to the same track. Our algorithm
selects a set of mutually conflicting iroutes and uses a weighted
bipartite matching to assign them to different tracks. In or-
der to do that, the algorithm first computes the maximal sets
of conflicting iroutes. This is equivalent to finding the largest
clique V. in the graph G(V7, E,). Since the graph is an interval
graph it can be done in polynomial time [20]. The algorithm as-
signs one maximal subset of conflicting iroutes at a time starting
from the largest subset. We model the problem as a minimum
weighted bipartite matching problem and use the shortest aug-
menting path algorithm by Jonker and Volgenant [21] to solve
it. After the assignment is done, the combined graph model is
updated. The nodes in the clique are removed from the graph
G(Vi, E,) and B(Vi,Vr, E.) along with their incident edges. If
two conflicting iroutes v; and v; are such that, v; € Ve, v; ¢ Ve
and v; is matched to v € Vr, then we know that in v; can
never be assigned to v;. Thus we remove the edge {v;,v:} if it
exists in E.. After performing these modifications on the graph
model, we determine once again the largest clique in the mod-
ified graphs and proceed as before. This heuristic will attempt
to get a minimum weight matching for the entire problem. The
heuristic however can easily miss certain obvious assignments.
To further increase its performance we add look ahead into it.

E. Look-Ahead Heuristic

Let us reconsider our illustrative example. It may happen
that the maximum clique detected is {b,¢,d}. An assignment
to tracks {3, 2, 1} respectively prohibits assignment of a on any
track. This solution is shown in Figure 5. We however know
that a better solution, shown in Figure 6 does exist which can
assign all iroutes. To do this we augment our graph update to
incorporate a look ahead step. When we assign an iroute to a
track we modify the graph model as explained above. If in this
process, any iroute v; € Vi becomes uniquely assignable to a
track in Vr (i.e., there is only one edge from v; to a node v; in
bipartite graph model), we accept this assignment immediately.
We assign v; to v¢ and modify the graph model. In our example,
assigning b to 3 makes a uniquely assignable to 2, hence we
assign a to 2 and continue, and in the end we get the solution
shown in Figure 6.

I I
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Unassigned iroute

Fig. 5. Solution to the track assignment problem given in Figure 3.
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Fig. 6. Solution to the track assignment problem given in Figure 3 with
lookahead.

F. Iroute Splitting

At the end of the above mentioned clique based modified
matching algorithm (with lookahead) it is possible that a few

iroutes in Z are still unassigned to any track in 7. These iroutes
are unassignable to any tracks in 7. We have conducted experi-
ments and found out that most of these iroutes span many GCs.
In other words, the intervals corresponding to these iroutes are
long. If left unassigned during track assignment the detailed
router has to spend lot of effort realizing a physical connection
in these long GC regions implied by these cells. It is worthwhile
to consider assigning parts of these iroutes to tracks in 7. This
reduces the search region for the detailed router. Let an iroute
ir = (I, u) be one such unassigned iroute. We know that (I, u) is
not assignable to any track in 7. We partition (I,u) into three
intervals (I,p1), (p1,p2) and (p2,u), where I < p1 < p2 < u, and
the interval (p1,p2) is assignable to a track in 7. Looking into
the blocked and occupied intervals on all the tracks, we find
out the widest interval (p1,p2) which is assignable to at-least
one track in 7. We then split the iroute ir into potentially
three iroutes and assign the middle part to a track where it is
assignable with least cost. We split and assign all the unassigned
iroutes one by one.

G. Owerall Track Assignment Algorithm

1 - Break global routes into segments
2 - Partition these segments into
3 horizontal and vertcal panels
4 - For each panel
5 - build the graph model
6 - build the segment overlap graph
7 - build the bipartite assignment graph
8 - determine the largest clique in segment overlap graph
9 - find the weighted bipartite matching for the segments
in this clique to the tracks in the assignment graph
10 - for each of these segment to track assignment
11 —perform the lookahead implications
12 —update the graph model
13 - if assignable segments exist, goto step 8
14 - for each unassigned segment
15 - find the track which can host its largest
part onto itself
16 - split the segment around the largest part
17 — assign the largest part onto the concerned track
18 - update the connectivity informations for assigned
segments and netcs. Account for unassigned segments.
19 - proceed with detailed routing and ripup and re-routing

Fig. 7. Top level track assignment algorithm.

The track assignment stage is introduced in a standard rout-
ing flow as shown in Figure 7. After global routing, we detect the
long segments from the global routes. We partition the GCs into
panels, which are rows and columns of the GC array. We pro-
ceed on a per panel basis. We build the iroute overlap graph for
the iroutes in a panel. The bipartite assignment graph is built
by looking into the blockages for these iroutes onto the tracks.
We then detect the largest clique in the iroute overlap graph
and compute its minimum weight bipartite matching. Upon as-
signment of the matched iroutes to their tracks, we perform the
lookahead implications. The graphs are updated with each as-
signment. We iterate this process on the modified graphs and
continue till either all the iroutes are assigned or the unassigned
iroutes have no feasible track. Unassigned iroutes are then split
and we assign the split parts to the respective least cost tracks.



Finally, we update the connectivity information to account for
all the iroute assignments and the failed assignments if any. The
connectivity information can be thought of as regions composed
of GCs to be used by the detailed router as a guide to find paths.
The detailed router then looks for the connectivity information
associated with each net (on a per net basis) and tries to de-
termine a physical connection across all the constituent netcs
and assigned iroutes of the net. After detailed routing, we go
through a few passes of rip-up and re-route phases. In this step,
a route for a net is removed if doing so facilitates routing of some
other net(s) at lower cost. We would like to emphasize that the
track assigned iroutes can also be ripped up during these passes.
Though such rip-ups are performed at higher costs compared to
metal laid by the detailed router. Thus the routing system can
overcome poor decisions made by the track assignment step.

IV. EXPERIMENTAL RESULTS
TABLE I

SPECIFICATION OF PLANES (P), CELLS, NETS, PINS AND CONGESTION (C)
NUMBERS FOR THE TEST CIRCUITS

| Circuit [ p| cells| mets | pins [ ¢
cktl 5 7093 7223 37230 | 0.85
ckt2 5 89315 | 107711 | 343157 | 0.86
ckt3 5 34852 41751 | 202602 | 0.63
cktd 5 5479 4311 26590 | 0.95
cktb 3 13132 7598 48767 | 0.94
ckt6 5 90012 | 108466 | 344390 | 0.63
ckt7 3 38460 44369 | 130461 | 0.78
ckt8 4 | 106085 | 115986 | 555569 | 0.49
ckt9 4 | 176608 | 181822 | 573637 | 0.81
ckt10 5 13816 14032 73374 | 0.65
cktll 3 40638 45862 | 148406 | 0.75
ckt12 5 11229 5390 41093 | 0.85
ckt13 5 24902 24131 | 135862 | 0.99
cktl4 6 | 149491 | 150211 | 500076 | 0.77

In this section, we support the suggested track assignment
step by experimental observations. We have implemented the
track assigner in our routing system. We report router perfor-
mance with and without the use of track assignment stage. The
experiments were conducted on several industrial circuits. The
details of the circuits for which we present experimental results
are reported in Table I. Note that circuits are taken from differ-
ent technologies (3, 4, 5, and 6 layer), and the number of nets
go up-to 180K. Most of these circuit have pre-routes, and block-
ages, which the router needs to respect. Congestion is defined
as the ratio of total active cell area (discount filler cells, power
decoupling capacitor cells and antenna diode cells) to the total
layout area. Note that a few of these circuits are very congested
designs. The weights for the various cost components are the
same for all designs.

In Table IT we compare the router performance in 2 stage and
3 stage routing. In 2 stage routing, global routing is followed by
detailed routing, without any intermediate track assignment.
In 3 stage routing, an intermediate track assignment stage is
used. Table IT contains the total run-time for the routing, peak
memory usage, total number of vias used in the routing and
the total length of the final routes which comes out after the
detailed routing. It should be no surprise that the run-times
for 3-stage routing are less compared to that of 2 stage routing.

This is primarily due to the fact that the detailed router has
less area to search in 3-stage routing. Also the time spent in
track assignment during 3-stage routing is very small compared
to the total runtime. However the 3-stage process comes with
a minor excess use of routing resources (number of vias and
length of routes). We conjecture that the via count loss can
be easily recovered by a fast via-minimization step employed at
the end. We get a runtime reduction by a factor or nearly up-
to 3, with extra routing resource of only 3-4%. All experiments
were conducted on a 450MHz UltraSPARC-II machine with 4GB
RAM. We conducted the experiments to measure the efficacy of
various cost metrics. Just with the fundamental via and plane
obstruction costs we get the runtime speedup as reported in
Table II. With the use of horizontal anchoring cost the metal
length on an average reduces by 2-3%. With the further use of
vertical anchoring cost the number of vias also reduces by 4-5%.

Let Ly, be the total length of all the global routes put to-
gether. Let L;, be the total length of all the iroutes. Note that
an iroute was defined to be a segment in global route which spans
at least two GCs. So only the highly zigzagged (or stair-cased)
global routes escape from being broken into iroutes. For our
test suite the ratio L;, /Ly, is between 0.58 and 0.85. This ratio
indicates the fraction of global routes which can potentially get
track assigned. Further, let L!, be the total length of iroutes
which get track assigned by the track assigner. Then we can
measure the success of the track assigner by the ratio Lfr /Lir.
We have found this ratio very close to 100% for most of the
circuits in our suite. In Table III, we report the ratio LﬁT/LW
with and without the use of lookahead and segment splitting
heuristics. It can be noted that with the use of heuristics the
ratio improves substantially whenever it is far from 100%. The
efficacy of the track assigner, in terms of reducing detailed rout-
ing efforts, can be measured by the product of L; /Ly, and
Lt /L;. Since L, /L; is very close to 100% for most of the de-
signs, this product is very close to L;,/Lg,. For all the circuits,
the introduction of the track assignment stage did not affect the
net completion. We report the percent iroutes (for each circuit)
which are ripped up in Table III column (R). In most of the
circuits less than 1% of the assigned iroutes are ripped up. For
the most congested circuit (ckt7) it is 3.6%, which also is a small
fraction.

The efficiency of our approach will be demonstrated by a com-
parison of a “back of the envelop” calculation to our method
with the one proposed by Kay et. al. [15]. They use a Linear
Programming relaxation of the Integer Program formulation of
the track assignment problem. It is very easy to formulate the
costs we discuss in section III-B in an ILP formulation. The con-
straints from crosstalk conflicts will not arise in our case (type
I1T Clique constraints). On a 300MHz machine they assign 100
iroutes on 11 tracks (1100 variables and 1373 constraints) in 6
seconds and 530 iroutes on 23 tracks (12190 variables and 14457
constraints) in 15 seconds. Assuming that time complexity is
linear in the constraint matrix size (size = number of variables
x number of constraints) we get t ~ 5.113 x 10 %size + 6. In
Table IIT we report the number of panels for each design. Also
given are average number of tracks in each panel and the aver-
age number or iroutes to be assigned on these tracks. Design
‘ckt9’ has 492 panels, with each panel having on an average 29
tracks and 142 iroutes. We have one constraint per iroute (type
I Clique constraint) and one constraint per track for each clique
in the interval graph (type II Clique constraint). We have on
an average 100 cliques per panel leading to 4118 variables and
3042 constraints). This gives t ~ 6.64 seconds on a 300MHz ma-
chine. For the whole design it would take us 3267 seconds. On



TABLE II
COMPARISON OF RUNTIME (T), MEMORY REQUIREMENT (M), TOTAL VIA USED (V), TOTAL METAL LENGTH (L) USED FOR 2-STAGE (GR-DR CASE) AND 3-STAGE
(GR-TA-DR CASE) ROUTING. IN 3-STAGE ROUTINE, TRACK ASSIGNMENT RUNTIME (TA-T) IS ALSO REPORTED.

GR-DR GR-TA-DR

Circuit T | M | Vv | L TA-T | T | M | A\ | L

cktl 238 48 56767 | 4.68977e+08 5 162 49 56787 | 4.72851e+08
ckt2 7286 | 570 867461 | 1.75286e+10 228 | 2806 | 607 897341 | 1.76642e+10
ckt3 1989 | 223 346632 | 5.66531e+09 60 949 | 231 353747 | 5.71506e+09
cktd 137 23 41496 | 3.49537e+08 4 100 24 41800 | 3.52736e+08
cktb 271 26 58252 | 8.58121e+07 13 197 27 57776 | 8.70529¢+07
ckt6 6759 | 566 854603 | 1.72406e+10 214 | 2710 | 599 881910 | 1.73591e+10
ckt7 5986 | 147 366840 | 7.12562e+09 80 | 3100 | 168 376083 | 7.22332e+09
ckt8 8701 | 416 758855 | 2.13564e+09 284 | 3095 | 463 779783 | 2.14875e+09
ckt9 6656 | 524 | 1303603 | 2.03793e+10 151 | 3120 | 549 | 1298731 | 2.05398e+10
ckt10 363 20 111011 | 1.14971e+09 20 266 23 112447 | 1.15623e+09
cktll 1180 44 352526 | 4.78811e+08 54 920 44 363546 | 4.86199¢+08
ckt12 2446 40 46247 | 4.07718e+08 4 | 1845 40 45878 | 4.11807e+08
ckt13 862 | 129 214543 | 2.22958e+09 27 544 | 136 219549 | 2.24541e+09
cktl4 7104 | 752 | 1234374 1.0968e+10 205 | 3618 | 791 | 1275928 | 1.10529e+10

TABLE III V. CONCLUSIONS AND FUTURE WORK

TRACK ASSIGNMENT RESULTS WITH (WI-H) AND wiTHOUT (WO-H) THE
LOOKAHEAD AND IROUTE SPLITTING HEURISTICS. ALL RATIOS ARE EXPRESSED
AS PERCENTAGE. ALSO SHOWN ARE NUMBER OF PANELS (P), AVERAGE NUMBER
OF TRACKS PER PANEL (|7|), AVERAGE NUMBER OF IROUTES PER PANEL (|Z])
AND THE PERCENT OF ASSIGNED IROUTES RIPPED-UP (R) IN RIP-UP AND
RE-ROUTE PHASE.

Circuit | P [ [T1| 1Z] | R | Lir/Lyr L., /L
WO-H | WI-H
ckt1 8 | 33| 36] 0.15 65.33 | 100.00 | 100.00
ckt2 627 | 34 | 134 | 0.11 85.12 | 99.89 | 99.99
ckt3 330 | 41| 89 | 0.17 7435 | 99.98 | 99.99
cktd 68 | 37| 39041 62.94 | 100.00 | 100.00
ckt5 134 | 18 | 34| 1.16 58.31 | 85.59 | 93.85
ckt6 627 | 34 | 124 | 0.09 84.87 | 99.98 | 100.00
ckt7 | 338 | 22 | 166 | 3.60 85.32 | 72.25 | 89.22
ckt8 704 | 29 | 159 | 0.19 80.98 | 98.89 | 99.72
ckt9 492 | 29 | 142 | 0.08 64.10 | 99.94 | 99.97
ckt10 | 144 | 33 | 51 | 0.10 60.22 | 100.00 | 100.00
cktll | 316 | 22 | 122 | 0.35 59.50 | 84.07 | 94.61
ckt12 78 | 29| 39| 3.38 64.48 | 99.93 | 99.93
ckt13 | 185 | 37 | 95 | 0.02 72.91 | 99.99 | 100.00
cktld | 513 | 40 | 152 | 0.04 75.02 | 99.97 | 100.00

a 450MHz machine this would take us = 2156 seconds. This is
approximately two-thirds the total routing time for our system.
Using our approach we are able to perform track assignment for
all these panels in 151 seconds (See column TA-T in Table II).
This is a speedup of about 14 over the projected ILP based ap-
proach. Though we are unable to estimate the sub-optimality
of the heuristic compared to the ILP, experimental results show
that our approach is very effective in improving the run-time.
Coupled with the facts that the L!,/L;, ratio is very close to
100% for most of the designs and a very small fraction of the
iroutes are ripped, this leads us to conclude that our heuristic
is able to solve the track assignment problem very efficiently.

We have suggested a track assignment stage between global
routing and the detailed routing. This intermediate step re-
duces the run-times of overall routing process. The track as-
signment problem is posed as a modified bipartite graph match-
ing problem. It is proved that the problem is NP complete and
a heuristic based on weighted bipartite matching is suggested.
Additional heuristics to improve the performance of the overall
algorithm are also suggested. The combined cost metric is capa-
ble of addressing most of the routing constraints simultaneously.
This includes efficient usage of routing resources. Finally, exper-
iments on industrial circuits show the efficacy of the proposed
approach.

The current implementation incorporates only the basic cost
metrics which are aimed towards optimizing the usage of rout-
ing resources. We are currently working to incorporate other
costs which address crosstalk, timing, congestion, antennae ef-
fect and other DSM problems. We are also investigating tech-
niques to calculate gridlines efficiently in an environment where
wire widths could differ on the same layer.

APPENDIX
I. NP HARDNESS OF TRACK ASSIGNMENT PROBLEM

In this section, we prove the NP completeness of feasibility
solution to track assignment problem (TAP). We show that it is
NP complete to decide if all the iroutes are assignable to avail-
able tracks in the presence of obstructions. We exhibit a polyno-
mial time reduction of Circular Arc Coloring Problem (CACP)
(which is known to be NP complete [18], [22]) to TAP. We use
the notations given in [23] where the NP-completeness of Re-
stricted Track Assignment Problem is proved using a reduction
from CACP.

A circular arc graph is defined through a set of arcs A on a
circle. If |A| = s then the arcs have 2s endpoints. Each arc
A; € A can be thought of as a connection of its two endpoints
(as, b;) in a clockwise manner (See Figure 8(A)). Given any point
P on the circle the subset Ap (where Ap C A) of arcs which
contain this point are termed P-equivalent arcs. CACP seeks
to assign colors to arcs in A such that every two P-equivalent
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Fig. 8. Opening a circular arc representation.

arcs, for all points P on the circle, are assigned distinct colors.
The maximum of |Ap|, over all P, is called the density of A
and is denoted by 4. It is NP-complete to decide if § colors are
sufficient to color an arbitrary instance A of CACP.

We now sketch the polynomial-time reduction of CACP to
TAP. Consider an arbitrary instance .4 of CACP. Let P be a
point with § = |Ap|. Let Ap = {A1, As,..., As}. The point P
is selected such that it is not an endpoint of any arc in Ap. See
Figure 8(A) for an illustration of a circular arc graph. We seek
to convert the circular arcs into linear intervals (equivalently
iroutes) which can then be assigned to tracks (which are equiv-
alent to colors in CACP). For this conversion we need to ‘cut’
the arcs at a suitably chosen point. The points on the circle are
numbered 1 to n and the endpoints of the arcs in A lie on these
points. We ensure that the point P lies in between n and 1;
otherwise the points can be renumbered. We cut the arcs at the
point P. The arcs Ap when ‘cut’ at point P result into intervals
A%. The set A% is obtained by cutting each arc A; = (a;, b;) in
Ap into two intervals I;” = (2—2i,b;) and I}t = (a;,25+2i—1)
(See Figure 8(B)). The remaining arcs in (A—.Ap) can easily be
though of as intervals. The complete set of intervals which need
to be track assigned is (A—Ap)UAS. Let Zp = (A—Ap)UA%.
The density of iroutes Zp is clearly §. We need to determine if
Zp can be assigned onto tracks 7, such that |7]| = 4. Such an
assignment would result into a coloring in A, provided that I
and I;" are assigned to same track for 1 <14 < 4. Since the arcs
in Ap need to be assigned § distinct colors, we a-priori assign
I7 and I on track number 4, for 1 < i < §. Having assigned
these iroutes we mark them as obstructions for the assignment
of the rest of the iroutes in (A — Ap).

Theorem A.1: An arbitrary instance of A is é colorable if and
only if all the iroutes in (A — .Ap) can be assigned on tracks in
T (such that |7] =46 and I; and I;" are marked as obstruction
on track 7, for 1 <14 < 9).

Proof: (only if) If arcs in A are § colored the iroutes are track
assigned as follows. Assume A; is assigned the color number 4,
for 1 <4 < §; otherwise, the colors are renamed. The intervals
I; and IZ-"' are already marked to track 7. The rest of the inter-
vals are assigned to the track number equal to the color number

of the corresponding arcs.

(if) Consider an assignment of (A —.Ap) on 7. Since the iroute
I; and Ii+ are marked as obstructions on track i, the corre-
sponding arc A; is hence assigned the color number i. For the
remaining intervals, which have one to one correspondence with
the arcs in (A— Ap), the corresponding arc is assigned the color
number same as the track number. A legal coloring of arcs in
A is thus obtained. |
TAP is in class NP, as we can non-deterministically assign the
iroutes to tracks and check the validity of the assignment. Based
on above theorem, we conclude that it is NP-complete to decide
if the given set of iroutes are assignable to the available tracks in
the presence of obstructions. To get a minimum cost assignment
for TAP is also NP-complete.
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