
Clock Schedule Verification Under Process Variations∗

Ruiming Chen and Hai Zhou
Electrical and Computer Engineering

Northwestern University
Evanston, IL 60208

Abstract

With aggressive scaling down of feature sizes in VLSI fab-
rication, process variations have become a critical issue in
designs, especially for high-performance ICs. Usually having
level-sensitive latches for their speed, high-performance IC
designs need to verify the clock schedules. With process vari-
ations, the verification needs to compute the probability of
correct clocking. Because of complex statistical correlations,
traditional iterative approaches are difficult to get accurate
results. Instead, a statistical checking of the structural condi-
tions for correct clocking is proposed, where the central prob-
lem is to compute the probability of having a positive cycle
in a graph with random edge weights. The proposed method
only traverses the graph once to avoid the correlations among
iterations, and it considers not only data delay variations but
also clock skew variations. Experimental results showed that
the proposed approach has an error of 0.14% on average in
comparisons with the Monte Carlo simulations.

1 Introduction

With shrinking geometries in deep sub-micron technology,
process variation becomes a prominent phenomenon in fabri-
cation. These variations introduce random variables into the
timing of a fabricated integrated circuit. These delay vari-
ations and clock skew variations present a new challenge on
timing verification and yield prediction.

There are many recent researches that deal with the tim-
ing analysis under process variations [1, 2, 3, 4, 5]. These
researches are mainly focused on timing analysis of combi-
national circuits. However, the validity of a circuit really
depends on whether the correct signal values can be latched
into the memory elements, and the results of timing analysis
are to be used to check clocking conditions.

Level-triggered transparent latches are usually used in high-
performance circuits because of their high performance and
low power consumption [6]. The complexity introduced by
latches is that a signal can pass transparently through a latch
during its enabling period and this makes time borrowing
across latch boundaries possible. Therefore, timing analysis
can no longer be carried only on the separated combinational
part since the output time of a latch is now dependent on
its input time. Previous researches on clock schedule veri-
fication such as Szymanski and Shenoy [7, 8] used iterative
approaches to find converged time as the stable behavior and
checked it for set-up and hold conditions. Shenoy and Bray-
ton [9] used iterative approaches to check positive cycles in
constraint graphs based on structural properties of correct
clocking.

In this paper, we formulate the clock schedule verification
problem under process variations as computing the probabil-
ity of correct clocking. Even though the delays are random
∗This work was supported by NSF under CCR-0238484.

variables under process variations, they assume fixed values
after the fabrication. Therefore, when a signal pass through a
gate or a wire multiple times, it must incur the same amount
of delay each time. This means that in an iterative approach
the delays in different iterations are tightly correlated, which
makes the iterative approaches extremely difficult to be used
under process variations. Based on this, we propose to use
structural clock validity conditions with process variations.
The relationship between valid clocking and the condition
of no positive cycle in the latest constraint graph or nega-
tive cycle in the earliest constraint graph is first established.
Then this structural condition with delays and clock skews be-
ing random variables is checked through non-iterative graph
traversal techniques. One advantage of these techniques is
that each element in the circuit is traversed only once and the
problem of iterations is thus avoided. The proposed method is
implemented and the experimental results show only an error
of 0.14% on average compared with the Monte Carlo (MC)
simulations.

The rest of the paper is organized as follows. In Section 2,
the models of latches, clocking schemes, and the conditions on
correct clock schedules are given without consideration of pro-
cess variations. With the consideration of process variations,
Section 3 formulates the statistical clock schedule verification
problem and presents the difficulties involved in iterative ap-
proaches under process variations. Section 4 establishes the
structural conditions for valid clock schedules by extending
Szymanski and Shenoy’s work [7]. In Section 5, the prob-
ability that these structural conditions are held under ran-
dom element delays and clock skews is computed to give the
probability of valid clocking. The experiments on the pro-
posed approach and its comparison with the MC simulation
are reported in Section 6. Finally, the conclusion is given in
Section 7.

2 Deterministic clock schedule verification

2.1 Models of clock and transparent latches

Clock is the most important mechanism used in a synchronous
circuit. A clock is a periodical signal used to regulate other
signals in the circuit. With the help of a clock, the design of
other signals is relaxed to tolerate glitches or false transitions
if they pass the safety checking of the clock. Multiple phases
of a clock may be used in a circuit. A clock scheme for a
circuit is a set of periodical signals φ1, . . . , φn with a common
period c. A three-phase clocking scheme is shown in Figure 1.
Selecting a period of length c as the global time reference, we
can denote each phase φi by its starting and ending time
(si, ei) with respect to the reference. Note that it is possible
to have si > ei based on the selection of global time reference.
For simplicity, we assume that si < ei for all the phases, which
can be easily done by shifting the global time reference. We
generally order the phases such that ei < ej if i < j. Also

note that wi is used to represent the width of phase i.

c

e1

e2

e3

s1

s2

s3

w1

w2

w3

Figure 1: Three phase clocking with period c.

Memory elements are used in a circuit to store its state.
In a synchronous circuit, clock signals are usually applied at
memory elements to do the safety checking and to filter out
unintended transitions. For this purpose, besides the data in-
put and output, a synchronous memory element has a clock
input. Only under a certain condition of the clock input does
the memory element respond to the data input. Memory el-
ements can be categorized into two groups according to how
they respond to the clock input: flip-flops store the data when
the clock switches; latches let the output have the input value
when the clock level is high. Because of this, clock sched-
ule verification is easy in a circuit with only flip-flops but is
very hard when latches are used. We only focus on the latter
problem in the sequel.

2.2 Clock validity conditions

Traditional approaches to clock schedule verification are based
on a simple topological delay model of the combinational com-
ponent. Given the pin-to-pin delay of each gate, the maximal
and minimal delays from the output of one latch to the input
of another latch can be computed by traversing the topology
of the gate connections. Let ∆ij and δij represent the maxi-
mal and minimal combinational delays from latch i to latch j,
respectively. Also let Ai and ai represent the latest and the
earliest signal arrival time on the input of latch i, and Di and
di the latest and the earliest signal departure time on the out-
put of latch i, respectively. The famous SMO formulation [10]
is

Ai = max
j→i

(Dj + ∆ji − Epjpi) (1)

Di = max(Ai, c− wpi) (2)

ai = min
j→i

(dj + δji − Epjpi) (3)

di = max(ai, c− wpi) (4)

where pi is the clock phase controlling latch i and Eij is de-
fined as

Eij =

{
ej − ei if j > i
c+ ej − ei otherwise

We must also note that used here are local time referring to
local periods that end with the phase falling edges.

Ignoring initial hold condition violations, the SMO formu-
lation is too aggressive on earliest time calculation. A con-
servative formulation of earliest time constraints is presented
in [11], as

ai = min
j→i

(dj + δji − Epjpi) (5)

di = c− wpi (6)

In practice, the aggressive formulation might yield a so-
lution with a shorter period, but [12] showed that there are

common situations, such as a latch driven by a qualified clock
signal, in which the aggressive formulation is incorrect, and a
similar problem arises in circuits which permit the clock to be
stopped between adjacent latches to save power. Therefore,
in this paper, we choose the conservative formulation.

The solution of the above equations should satisfy the set-
up and hold time conditions:

Ai ≤ c− Si (7)

ai ≥ Hi (8)

where Si and Hi are the setup time and hold time of latch i
respectively.

3 Problem formulation

Process variations can be divided into inter-die variations and
intra-die variations. Inter-die variations are variations that
exist from one die to the next, while intra-die variations are
variations within a single chip. Inter-die variations affect all
the devices on the same chip similarly, while intra-die varia-
tions affect different devices differently in a same chip. Intra-
die variations often exhibit spatial correlations, where devices
that are close to each other are more alike than devices that
are allocated far apart. So the process variations influence not
only the data delay but also the clock network, and there ex-
ist correlations among the process variations of all the devices
including clock network.

There are many recent researches that deal with the tim-
ing analysis under process variations [1, 2, 3, 4, 5]. In [1],
a model of spatial correlations was shown. In [2], a block-
based static timing analysis technique was presented. In [3],
a method based on Bayesian Network is presented to do tim-
ing analysis. In [4], multiple arrival time propagation method
is shown based on the model in [1]. In [5], a PERT-like cir-
cuit graph traversal method based on Principal Component
Analysis (PCA) [13] is proposed to handle the complex situa-
tion considering path re-convergence and spatial correlations.
All these researches only deal with timing analysis on combi-
national circuits. However, sequential circuits dominate the
reality, and the validity of a circuit really depends on whether
the correct signal values can be latched into the memory el-
ements, so all these researches eventually should be used to
check the clocking conditions, which is the focus of our work.
Neves et al. [14] presented a graph-based algorithm to solve
the clock skew optimization problem considering process vari-
ations, and it only considered the process variations of clock
network while neglected the dominating data delay variations.
Our work provided a framework for statistical clock schedule
verification problems, which considered both data delay vari-
ations and clock network variations. The correlations among
data delay variations and clock network variations are all con-
sidered here.

With consideration of process variations, the clock sched-
ule verification problem can be formulated as

Problem 1 (statistical clock schedule verification)
Given a circuit and a clock schedule under process variations,
compute the probability that the clock schedule is correct in
the fabricated chips.

Since there exist process variations in the clock network,
the starting and ending time (sp, ep) are not the same for the
latches controlled by the same clock phase p, so we cannot

use a single pair of variables (sp, ep) to represent this phase.
A pair of random variables (si, ei) are used to represent the
clock phase controlling latch i. However, since the influence
of process variations on si and ei is the same, wpi = ei − si
is constant, and we only need one random variable ei. We
will have a constant wp to represent the width of each phase
p. Thus, we need n correlated random variables (ei) and p
constants (wp) to represent all the clock phases instead of 2p
constants (ep, wp) in the deterministic clock schedule verifi-
cation problem, where n is the number of latches, while p is
the number of clock phases. Since the delays are influenced
by process variations, ∆ij , δij , Ai, ai, Di are random variables.
Process variations also influence the setup time and hold time
of latches, so Si and Hi are also random variables. These ran-
dom variables may be correlated.

Now we use A(s) to denote that variable A is a random
variable. We can translate the deterministic conservative for-
mulation of time constraints to statistical conservative formu-
lation of time constraints.

A
(s)
i = max

j→i
(D

(s)
j + ∆

(s)
ji − E

(s)
ji) (9)

D
(s)
i = max(A

(s)
i , c− wpi) (10)

a
(s)
i = min

j→i
(dj + δ

(s)
ji − E

(s)
ji) (11)

di = c− wpi (12)

where E
(s)
ji is defined as

E
(s)
ji =

{
e

(s)
i − e

(s)
j if pi > pj

c+ e
(s)
i − e

(s)
j otherwise

Similarly, the solution of equations (9)-(12) should satisfy
the set-up and hold time conditions:

A
(s)
i ≤ c− S(s)

i (13)

a
(s)
i ≥ H

(s)
i (14)

Now our object is to calculate the probability that a given
clock schedule under process variation satisfies (9)-(14).

In clock schedule verification with process variations, when
traversing the same element in different iterations, the ele-
ment delay is the same. This means that in an iterative ap-
proach the delays in different iterations are tightly correlated,
which makes the iterative approaches extremely difficult to be
used under process variations.

The max and min operations on random variables are
involved in the conservative formulation. Since no accurate
analytical formula exists for any of them, the current practice
always uses approximation techniques to handle them, and
the correlation information cannot be maintained very well.
So the inaccuracy of max and min operations on random
variables introduces much inaccuracy into the final results.

4 Structural verification of clock schedule

4.1 Deterministic situation

Studying when the iterative approach to the clock schedule
verification will converge and whether the converged solution
is unique, Szymanski and Shenoy came up with some struc-
tural characterizations. A circuit C is modeled as a finite,
edge bi-weighted, directed graph G = (V,E,∆, δ). For each

memory element in C there is a vertex i ∈ V . G is called latch
graph. The following two theorems were given in Shenoy’s
thesis [8].

Theorem 1 The equation set composed by (1), (2) has a
unique solution if and only if there is no zero ∆-weight cy-
cle in the latch graph.

Theorem 2 If the latch graph has no zero δ-weight cycle,
then the equation set composed by (3), (4) has a unique solu-
tion.

Since it is very difficult to use iterative approach when
the delays become random variables, a theory of structural
conditions for a valid clocking will be established.

The latest equation set is composed by (1), (2) and (7).
The earliest equation set is composed by (5),(6) and (8). We
first translate the latest equation set into a system of inequal-
ities.

Ai −Dj ≥ ∆ji − Epjpi
Di −Ai ≥ 0

Di ≥ c− wpi
−Ai ≥ Si − c

Based on the correspondence between a system of difference
inequalities and the longest path problem on a graph [15], we
can construct a latest constraint graph corresponding to this
inequality set. A vertex will be introduced for each variable,
and another vertex O will be introduced as the reference time
0.

Similarly, the earliest equation set can be translated into
the following inequalities.

ai − dj ≤ δji − Epjpi
di ≤ c− wpi
−ai ≤ −Hi

We can construct an earliest constraint graph for the earliest
equation set.

As an example, consider a circuit given in Figure 2(a). Its
latest and earliest constraint graphs are given in Figure 2(b)
and (c), where the set-up time and hold time are assumed to
be 0 for simplicity.

p1
p2
p3

p1 p2

p3

(a)

00 0

0

8 8

8
-11

0

-12

-12

(b)

-1
8 8

-2-2

-12

(c)

0

08

4
4

4

O O

A1 D1

A3D3

D2A2 d1

d2 a2

d3d3a1 a3

clock phases

latch

∆=3 δ=2∆=5 δ=2

∆=4 δ=3

Figure 2: A clock schedule and its latest constraint graph (b)
and earliest constraint graph (c).

Based on this construction, the following theorem can be
established.

Theorem 3 A given clock schedule is valid if and only if the
latest constraint graph has no positive cycle and the earliest
constraint graph has no negative cycle.

4.2 Statistical situation

In statistical clock schedule verification problem, we can sim-
ilarly construct the latest constraint graph and the earliest
constraint graph based on constraints (9)-(14), but the weights
of edges in these two graphs are random variables. The fol-
lowing theorem can be easily proved based on Theorem 3.

Theorem 4 The probability that a given clock schedule is
valid is equal to the probability that the latest constraint graph
has no positive cycle and the earliest constraint graph has no
negative cycle.

When delays are constants, the structural condition for
a valid clock schedule provides a different view on the clock
schedule verification, and characterizes when an iterative ap-
proach converges to a unique solution. But a structural con-
dition may not lead directly to a non-iterative approach–the
current most efficient way of checking positive cycles is still
iterative (e.g. Bellman-Ford [15]). As we know, there are no
algorithms to deal with positive cycle detection problem when
the edge weights are random variables.

5 Statistical checking of structural conditions

5.1 Statistical static timing analysis

The statistical static timing analysis algorithm introduced in
[5] is used in our work to calculate the maximal delay be-
tween nodes. It used the PCA technique to transform a set
of correlated parameters into an uncorrelated set. It assumed
that the delay of gate or interconnect is normally distributed.
After doing PCA, a delay can be represented by a linear func-
tion of principal components (independent random variables
with standard normal distributions):

d(s) = d0 + k1 × p(s)
1 + ...+ km × p(s)

m ,

where d0 is the mean value, p
(s)
i are independent principal

components, and ki are coefficients. The sum function and
max function of normally distributed random variables are
provided, which can maintain the correlation information. Es-
pecially for the max function, Clark’s method [16] is used to
approximate the result, which assumed that the maximal of
two random variable with normal distribution is also normally
distributed. Then it used a PERT-like traversal on the circuit
graph to calculate the latest arrival time of primary outputs.

5.2 Latest time constraints

Statistical verification of the latest time constraints needs to
calculate the probability that all cycles are non-positive in the
latest constraint graph.

Let C = {c1, c2, . . . , cn} be the set of cycles, and |ci|(s) be
the delay of cycle ci. Let F (|c1|(s), |c2|(s), . . . , |cn|(s)) be the
joint cumulative distribution function (JCDF) of the delays
of cycles, then the probability that all cycles are non-positive
is F (0, 0, . . . , 0), which is equal to

Pr(|c1|(s) ≤ 0, . . . , |cn|(s) ≤ 0).

However, we know that

Pr(|c1|(s) ≤ 0, . . . , |cn|(s) ≤ 0) = Pr(
n

max
j=1

(|cj |(s)) ≤ 0).

Thus, if we can get the distribution of the maximum delay of
all cycles, then we can get the probability of the circuit sat-
isfying the latest time constraints. But the number of cycles

is often exponential in the number of vertices of a graph, so
enumeration method is prohibitive.

However, if we can classify the edges of a directed graph
into two disjoint sets such that each cycle is just formed by
two simple paths, one composed of edges from one set, then
the enumeration of all cycles is not necessary. For example,
there are eight cycles in the graph shown in Figure 3, we can
classified its edges into two sets:

S1 = {(a, b)(b, d)(a, c)(c, d)(d, e)(d, f)(e, g)(f, g)}

and
S2 = {(g, h)(g, i)(h, a)(i, a)}

such that the subgraph by each of them is a directed acyclic
graph(DAG). Based on this classification,

8
max
j=1

(|cj |) = Lmax(g, a) + Lmax(a, g)

where Lmax(x, y) is the maximal distance between vertex x
and y, which can be efficiently calculated by one pass of
traversal.

a

b
c d

e
f g

h

i

Figure 3: Partition a graph into DAGs

According to this, we designed an efficient algorithm called
PCycleI to check the latest time constraints, shown in Fig-
ure 4. Here, we performed the depth first search on the latest
constraint graph, and classified the edges into two sets: one
set contains all the backward edges, and the other edges are
in another set.

We assumed the random variables ∆
(s)
ji , δ

(s)
ji , e

(s)
i , S

(s)
i ,

H
(s)
i in our statistical conservative formulation satisfy normal

distribution. Any one of these random variables r(s) can be
represented by the linear function of independent variables:

r(s) = u+

m∑
i=1

ail
(s)
i

where u is the mean value of r, l
(s)
i is an independent random

variable, ai is a constant, and m is the number of independent
random variables. This representation can be always achieved
using the models presented in [1] or [5]. Correlated variables
can be represented by the linear function of independent ran-
dom variables with standard normal distribution using PCA.

So for simplicity, we assumed each l
(s)
i is a standard normally

distributed variable.
In step 2 of PCycleI algorithm, we used the statistical tim-

ing analysis method proposed in [5] to calculate path delay.
Other statistical timing analysis method to calculate path de-
lay can be also used here.

In step 2 of PCycleI algorithm, we deleted all the backward
edges, and G becomes a DAG, if each cycle contains only
one backward edge, this deletion does not lead to inaccuracy.
But if any cycle contains more than one backward edges, the

Algorithm PCycleI

Input: constraint graph G(V,E)
Output: probability of no positive cycles

existing in G
Notations:

E: backward edge set

e: single edge

Le: the delay of edge e
De: the maximal delay between the end vertex

and start vertex of edge e
Ce: the maximal delay of cycles containing

the edge e

Procedures:

1. Depth first search graph G to find all

backward edges, stored in set E;
2. For each edge e in E {

topological sort graph G starting from

the end vertex of e ignoring backward

edges in E;
calculate De using statistical timing

analysis method;

Ce = De + Le;
}

3. compute maxe∈E(Ce);
4. Probability of no positive cycles is equal

to Pr(maxe∈E(Ce) ≤ 0)

Figure 4: The PCycleI Algorithm

algorithm may miss it. For example, Figure 5 shows that if
the vertex order after topological sort is (a,c,b,d), then edge
(b,c) and (d,a) are backward edges, and cycle (a,b,c,d,a) is not
included using PCycleI. But if the vertex order is (a,b,c,d),
edge (c,b) and (d,a) are backward edges, then cycle (a,b,c,d,a)
is included. So different depth first search orders may lead to
different cycle sets.

a b

c d

Figure 5: A cycle containing two backward edges

Unfortunately, our study shows that some cycles may still
be missed no matter what order is used.

Theorem 5 The edges in a directed graph cannot always be
divided into two disjoint sets, such that any simple cycle is
formed by two simple paths, one composed of edges from one
set.

Based on these discussions, we design a heuristic method
by performing depth first search many times, and the order
of choosing edges in each search is randomly selected. When
the search is performed many times, the overall probability
of missing cycles can be smaller. This new version algorithm

PCycleII is shown in Figure 6. The complexity of this algo-
rithm is O(MN(V +E)), where M is the number of depth first
search iterations for each backward edge, N is the number of
edges in backward edge set E , V is the number of vertices in
G, and E is the number of edges in G.

Algorithm PCycleII

New Notations:

M: the number of depth first search iterations.

Cte: the maximal length of cycles containing

the edge e in the tth iteration.

Procedure:

1. Depth first search graph G to find

all backward edges, stored in set E;
2. For each edge e in E {

t := 1;

LOOP: While t<M+1 {
depth first search graph G starting

from the end vertex of e to find

backward edges, stored in set E ′;
topological sort graph G starting

from the end vertex of e after

ignoring all the edges in E ′;
clear E ′;
t := t+1;
if the resulting order is ever found

goto LOOP;

calculate De using statistical timing

analysis method;

Cte = De + Le;
}
Ce := maxMt=1(Cte);

}
3. compute maxe∈E Ce;
4. Probability of no positive cycles is equal to

Pr(maxe∈E(Ce) ≤ 0)

Figure 6: The PCycleII Algorithm

5.3 Earliest time constraints

Statistical verification of the earliest time constraints needs to
calculate the probability that all the cycles are non-negative
in the earliest constraint graph.

Similar to the verification of latest time constraints, let
C = {c1, c2, . . . , cn} be the set of cycles, and |ci|(s) be the
length of cycle ci. Let F (|c1|(s), . . . , |cn|(s)) be the JCDF of
the lengths of cycles, then we can calculate the probability
that all cycles are non-positive, that is,

Pr(|c1|(s) ≥ 0, . . . , |cn|(s) ≥ 0).

However, we know that

Pr(|c1|(s) ≥ 0, . . . , |cn|(s) ≥ 0) = Pr(
n

min
j=1

(|cj |(s)) ≥ 0).

This problem is similar to the latest time verification: we
only need to calculate the distribution of the minimal length of
all the cycles in the earliest constraint graph. However, since

Algorithm NCycle

Input: constraint graph G(V,E)
Output: probability of no negative cycles

existing in G

Procedure:

1. Split vertex O into O1 and O2, all the

outgoing edges of O in original G are

outgoing from O1, and all the incoming

edges of O in original G are incoming

edges of O2;

2. PERT-traversal the new G to calculate the

shortest distance D(s) from O1 to O2;

3. Probability of no negative cycles is equal

to Pr(D
(s) ≥ 0)

Figure 7: The NCycle Algorithm

the earliest constraint graph is much simpler, where every
cycle in the earliest constraint graph includes the vertex O,
the verification can be done optimally. We split vertex O
into two vertices O1 and O2: all the outgoing edges of O in
original graph G are outgoing from O1, and all the incoming
edges of O in original G are incoming edges of O2. Then G
becomes a DAG, so we can traverse on the new G to calculate
the shortest length from O1 to O2, which is also the shortest
length of all cycles in the original G. NCycle, the earliest time
constraints verification algorithm, is shown in Figure 7. Since
all cycles are considered in NCycle, it can check the earliest
time constraints accurately.

5.4 Combined verification

In the above two subsections, we have shown how to calcu-
late the probability that the clock schedule does not violate
the latest or earliest time constraints respectively. However,
since the earliest and latest time is correlated, multiplying the
probabilities of correct conditions in them does not give the
right answer. Therefore, we need a combined verification.

In conservative formulation, the following relation is true:

∆ji ≥ δji ∀j → i

It is obvious that cycles in the latest constraint graph share
some elements with the cycles in the earliest constraint graph,
so there exist correlations between the probabilities that the
clock schedule does not violate the latest or earliest time con-
straints. In our algorithms, the vector representation of length
maintains these correlations.

In PCycleII, let

A(s) = max
e∈E

Ce

and in NCycle, let
B(s) = min

e∈E
Ce

then the probability that latest constraint graph has no posi-
tive cycles and earliest constraint graph has no negative cycles
is equal to

Pr(max(A(s),−B(s)) ≤ 0)

When the mean values of random variables ξ and η have
large difference, Clark’s method [16] selected the variable with
larger mean value as the result of max(ξ, η). But when the
deviation of the variable with smaller mean value is much
larger than the deviation of the other one, this approxima-
tion is not accurate. Here, A(s) and −B(s) often fall into this
situation. Based on the representations of A(s) and −B(s),
we discovered that it is better to use MC simulation method
to accurately calculate the maximum of A(s) and −B(s).

6 Experimental results

PCycleII, NCycle and the combined verification algorithm
NPCycle have been implemented and tested on the ISCAS89
benchmark circuits where the flip-flops are replaced by level-
sensitive latches. For simplicity, we only considered the single
phase clock, and since PCA can transform the correlated vari-
ables to uncorrelated variables, any random variable r(s) in
statistical conservative formulation can be represented by a
linear function of independent random variables with stan-
dard normal distribution:

r(s) = r0 + k1 × p(s)
1 + ...+ km × p(s)

m ,

where r0 is the mean value, p
(s)
i are independent random

variables with standard normal distribution, and ki are co-
efficients. Then a random number generator is used to gen-
erate r0 and ki for i = 1, ...,m. All the random variables
are normally distributed with 10-20% deviation. This test
case generator introduces the spatial correlations of process
variations of gates, interconnects and the clock network. For
example, if for some 1 ≤ i ≤ m, ki 6= 0 for one gate, and
ki 6= 0 for another gate, there exists spatial correlation be-
tween the delay of these two gates. This test case generator
can also successfully introduce temporal correlations between
clock variations. All experiments were run on a Linux PC
with a 2.4G Hz CPU and 2.0 GB memory.

To verify the results of the PCycleII, we used MC sim-
ulation as a comparison. In each iteration, MC simulation

assigns values to p
(s)
i for i = 1, ...,m, then calculates the

gate delays and clock schedule, then performs Bellman-Ford
shortest-path algorithm [15] to detect positive cycles. Here,

the assigned values of p
(s)
i for 1 ≤ i ≤ m satisfy standard

normal distribution. We run 10,000 iterations for each case
in the MC simulations. A comparison of results on the latest
time constraints is shown in Table 1. The number of depth
first search (M) in PCycleII is always less than 5. We can see
that the results of PCycleII are very close to the MC results
with an average error of 0.17%, which confirms that the prob-
ability of missing cycles in PCycleII is very small. PCycleII
is also much faster than the MC simulations.

A comparison of the results by the NPCycle with those
by the MC simulations is shown in Table 2. For each case,
MC simulation performs the Bellman-Ford algorithm to de-
tect positive cycles in the latest time constraint graph, if no
positive cycles, then performs Bellman-Ford algorithm to de-
tect negative cycles in the earliest time constraint graph. We
can see that the results from NPCycle are very close to the
MC simulation results with an average error of 0.14%. The
circuit with the longest run time, s35932, was verified in 1342
seconds, while the MC simulation cannot finish within 3 days.

Table 1: Comparison results of PCycleII and Monte Carlo Simulation Method
circuit PCycleII Monte Carlo error%

name inputs# latches# gates# yield% runtime(sec.) yield% runtime(sec.)
s27 4 3 10 94.41 0.01 94.39 96 0.02
s298 3 14 119 95.35 0.36 95.41 170 -0.06
s349 9 15 161 97.72 0.93 97.72 498 0.00
s526 3 21 193 95.35 0.22 95.25 287 0.10
s820 18 5 289 92.79 0.24 93.07 3381 -0.30
s1238 14 18 508 96.71 0.21 96.67 3312 0.04
s1488 19 6 653 87.49 4.43 87.86 3651 -0.42
s1494 8 6 647 88.69 6.47 88.32 3050 0.42
s35932 35 1728 16065 96.25 938.28 - >3 days -

Table 2: Comparison results of NPCycle and Monte Carlo Simulation Method
circuit PCycleII NCycle NPCycle Monte Carlo error%

yield% yield% yield% runtime (sec.) yield% runtime (sec.)
s27 94.41 97.78 92.15 0.05 92.13 180 0.02
s298 95.35 95.26 93.60 0.48 93.47 273 0.14
s349 97.72 95.35 92.91 2.00 92.71 970 0.22
s526 95.35 98.42 93.59 1.86 93.71 580 -0.13
s820 92.79 97.83 90.68 1.82 90.66 4310 0.02
s1238 96.71 92.92 89.30 1.81 89.47 4416 -0.19
s1488 87.49 96.41 83.88 6.82 83.89 4261 -0.01
s1494 88.69 95.99 84.91 8.23 84.59 4710 0.38
s35932 96.25 97.88 94.08 1342 - >3 days -

7 Conclusion

In statistical clock verification problem, because of the com-
plex statistical correlations, traditional iterative approaches
are difficult to get accurate results. Instead, a statistical
checking of the structural conditions for correct clocking is
proposed, where the central problem is to compute the prob-
ability of having a positive cycle in a graph with random
edge weights. The proposed method only traverses the graph
once to avoid the correlations among iterations. Experimen-
tal results showed that the proposed approach has an error of
0.14% on average in comparisons with the MC simulations.
Our work provided a framework to solve statistical clock ver-
ification problem. The accuracy of our algorithms is mostly
dependent on the accuracy of statistical timing analysis meth-
ods embedded in them, thus it will be improved even more
with the improvements of statistical timing analysis.

References

[1] A. Agarwal, D. Blaauw, S. Sundareswaran, V. Zolotov, M.
Zhou, K. Gala, and R. Panda. Path-based statistical tim-
ing analysis considering inter- and intra-die correlations. In
ACM Intl. Workshop on Timing Issues in the Specification
and Synthesis of Digital Systems, pages 16–21, 2002.

[2] A. Devgan and C. Kashyap. Block-based static timing analysis
with uncertainty. In Proc. Intl. Conf. on Computer-Aided
Design, pages 607–614, San Jose,CA, November 2003.

[3] A. Bhardwaj, S. B. Vrudhula, and D. Blaavw. Tau: Timing
analysis under uncertainty. In Proc. Intl. Conf. on Computer-
Aided Design, pages 615–620, San Jose,CA, November 2003.

[4] A. Agarwal, D. Blaauw, and V. Zolotov. Statistical timing
analysis for intra-die process variations with spatial correla-
tions. In Proc. Intl. Conf. on Computer-Aided Design, pages
900–907, San Jose,CA, November 2003.

[5] H. Chang and S. S. Sapatnekar. Statistical timing analysis
considering spatial correlations using a single pert-like traver-
sal. In Proc. Intl. Conf. on Computer-Aided Design, pages
621–625, San Jose,CA, November 2003.

[6] C. Ebeling and B. Lockyear. On the performance of level-
clocked circuits. In Advanced Research in VLSI, pages 242–
356, 1995.

[7] T. G. Szymanski and N. Shenoy. Verifying clock schedules. In
Proc. Intl. Conf. on Computer-Aided Design, pages 124–131,
1992.

[8] N. V. Shenoy. Timing Issues in Sequential Circuits. PhD
thesis, UC Berkeley, 1993.

[9] N. V. Shenoy and R. K. Brayton. Graph algorithms for clock
schedule optimization. In Proc. Intl. Conf. on Computer-
Aided Design, pages 132–136, Santa Clara, CA, 1992.

[10] K. A. Sakallah, T. N. Mudge, and O. A. Olukotun. checkTc
and mintc: Timing verification and optimal clocking of syn-
chronous digital circuits. In Proc. Intl. Conf. on Computer-
Aided Design, pages 552–555, November 1990.

[11] K. A. Sakallah, T. N. Mudge, and O. A. Olukotun. Analysis
and design of latch-controlled synchronous digital circuits. In
Proc. of the Design Automation Conf., pages 111–117, 1990.

[12] T. G. Szymanski. Computing optimal clock schedules. In Proc.
of the Design Automation Conf., pages 399–404, Anaheim,
CA, June 1992.

[13] W. J. Krzanowski. Principles of Multivariate Analysis. Oxford
University Press, 2000.

[14] J. L. Neves and E. G. Friedman. Optimal Clock Skew Schedul-
ing Tolerant to Process Variations. In Proc. of the Design
Automation Conf., pages 623–628, Las Vegas, NV, June 1996.

[15] T. H. Cormen, C. E. Leiserson, and R. H. Rivest. Introduction
to Algorithms. MIT Press, 1989.

[16] C. E. Clark. The Greatest of a Finite Set of Random Variables.
Operations Research, 1961.

