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Abstract— With increasing process variation, binning has become an
important technique to improve the values of fabricated chips, especially
in high performance microprocessors where transparent latches are
widely used. In this paper, we formulate and solve the binning optimiza-
tion problem that decides the bin boundaries and their testing order
to maximize the benefit (considering the test cost) for a transparently-
latched circuit. The problem is decomposed into three sub-problems
which are solved sequentially. First, to compute the clock period distribu-
tion of the transparently-latched circuit, a sample-based SSTA approach
is developed which is based on the generalized stochastic collocation
method (gSCM) with Sparse Grid technique. The minimal clock period on
each sample point is found by solving a minimal cycle ratio problem in the
constraint graph. Second, a greedy algorithm is proposed to maximize the
sales profit by iteratively assigning each boundary to its optimal position.
Then, an optimal algorithm of O(n log n) runtime is used to generate
the optimal testing order of bin boundaries to minimize the test cost,
based on alphabetic tree. Experiments on all the ISCAS’89 sequential
benchmarks with 65-nm technology show 6.69% profit improvement and
14.00% cost reduction in average. The results also demonstrate that the
proposed SSTA method achieves an error of 0.70% and speedup of 110X
in average compared with the Monte Carlo simulation.

Categories and Subject Descriptors:
J.6 [Computer-Aided Engineering]: Computer-Aided Design
General Terms: Design, Algorithms
Keywords: Binning Optimization, SSTA, Latched Circuits

I. INTRODUCTION

As IC technology is scaled down to nano-meter regime, process
variations become more and more pronounced in fabrication. The
increasing process variations lead to considerable uncertainty in
circuit performance and large spread in chip speed [1]. To improve the
values of fabricated chips, the concept of speed binning is developed,
in which the chips are sorted based on their highest workable
frequencies and then sold at different prices according to their
speeds [2]. The binning process is usually employed on aggressively
pipelined high performance systems such as microprocessors, where
level-sensitive transparent latches are widely used because of their
capability of time borrowing and low power consumption [3]. A new
problem arising then is the binning optimization for transparently-
latched circuits, which aims to find an optimal bin partitioning to
maximize the benefit of production in the binning process.

The benefit of a design is treated as the sales profit in the existing
binning research. The sales profit, which is obtained by selling all
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the working chips at their deserved price, is tightly dependent on the
number of chips and the sales price in each bin. A model of sales
profit is introduced in [4] as the binning yield-loss based on a linear
penalty function, and is improved in [5] as a price-weighted design
metric based on the price function in terms of the chip frequency.
However, the benefit model considering the sales profit only is not
enough in practice. The cost of frequency test, which becomes
increasingly prominent in the total cost of today’s IC fabrication,
should also be taken into consideration. During the binning process,
functional or structural tests are run at multiple frequencies and the
chips are binned according to the highest speed test they pass [2]. To
partition the fabricated chips into the right bins, all the frequencies
on bin boundaries need to be tested. The test cost grows up with the
increasing number of bins, which will decrease the manufacturer’s
earning. Therefore a practical benefit model should consider not only
the sales profit but also the test cost.

The existing binning optimization methods maximize the sales
profit by assigning each bin boundaries to its optimal position. So far
as we know, there is only one simple approach [5] proposed for this
problem. They pick one boundary at a time, change it by a small step
and accept this change if there is improvement in profit. However,
the optimality of this approach is not guaranteed and the choice of
the step size is ad hoc.

Before the binning optimization, the statistical period, that is
the distribution of workable clock period, should be estimated by
performing statistical static timing analysis (SSTA) [1] on the given
circuit. However most existing SSTA methods are for the circuits
clocked by edge-triggered flip-flops (FFs), while the binning process
is usually used in latched circuits. SSTA for latched circuits is a much
more complex problem because the output time of a latch depends on
its input time and all the timing constraints on feedback cycles should
be checked simultaneously. Previous researches on this issue, such
as [6], [7], [8], solve the clock-schedule verification problem, that is
compute the yield at a given clock period, by iteratively updating the
statistical arrival time at the input/output of latches and detecting
negative cycles in the circuit. However, they cannot compute the
statistical period which includes the yield information for all clock
periods, unless their SSTA is repeatedly performed at each possible
clock period, which is extremely time-consuming. Besides, these
methods suffer, more or less, from the disconvergency of statistical
arrival time, because the timing random variable is correlated with
itself in different iterations. Furthermore, they require the assumption
of Gaussian distributions on process variations, which is not always
true in IC fabrication.

In this paper, we formulate the binning optimization problem for
transparently-latched circuits with an objective of the benefit function
considering both the sales profit and test cost. The problem aims to
determine the bin boundaries and their testing order such that the
benefit is maximized. We decompose the problem into three sequen-
tially solved sub-problems as the statistical period computation, the
sales profit maximization, and the test cost minimization. The main
contributions of the paper are as follows.



1) To compute the statistical period, a sample-based SSTA ap-
proach is developed for latched circuits under process variations
of arbitrary distribution, where the gSCM with Sparse Grid
technique is applied. The statistical problem is translated into
a set of deterministic problems on sample points, therefore the
disconvergency of statistical arrival time is naturally avoided.

2) To maximize the sales profit, a greedy algorithm is proposed
to find the optimal bin boundaries, where each boundary is
iteratively assigned to its optimal position. We formulate a
simplified problem and prove the conditional unimodality of its
objective function. Then an interval-wise method is presented
to find the solution to the problem.

3) To minimize the test cost, an optimal algorithm of O(n log n)
runtime is proposed to generate the optimal testing order on bin
boundaries. The problem of testing order determination is con-
verted to the weighted path length minimization of alphabetic
tree. The algorithm is based on Hu-Tucker coding [9].

It should be noted that the proposed approaches are not limited to
latched designs. If there are FFs, each can be cut off and its input
and output treated as PO and PI. It should also be mentioned that
the statistical period used as the input of optimization may not only
be computed by SSTA. When the chips are fabricated, some silicon
testing data can be collected during the process, such as early-stage
testing and post-silicon validation. These data may be used to revise
the statistical period from SSTA to improve binning optimization.

The remainder of this paper is organized as follows. In Section
II, the background and the motivation for binning optimization is
given. In Section III, the binning optimization problem with the
benefit model considering both the sales profit and the test cost is
formulated. In Section IV, a greedy approach is designed to maximize
the sales profit and an O(n log n) optimal algorithm is proposed to
minimize the test cost. In Section V, a sample-based SSTA approach
for transparently-latched circuits is developed. The efficiency of the
proposed SSTA and the benefit improvement by using the proposed
optimization algorithm are demonstrated by experiments in Section
VI, followed by the conclusion in Section VII.

II. BACKGROUND AND MOTIVATION

In this section, the existing binning optimization research with
the objective of maximizing the sales profit is reviewed. Then the
background of SSTA for latched circuits is given.

A. Sales Profit and Bin Boundaries

With process variations, both the minimal workable clock period
Twork and the leakage power consumption Pwork of a design are
random variables. A chip is useless if its period is longer than an
upper bound Ttarg , or its leakage power is larger than the power
limit Pleak. It was shown in [10] that the leakage power exhibits
strong correlation with the chip speed. The main leakage failure (more
than 97%) happens in the highest frequency bin. For simplicity, [5]
translates leakage bound to a period lower bound Tleak based on the
approximation of yield as

Pr{Pwork 6 Pleak} ≈ Pr{Twork > Tleak}.

The usable chips are those whose periods have Tleak 6 Twork 6
Ttarg .

Unlike the traditional single-price strategy, where all the chips
with periods in [Tleak, Ttarg] are sold at the same price, the binning
process sorts the chips into multiple speed bins based on their Twork,
and sells chips in different bins with different prices. Let F (x)
and f(x) denote the cumulative distribution function (CDF) and the
probability density function (PDF) of Twork respectively. Suppose
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Fig. 1. The distribution function F (x) versus the price function P (x) with
six speed bins.

the number of speed bins is n, then the sales profit Pro(X) can be
expressed as

Pro(X) =

n∑
i=1

P (xi)

∫ xi

xi−1

f(x)dx

=

n∑
i=1

P (xi)(F (xi)− F (xi−1)) (1)

where X = [x0, x1, x2, ..., xn] are the bin boundaries of these n
bins, and P (x) is a function giving the price of a chip with period
x. Note that x0 and xn are the bounds due to physical limits, while
x1 and xn−1 are set to Tleak and Ttarg respectively. With the four
boundaries fixed in advance, Pro(X) is actually a function with n−3
variables. Fig. 1 shows a schematic of F (x) versus P (x) with n = 6.
Since all the chips in a speed bin are sold at one price, the actual
sale prices are staircase. The chips in bin1 and bin6 have zero price
because they cannot be used.

As seen from the equation (1), the sales profit Pro is a function
of bin boundaries X , which indicates that a good choice of X can
improve Pro(X) for the given period distribution and price function.
An approach proposed in [5] repeatedly pick one boundary at a
time, change it by a small step and accept this change if there is
improvement in profit. However, the optimality of the method is not
guaranteed and the step size is chosen empirically. If the step is too
large, their approach may miss the optimal solution, and if the step
is too small, the approach may require too many iterations.

B. Statistical Period Computation and SSTA

To facilitate binning optimization for a latched circuit, F (x) or
f(x) of the period Twork must be computed. They are usually
estimated by SSTA on the circuit.

SSTA on a circuit with FFs can be done on the combinational part
of the circuit, with well-developed techniques. However for circuits
clocked by level-sensitive latches, the timing problem becomes ex-
tremely complex, because a signal can pass transparently through a
latch during its enabling period and therefore the output time of a
latch is dependent on its input time [11], [12]. Up till now, there is no
mature technique capable of finding the statistical period for latched
circuits. Recently, several model-based SSTA approaches [6], [7],
[8] for latched circuits have been proposed, where the signal arrival
times are treated as random variables and propagated through the
circuit by repeatedly performing statistical sum and max operations.
These approaches iteratively update the distribution of arrival time
at the nodes in the timing graph constructed according to SMO
constraint formulation [11], and compute the yield based on statistical
negative cycle detection. However, all these techniques are for the
clock-schedule verification, which aims to compute the timing yield



on a given clock period. To get F (x) and f(x) defined on the
Twork interval [0,∞], the SSTA process should be performed at
each possible value of Twork, which requires a great deal of time.
Furthermore, since the distributions of the statistical arrival time in
different iterations are tightly correlated, they may not converge in
the SSTA process. Moreover, all these approaches can only deal with
the process variations with Gaussian distribution, while the variations
may be non-Gaussian.

While many efforts have been made to improve model-based SSTA
for latched circuits, there are few approaches proposed on sample-
based SSTA. The sample-based SSTA performs DSTA (deterministic
STA) on a set of sample points, and fits the distribution of Twork

by using the deterministic results at all sample points. The sample-
based stochastic collocation method (SCM) for FF-clocked circuits
is proposed in [13] and [14] where the variations are assumed to
be Gaussian distributed. In Section V, we introduce the gSCM [15]
to SSTA for latched circuits under process variations of arbitrary
distribution.

III. PROBLEM FORMULATION

Binning optimization problem is to find an optimal bin assignment
such that the benefit of a design is maximized. However, only
increasing the sales value is not enough since the test cost in the
binning process must also be considered.

A frequency test aims to check whether the chips can work on
a given frequency. In single-price strategy each chip only requires
two tests at Tleak and Ttarg respectively. While in binning process a
chip requires several tests at different frequencies to identify which
bin it belongs to. During the speed binning process with n bins, there
are n− 1 bin boundaries to be tested. Therefore the number of tests
required for each chip ranged from 1 to n− 1.

We have observed that the testing order of bin boundaries has a
critical impact on the test cost. If a chip has passed a frequency test,
then it only requires the tests at the higher frequencies, and the tests at
the lower frequencies can be skipped; a chip failed a frequency test
can skipped the tests at higher frequencies. For example, consider
the binning process in Fig. 1, five frequencies (x1, x2, x3, x4, x5)
need to be tested. Suppose the numbers of chips in the bins are
5, 10, 30, 40, 10, 5, as shown in the figure. If the testing order is
[x1, x2, x3, x4, x5], all the chips are tested on x1, and then the chips
except those in interval [x0, x1] are tested on x2, and so on. The
numbers of tests required for each chip in the five bins are 1, 2,
3, 4, 5, 5, and the total number of tests is 1 × 5 + 2 × 10 + 3 ×
30 + 4 × 40 + 5 × 10 + 5 × 5 = 350. If the order is changed to
[x3, x2, x4, x1, x5], after the first test at x3 the chips are partitioned
into two parts. The chips in [x0, x3] skip the test at x4 and the chips
in [x3, x6] skip the test at x2. The numbers of tests required for each
chip are 3, 3, 2, 2, 3, 3, and the the total number of tests is only
3× 5 + 3× 10 + 2× 30 + 2× 40 + 3× 10 + 3× 5 = 230. Assume
that the cost of testing one chip at one frequency is constant, then the
latter testing order is obviously better than the former. Therefore the
testing order of boundaries determines the number of tests required
for each chip, and thus determines the total test cost.

In this paper, the testing rank, which is a more general concept than
the testing order, is used to describe the priority of bin boundaries in
frequency test. The testing rank R(X−) represents the testing priority
defined on the bin boundary set X−, where X− = (x1, x2, ..., xn−1)
denote the boundaries to be tested. The testing order of boundaries
can be constructed from their ranks by the following rules.

1) The first boundary to test is the boundary with rank 0.
2) The boundary with larger rank should be tested after those with

smaller ones.
3) The boundaries with the same rank can be tested in any order.

The testing orders from the same testing rank lead to the same cost.
In Fig. 1, for example, if the rank R = [2, 1, 0, 1, 2], the testing order
can be [x3, x2, x4, x1, x5] or [x3, x4, x2, x5, x1] with the same cost.

Let ~ξ denote the process variables, the problem of Binning
Optimization for transparently-Latched Circuits considering process
variations (BOLC for short) can be formulated as follows.

Problem BOLC : Given a latched circuit C(~ξ ), a price function
P (x) and the number of bins n. Find the optimal bin boundaries X
and the testing rank R(X−) of the boundaries, such that the Benefit,
defined as follows, is maximized,

Benefit(X, R) , Pro(X)− Ct(R)

where Pro(X) is the sales profit and Ct(R) is the test cost.
Since the objective function Benefit(X, R) is affected by both

the boundaries X and the testing order R, the original optimization
problem is very complex. A reasonable assumption can be made that
the test cost is much smaller than the price of a chip. Then the
problem can be simplified by dividing the objective into two parts,
that is maximizing Pro(X) and minimizing Ct(R). Therefore BOLC
can be decomposed into three sub-problems as follows.

• Problem BOLC.0 : Given ~ξ and C(~ξ ), estimate the distribution
function F (x) of Twork by SSTA.

• Problem BOLC.1 : Given F (x), P (x) and n, decide the op-
timal bin boundaries X , such that the sales profit Pro(X) is
maximized.

• Problem BOLC.2 : Given F (x) and X , find the optimal testing
rank R(X−), such that the test cost Ct(R) is minimized.

Although the binning optimization can be done only after the
computation of the period distribution by SSTA, we will present
the binning optimization first and then discuss SSTA later in the
following sections.

IV. BINNING OPTIMIZATION ALGORITHM

In this section, a greedy approach is designed to solve BOLC.1
and then an optimal algorithm of O(n log n) runtime is proposed to
solve BOLC.2.

A. Greedy Approach for BOLC.1

Consider a simplified problem BOLC.1R derived from problem
BOLC.1 as follows.

Problem BOLC.1R : Given F (x), P (x) defined on interval
[a, b], find the optimal x ∈ [a, b], such that the profit Pro(x) =
P (x)(F (x)− F (a)) + P (b)(F (b)− F (x)) is maximized.

Assume that F (x) and P (x) are second order differentiable. F (x),
P (x) and f(x) are non-negative everywhere. A discussion on the
unimodality of the objective function Pro(x) is given as Theorem 1
based on the following Lemmas.

Lemma 1: If f(x) is decreasing and P (x) is strictly concave and
decreasing, then Pro(x) is strictly concave on [a, b].

Proof: Since F (x) and P (x) are second order differentiable,
Pro(x) which is the combination of them is also second order
differentiable.

Pro′′(x) =P (x)′′(F (x)− F (a))

+ f ′(x)(P (x)− P (b)) + 2f(x)P ′(x)

And because

P (x) is concave ⇒ P ′′(x) < 0
P (x) is decreasing ⇒ P ′(x) < 0
f(x) is decreasing ⇒ f ′(x) < 0

a < x < b ⇒ F (x) > F (a), P (x) > P (b)

then Pro′′(x) is negative, and therefore Pro(x) is strictly concave.



(a) (b)
Fig. 2. (a) the symmetric or left-skewed f(x) on [a, b], that is v 6 u; (b)
the right-skewed f(x) on [a, b], that is v > u

Lemma 2: If ∃m 6 (a+b)/2 such that f(x) is strictly increasing
function on [a, m], and P (x) is strictly concave and decreasing, then
Pro(x) is strictly increasing on [a, m].

Proof: Pro(x) = (P (x)−P (b))(F (x)−F (a))+P (b)(F (b)−
F (a)). Since f(x) is strictly increasing on [a, m], then F (x) is
strictly convex on it, therefore ∀c, d ∈ (a, m] where c > d,

F (d)− F (a)

F (c)− F (a)
<

d− a

c− a
(2)

Since P (x) is strictly concave, then

P (c)− P (b)

P (d)− P (b)
>

b− c

b− d
(3)

Because d < c 6 (a + b)/2, therefore

((a + b)/2− d)2 > ((a + b)/2− c)2

⇒ (a + b)c− c2 > (a + b)d− d2

⇒ (b− c)(c− a) > (b− d)(d− a)

⇒ b− c

b− d
>

d− a

c− a
(4)

Combine (2), (3) and (4), we have

P (c)− P (b)

P (d)− P (b)
>

F (d)− F (a)

F (c)− F (a)

⇒ Pro(c) > Pro(d)

Therefore, Pro(x) is strictly increasing on [a, m].
Combine Lemma 1 and Lemma 2 and the fact that ∀x ∈ (a, b),

Pro(x) > Pro(a) = Pro(b), we have
Theorem 1: Let u , (a + b)/2 and v , argmax(f(x)) where

x ∈ [a, b]. If f(x) is unimodal and P (x) is strictly concave and
decreasing, the following properties holds:

1) If v 6 u, then Pro(x) is unimodal on [a, b];
2) If v > u, then Pro(x) is strictly increasing on [a, u] and strictly

concave on [v, b].
Based on the conditional unimodality of Pro(x), an interval-wise

method is proposed as follows to solve BOLC.1R.
1) If f(x) is symmetric or left-skewed on [a, b], the first property,

illustrated in Fig. 2(a), indicates that there is only one zero
of Pro(x) on [a, b] and it is also the maximum. Solving
Pro′(x) = 0 on [a, b] by the iterative method (for example,
Newton-Raphson method) with the initial guess set at any value
on [a, b] gives the optimal solution.

2) If f(x) is right-skewed on [a, b], the second property, illustrated
in Fig. 2(b), indicates that the optimal solution may appears
on [u, v] or [v, b]. On [v, b], Pro(x) is strictly concave and
unimodal, thus its zero can be solved as in 1). On [u, v] the
unimodality is not clear. The interval [u, v] can be divided into
several small fractions and the function Pro′(x) = 0 is solved
in each fraction. The optimal solution is chosen as the one with
maximal profit among all the zeros on [v, b] and [u, v].

If X is the optimal bin boundaries in the original problem BOLC.1,
then each boundary xi (i = 2, ..., n − 2) must be the optimal
solution to the simplified problem BOLC.1R for interval [xi−1, xi+1].
We design a greedy algorithm to solve BOLC.1, where each bin
boundary is iteratively assigned to its optimal position by solving
the corresponding BOLC.1R. Algorithm 1 gives the pseudo-code.

Algorithm 1 OPT−LOCATION(Xinit, F (x), P (x), n)
1: X := Xinit, HasGain := true;
2: while HasGain do
3: HasGain := false;
4: for i = 2 to n− 2 do
5: a := xi−1, b := xi+1;
6: xnew := the solution to BOLC.1R on [a, b];
7: if xi 6= xnew then
8: xi := xnew;
9: HasGain := true

10: end if
11: end for
12: end while

In Algorithm 1, Xinit denotes the initial location of bins. The
algorithm will find local optimal near Xinit. Furthermore, it is found
in our experimental results that the algorithm always converges to the
same solution from different Xinit, indicating that there may be only
one local optimal solution to BOLC.1.

B. Optimal Algorithm for BOLC.2

For the binning process with n bins, there are n−1 bin boundaries
to be tested, which are X− = (x1, x2, ..., xn−1). Let Bi,j denotes the
bins between the boundary xi and xj and Ni,j denotes the percentage
of chips in Bi,j . Then for the i-th bin,

Ni−1,i = F (xi)− F (xi−1)

Without loss of generality, the test cost per frequency per chip is
set to 1. Then the test cost Ct in the problem BOLC.2 equals to the
total number of tests as follows,

Ct =

n∑
i=1

hi−1,iNi−1,i (5)

where hi−1,i is the number of tests required for each chip in Bi−1,i.
By constructing an alphabetic binary tree [9] according to the

testing rank, the objective function (5) is actually the weighted path
length of the tree. An example of the alphabetic tree is shown
in Fig. 3 with n = 6 and R(X−) = [1, 3, 2, 0, 1]. The tree is
composed of two kinds of nodes, the leaf nodes (squares) and the
internal nodes (circles). The i-th leaf node represents Bi−1,i with
weight Ni−1,i. All the leaf nodes are restricted to alphabetic order
as (B0,1, B1,2, ..., Bn−1,n). The internal node Bi,j with two children
nodes represents a super-bin consisting of all bins between xi and xj .
The node B0,n is called the root. Each internal node also represents
the bin boundary separating its children. For example, B0,6 represents
boundary x4. In a binning process with n bins, the tree has n leaf
nodes and n− 1 internal nodes.

There is a unique path from the root to every node, and the path
length (number of arcs) of a node is called the rank. The rank of
the root is zero. A chip in Bi,j takes the frequency test at every
boundary in the path from the root to Bi,j . Therefore, the rank of
Bi−1,i gives the number of tests required for each chip in the i-th
bin, that is hi−1,i in (5). The rank of an internal node represents the
testing priority of the corresponding bin boundary.

Since Ct in (5) is equivalent to the weighted path length of the
binary tree, BOLC.2 aims to construct an optimal tree with minimal
weighted path length. This problem can be solved by an optimal
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Fig. 3. The alphabetic tree with n = 6 and R(X−) = [1, 3, 2, 0, 1]

algorithm of O(nlogn) runtime based on Hu-Tucker coding [9]. The
algorithm is composed of the following three phases.

• Phase 1, Bin Combination. Given an initial sequence of leaf
nodes as (B0,1, B1,2, ..., Bn−1,n), repeatedly choose two suc-
cessive nodes Bi,j and Bk,l such that the sum of their weights
Ni,j +Nk,l is the minimal among all the possible pairs, combine
them into a super-bin Bi,l with weight Ni,l = Ni,j+Nk,l, delete
Bk,l and replace Bi,j by Bi,l. Two nodes are called successive
in the sequence if there is no nodes or there are only internal
nodes between them. Phase 1 ends when all the leaf nodes are
combined into a single root node.

• Phase 2, Bin Rank Assignment. Mark the rank of the root as zero,
and then break internal nodes in the reverse order of Phase 1,
assign the rank to all the nodes in the tree. If a node has rank
r, then the two nodes as its sons has rank r + 1.

• Phase 3, Boundary Rank Computation. Delete all the internal
nodes and their ranks in Phase 1 and 2. Create new super-bins
by repeatedly combining Bi,j and Bj,k into Bi,k if 1) there is no
node between Bi,j and Bj,k; 2) the ranks of Bi,j and Bj,k are
identical and are the lowest ranks among the remaining ranks;
3) i and k is the minimal among all possible pairs that satisfy
1) and 2). The rank of Bi,k is the rank of Bi,j minus one.

When the three phases ends, an optimal tree with the minimal
weighted path length is constructed. The ranks of all the internal
nodes updated in Phase 3 are the optimal solution R(X−) to
BOLC.2.

V. SAMPLE-BASED STATISTICAL PERIOD COMPUTATION FOR
LATCHED CIRCUITS

In this section, a sample-based SSTA approach is proposed for
statistical period computation in latched circuits. The gSCM [15],
[16] based on generalized Polynomial Chaos (gPC) and generalized
Sparse Grid quadrature is applied to deal with the process variations
of arbitrary distribution. The period computation problem on each
sample point is converted to a minimal cycle ratio problem in the
constraint graph.

A. The gSCM for SSTA
Let ~ξ denotes a set of independent random variables of arbitrary

distribution which can be obtained after the PCA (Principal Compo-
nent Analysis) [17] or ICA (Independent Component Analysis) [18]
process for the correlated process parameters. Both gate/interconnect
delays and arrival times can be approximated by gPC [15], [16] given
as,

D(~ξ ) ≈ D̂(~ξ ) ,
M∑

i1+...+iN =0

di1,...iN Hi1,...,iN
N (~ξ ) (6)

where D is the exact value and D̂ is the approximated value. N
is the number of random process variables, M is the highest order
of polynomial, Hi1,...,iN

N (~ξ) denotes the N -dimensional gPC and
(i1 + ... + iN ) denotes the order of gPC. The coefficients di1,...iN

are estimated by equating delays D and the corresponding polynomial
chaos (6) at a set of collocation points in the parameter space.

Based on the delay model in (6), the statistical minimal clock
period can also be approximated as a gPC expansion of ~ξ as (7).

Twork(~ξ ) ≈ T̂work(~ξ ) ,
M∑

i1+...+iN =0

ti1,...iN Hi1,...,iN
N (~ξ ) (7)

Given a circuit topology and the statistical delay D(~ξ ) of each
device in the circuit, the proposed SSTA approach finds the unknown
coefficients ti1,...iN in (7) by the following three steps, and then the
statistical period can be obtained.

Step 1: Generate a set of collocation points for ~ξ as {~ξk|k =
1, 2, ..., P}, where P is the number of collocation points.

Step 2: Compute the minimal clock period Twork(~ξk) at each
collocation point ~ξk, which is a DSTA problem.

Step 3: Calculate the unknown coefficients ti1,...iN in (7). The
gSCM seeks for the optimal solution to minimize the error between
Twork(~ξ ) and T̂work(~ξ ) by Galerkin Approach as setting,

〈Twork(~ξ )− T̂work(~ξ ), Hi1,...,iN
N (~ξ )〉 = 0

for all i1 + ... + iN = 0, 1, ..., M . In virtue of the orthogonality of
gPC, the unknown coefficients can be computed as,

ti1,...iN = 〈Twork(~ξ ), Hi1,...,iN
N (~ξ )〉 (8)

Equation (8) is a multi-dimensional integral which can be solved with
numerical quadrature using the value of integrand taken on a set of
collocation points as,

ti1,...iN =

P∑
k=1

wkTwork(~ξk)Hi1,...,iN
N (~ξk)

where ~ξk is the k-th collocation point, wk is the corresponding weight
and Twork(~ξk) is the accurate value of Twork at the collocation point
~ξk, which is solved in Step 2.

The CDF and PDF of Twork can be computed after the three steps.
The proposed SSTA for latched circuits computes the yield at all
periods at one time, while the traditional approaches fails because
they only compute the yield at a given period.

B. Sparse Grid Technique

Sparse Grid is a remarkable sampling technique developed for
gSCM. Compared with the direct tensor product scheme [19], Sparse
Grid can significantly reduce the number of collocation points for
multi-dimensional integration in (8) [15].

Let Θ
ij

1 and W
ij

1 denote the set of collocation points and the
weights for jth-dimensional ij-level accuracy Gaussian quadrature
rule using the roots of H

ij

1 (ξj). The set of collocation points
generated by Sparse Grid for a d-dimensional quadrature of k-level
accuracy is a linear combination of the tensor product of Θ

ij

1 , as
given in (9),

Θk
d =

⋃
k+1≤|~i|≤d+k

(Θi1
1 × ...×Θ

id
1 ) (9)

where |~i| = i1 + ...+ id. The weight corresponding to the collocation
point (~ξ

i1
ji1

, ..., ~ξ
id

jid
) ∈ Θk

d is expressed as (10)

w
i1,...id
ji1 ,...,jid

= (−1)d+k−|~i|

(
d− 1

d + k − |~i|

)
(wi1

ji1
· · ·wid

jid
) (10)



It has been proved in [20] that Sparse Grid is exact for all d-
variables polynomials of order at most (2k + 1). And the amount of
collocation points for Sparse Grid is given as,

Nsg = dim(Θk
d) ∼ 2k

k!
dk ∼ 2kdim(πk

d), d � 1

where πk
d denotes the space of all d-dimensional gPC of order at

most k. Compared with the direct tensor product scheme where
the amount of sample points is (k + 1)d, Sparse Grid technique
avoids the exponential growth of computation cost with respect to
the dimensionality [20].

C. Minimal Period Computation on Each Sample Point
On each sample point ~ξk, a DSTA problem needs to compute

Twork(~ξk). The SMO [11] formulation of constraints is widely used
in DSTA for latched circuit, where the circuit is abstracted as a
directed graph G = (V, E) called Timing Graph. The node set V
represent the primary inputs/outputs of the circuit and the output
pins of all elements (gates and latches). The edge set E represent all
the timing arcs between pins in gates and latches.

Let Ai (ai) represents the latest (earliest) signal arrival time at pin
i, and ∆ji (δji) the maximal (minimal) delay of the timing arc (j, i).
For simplicity, it is assumed that all latches are controlled by the same
clock phase with period Tc and active interval Tp = 0.5Tc. Note that
the proposed algorithm can be extended to any clock model with
multi-phase and non-50% duty cycle. The setup time and the hold
time of the latches are S and H respectively. The SMO constraints
formulation can be described as follows,
If (j, i) is a gate,

Ai = max
(j,i)∈E

(Aj + ∆ji) (11)

ai = min
(j,i)∈E

(aj + δji) (12)

If (j, i) is a latch,

Ai = max(Aj + ∆ji, Tc − Tp)− Eji (13)

ai = Tc − Tp − Eji (14)

Aj 6 Tc − S (15)

aj > H (16)

where Eji = Tc because of the assumption of single clock phase. The
earliest constraint of a latch in (14) follows a conservative formulation
instead of the aggressive one as ai = max(aj + δji, Tc−Tp)−Eji.
The reason is that the aggressive formulation might be incorrect in
the situations such as a latch driven by a qualified clock signal or the
circuits where the clock is permitted to be stopped to save power [21].

The formulation consists of two sets of constraints, the setup time
constraints (11)(13)(15) and the hold time constraints (12)(14)(16).
For each set of constraints, a constraint graph can be constructed, and
the minimal period problem can be converted to the minimal cycle
ratio problem in the corresponding graph.

Take the setup time constraints for example, (11)(13)(15) can be
translated into the following set of inequalities. Let Ãi denote −Ai

for all elements in circuit,
∀ (j, i) is a gate

Ãi 6 Ãj + (−∆ji) + 0 · Tc

∀ (j, i) is a latch

Ãi 6 Ãj + (−∆ji) + 1 · Tc

Ãi 6 0 + 0 + 0.5 · Tc

0 6 Ãj + (−S) + 1 · Tc

The new graph Gs = (V, Es, ws, rs) called Setup Constraint
Graph can be established based on the above inequalities, where

the node set V are the same as that of G, and the edge set Es are
constructed by the following steps. Let ws and rs denote the cost
function and the gain function defined on edges Es.

1) Add a source node with arrival time Ã0 = 0.
2) For each inequality Ãq 6 Ãp + w + r · Tc, add an edge from

node p to q. The 0 arrival time corresponds to the source node.
3) For the new edge, attach its cost ws(p, q) with w and its gain

rs(p, q) with r.

For a cycle C in this graph, the cycle ratio Ro(C) is defined as the
ratio of the sum of edge cost to the sum of edge gain, as described
in (17).

Ro(C) =
w(C)

r(C)
=

∑
(p,q)∈C w(p, q)∑
(p,q)∈C r(p, q)

(17)

On the other hand, sum up all the inequalities on the cycle C, it can
be derived that,

0 6
∑

(p,q)∈C w(p, q) + Tc ·
∑

(p,q)∈C r(p, q)

⇒ Tc > −
∑

(p,q)∈C w(p, q)∑
(p,q)∈C r(p, q)

= −Ro(C) (18)

The circuit pass the timing constraints if the equation (18) is satisfied
for all the cycles, as described in (19).

Tc > max(−Ro(C)) = −min(Ro(C)), C ∈ Gs

⇒ Tsetup = min(Tc) = −min(Ro(C)) (19)

In this way, the minimal period problem due to set up constraints is
converted to the minimal cycle ratio problem of Gs, which can be
solved by various algorithms based on graph theory [22]. Howard’s
algorithm [23] is applied in this paper because of its practical
efficiency.

Similarly, the Hold Constraint Graph, constructed from the in-
equalities translated from (12)(14)(16), gives an upper bound of clock
period as Tc 6 Thold. If Tsetup 6 Thold, the minimal period of the
circuit is Tsetup, while if Tsetup > Thold, the design is considered
as failed because no period is feasible under both the setup and hold
constraints.

VI. EXPERIMENTAL RESULTS

The proposed binning optimization algorithm and the sample-based
SSTA approach for transparently-latched circuits have been imple-
mented and validated on all the 30 ISCAS’89 sequential benchmarks
with 65nm process technology. The flip-flops in the circuits are
replaced by level-sensitive latches, which are clocked by a single-
phase clock with 50% duty cycle. All experiments are run on a
3.0GHz Linux serve.

Table. I gives the relative error of the statistical period computed
by the proposed SSTA approach compared with 10000 Monte Carlo
(MC) simulations. The speedup of the proposed approach is also
shown in this table. The quadratic delay model used is based on six
independent random variables derived from PCA or ICA process (that
is, N=6 and M=2 in (6)). To verify the accuracy of the proposed
SSTA approach under process variations of arbitrary distribution,
three kinds of distributions, Gaussian, Uniform, and Rayleigh [24],
with variances set to 10% of their means, are used on the six random
variables in each circuits. Since the non-linear delay models are used
and the input distribution may not be Gaussian, F (x) may not be
Gaussian. Therefore, in addition to the mean and variance, the relative
error ferr of F (x), defined as (20), is also shown in Table. I,

ferr =

√∑S
i=1(F (Ti)− F MC(Ti))2√∑S

i=1 F MC(Ti)2
(20)



where S is the number of compared points and Ti is the period of the
i-th point. F (·) denotes the CDF function computed by our approach
and F MC(·) denotes that by MC simulations. Due to space limit,
Table. I shows 10 of 30 circuits, including the case with worst and
best accuracy, and the average result of all the 30 circuits. It can be
seen from the table that our approach fits very well in all distribution
types with an average ferr of 0.70% and an average speedup of 110X,
compared with the MC simulations.

Table. II shows the percentages of sales profit improvement and
test cost reduction obtained by performing the proposed binning
optimization. The statistical periods used in the optimization are
computed in SSTA, with the random variables assuming Gaussian
distributions. The experiments have tested three bin numbers as 5,
6 and 7, and three different price functions as linear, quadratic,
and cubic functions. As stated earlier, all the three functions are
decreasing and concave, which are defined as follows.

Linear : P (x) = a1x + a2

Quadratic : P (x) = a3(x− a4)
2 + a5

Cubic : P (x) = a6x
3 + a7

where the coefficients a1, ..., a7 are calculated in such a way as
in [5] to make constant the ratio of the prices at the highest and
lowest permissible periods, that is, Ratio = P (Tleak)/P (Ttarg) = 5.
Fig. 4(a) plots the three normalized price functions versus Twork

for the benchmark s13207. The two fixed boundaries are set as
Tleak = µ− 3σ and Ttarg = µ + 3σ, where µ and σ are the mean
and variance of Twork, respectively. The Pro+ in Table. II denotes
the improvement of profit by adjusting the bin boundaries to Xinit,
while the initial boundaries Xinit are set to make each period bin
have the same yield. The improvement percentage is defined as,

Pro+ = (Pro(Xopt)− Pro(Xinit))/Pro(Xinit)

The Ct− denotes the test cost reduction by assigning the testing rank
of boundaries as the optimal rank Ropt compared with a binary-
search-like rank Rbny , which starts from the middle boundary and
then hierarchically moves towards the low and fast directions. The
Rbny used here is defined as,

n = 5 : Rbny = [2, 1, 0, 1]

n = 6 : Rbny = [2, 1, 0, 2, 1]

n = 7 : Rbny = [2, 1, 2, 0, 2, 1]

The reduction percentage is defined as,

Ct− = (Ct(Rbny)− Ct(Ropt)/Ct(Rbny)

In average 6.69% profit improvement and 14.00% cost reduction
are shown in Table. II, which is a considerable benefit in chip sales
and frequency test. It can be seen that more improvement on sales
profit can be obtained with quadratic and cubic price function than
linear price function. It is because the nonlinear price functions widen
the price gap of chips with different Twork and raise the importance
of bin location assignment. When the number of bins changes from 5
to 6 and 7, the profit improvement is slightly decreasing. The reason
is that the increasing number of bins leads to dense binning, where
the boundaries cannot change greatly and may have less impact on
the profit.

Fig. 4(b) illustrates an example of binning optimization for the
benchmark s13207 with 5 bins and the quadratic price function. The
initial and optimal boundaries are shown as the dashed lines and
the solid line respectively. The optimal testing rank of boundaries
is labeled on the boundaries. With the optimal rank [1, 0, 1, 2], the
number of tests per chip in each bin is h = [2, 2, 2, 3, 3] and the
average number of tests for all chips is Ct =

∑5
i=1(F (Xi) −

TABLE III
COMPARISON OF OUR GREEDY ALGORITHM AND [5] ON PROFIT

IMPROVEMENT PERCENTAGE AND RUNTIME COST
.

Step=(xn−1 − x1)/10 Step=(xn−1 − x1)/100

Circuit n=6 n=7 n=6 n=7
∆Pro+(%) SpUp ∆Pro+(%) SpUp ∆Pro+(%) SpUp ∆Pro+(%) SpUp

s298 1.07 3.63X 1.21 3.05X 0.02 14.26X 0.02 14.26X
s386 0.71 3.29X 0.87 4.74X 0.08 15.63X 0.08 15.63X
s510 1.11 5.68X 1.14 6.27X 0.09 24.71X 0.09 24.71X
s953 1.40 3.42X 1.42 4.96X 0.09 12.59X 0.09 12.59X
s1196 1.24 4.25X 1.35 3.85X 0.02 20.27X 0.02 20.27X
s1238 1.25 3.04X 1.10 4.90X 0.06 11.32X 0.06 11.32X
s5378 1.40 3.88X 1.25 3.22X 0.08 22.05X 0.08 22.05X
s9234 1.13 3.51X 1.12 4.13X 0.03 15.15X 0.03 15.15X

s13207 1.12 4.25X 1.11 4.19X 0.11 20.00X 0.11 20.00X
s35932 1.16 5.06X 1.07 5.19X 0.03 21.24X 0.03 21.24X

AVERAGE 1.14 3.76X 1.15 4.53X 0.06 15.81X 0.06 15.81X
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Fig. 4. (a) Three normalized price functions versus CDF function of the
benchmark s13207; (b) Binning optimization of s13207

F (Xi−1))L(i) = 2.12 while another rank [2, 1, 0, 1] leads to h =
[3, 3, 2, 2, 2] and Ct = 2.57. The test cost of the optimal testing order
is reduced by 17.34%.

Table. III compares the sales profit improvement and runtime cost
of our Algorithm 1 and the algorithm in [5]. In the table, ∆Pro+ =
Pro+(our) − Pro+([5]) and SpUp is the speedup of our algorithm
compared with [5]. The step size in [5] is set as 1/10 and 1/100
of the interval size (xn−1 − x1). The step size is chosen totally
empirically in their algorithm. Too large step (1/10) may miss the
optimal solution, while too small step (1/100) will greatly slow down
the algorithm. The statistics show that no matter how long the step
is set, our algorithm can always achieve a better profit improvement
than [5] while the runtime cost is much less than it.

VII. CONCLUSIONS

Binning process is widely used by manufacturers to improve
benefit of fabricated chips, especially for transparently-latched high-
performance designs. This paper formulated binning optimization as a
problem to maximize the benefit from the chips, considering both sale
prices and the binning test cost. The problem has been decomposed
into three sub-problems and solved sequentially. First, a sample-
based SSTA approach based on gSCM with Sparse Grid technique is
developed to compute the clock period distribution for transparently
latched circuits. On each sample point, the minimal period problem
is converted to the corresponding minimal cycle ratio problem in
the constraint graph. Second, in order to maximize the sales profit,
a greedy algorithm is proposed to adjust each bin boundaries to its
optimal position. Then, the optimal testing order of the boundaries
is generated by an alphabetic-tree based algorithm of O(n log n)
runtime to minimize the test cost.

Tested by all the sequential circuits in ISCAS’89 benchmark with
65-nm technology, the proposed optimization algorithm achieves
6.69% profit improvement and 14.00% cost reduction on average.



TABLE I
COMPARISON OF ACCURACY AND EFFICIENCY WITH THE MC SIMULATIONS

.

Gaussian Uniform Rayleigh
Circuit Related Error (%) Speed Related Error (%) Speed Related Error (%) Speed

mean var ferr Up mean var ferr Up mean var ferr Up
s298 0.38 1.00 1.23 110 X 0.08 1.05 0.31 94 X 0.16 0.98 0.64 86 X

s386 (worst) 1.28 7.22 5.57 88 X 1.05 5.43 4.76 96 X 1.35 6.06 6.29 93 X
s510 0.38 0.33 1.21 104 X 0.40 0.91 1.16 99 X 0.16 0.02 0.52 95 X
s953 0.02 0.15 0.05 107 X 0.03 0.09 0.07 106 X 0.00 0.01 0.01 102 X

s1196 0.02 0.23 0.09 100 X 0.01 0.09 0.07 101 X 0.02 0.19 0.10 97 X
s1238 0.53 2.10 3.00 102 X 0.17 1.35 1.14 101 X 0.04 1.44 0.49 103 X

s5378 (best) 0.01 0.16 0.02 127 X 0.01 0.08 0.01 124 X 0.01 0.10 0.02 129 X
s9234 0.03 0.28 0.08 135 X 0.03 0.26 0.09 117 X 0.02 0.17 0.08 122 X
s13207 0.19 0.97 0.93 177 X 0.06 0.11 0.29 145 X 0.20 0.82 0.98 138 X
s35932 0.02 0.10 0.06 238 X 0.04 0.14 0.13 162 X 0.00 0.01 0.01 237 X

AVERAGE (30 circuits) 0.22 0.81 0.85 113 X 0.18 0.88 0.63 108 X 0.15 0.58 0.62 111 X

TABLE II
PERCENTAGE OF PROFIT IMPROVEMENT AND COST REDUCTION (%) OBTAINED BY BINNING OPTIMIZATION

.
n=5 n=6 n=7

Circuit Tleak Ttarg linear quadratic cubic linear quadratic cubic linear quadratic cubic
(ns) (ns) Pro+(%) Ct-(%) Pro+(%) Ct-(%) Pro+(%) Ct-(%) Pro+(%) Ct-(%) Pro+(%) Ct-(%) Pro+(%) Ct-(%) Pro+(%) Ct-(%) Pro+(%) Ct-(%) Pro+(%) Ct-(%)

s298 0.92 2.35 5.80 12.38 10.52 16.82 9.99 16.70 3.89 9.16 7.46 13.17 7.06 12.59 3.17 13.88 5.79 14.42 5.48 14.94
s386 0.93 1.86 6.39 16.39 9.22 18.71 8.75 18.40 4.69 8.59 6.57 12.48 6.25 11.37 3.56 14.12 4.99 14.73 4.78 14.73
s510 1.17 2.92 5.77 14.27 10.62 17.35 10.09 17.35 4.24 11.10 7.73 11.56 7.36 11.56 3.25 13.44 5.86 14.92 5.48 15.68
s953 1.48 4.28 6.72 13.54 13.78 18.94 13.13 18.94 4.79 9.51 9.57 14.26 9.10 12.39 3.60 15.19 7.23 14.45 6.92 14.45

s1196 1.55 4.06 5.60 13.00 10.82 17.50 10.27 17.15 4.22 9.04 7.73 10.83 7.37 10.83 3.17 14.51 6.07 14.63 5.78 14.94
s1238 1.58 4.04 5.81 13.16 10.56 17.82 9.93 15.78 4.20 9.47 7.64 12.40 7.25 12.39 3.15 13.98 5.77 15.01 5.49 15.03
s5378 2.38 6.57 6.29 12.66 12.54 18.60 11.92 17.41 4.51 9.91 8.68 12.63 8.23 12.04 3.58 14.12 6.57 14.30 6.32 15.31
s9234 3.84 10.06 5.66 14.30 10.77 16.55 10.24 16.55 4.14 9.15 7.65 12.47 7.19 11.13 3.24 14.41 5.92 15.32 5.62 15.32
s13207 3.69 9.18 5.70 12.80 9.92 17.34 9.40 16.06 3.99 8.94 7.16 14.14 6.70 11.54 3.03 15.14 5.50 15.18 5.22 15.18
s35932 1.88 4.56 5.16 13.17 9.44 18.02 8.93 18.02 3.78 9.11 6.79 11.64 6.45 11.64 3.00 13.88 5.20 15.99 4.95 16.07
AVERAGE (30 circuits) 5.80 13.77 10.69 17.55 10.16 17.28 4.17 9.18 7.60 12.35 7.21 11.76 3.20 14.42 5.83 14.81 5.53 14.92

The results of SSTA show an error of 0.70% and 110X speedup on
average in comparison with the Monte Carlo simulation.
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