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Abstract

ACG (Adjacent Constraint Graph) is invented as a general
floorplan representation. It has advantages of both adjacency
graph and constraint graph of a floorplan: edges in an ACG
are between modules close to each other, thus the physical dis-
tance of two modules can be measured directly in the graph;
since an ACG is a constraint graph, the floorplan area and
module positions can be simply found by longest path com-
putations. A natural combination of horizontal and vertical
relations within one graph renders a beautiful data structure
with full symmetry. The direct correspondence between geo-
metrical positions of modules and ACG structures also makes
it easy to incrementally change a floorplan and evaluate the
result. Experimental results show the superiority of this rep-
resentation.

1 Introduction

Floorplanning has seen many new representations in recent
years, for example, sequence pair [11], BSG [12], O-tree [5],
B∗-tree [3], corner block list [6], TCG [9], twin binary se-
quences [15], etc. However, ACG is not “yet another floorplan
representation”. Its design results from a thorough study of
different floorplan approaches (constructive or iterative) and
most previous floorplan representations.

Generally speaking, there are two different approaches to
floorplan design. A constructive method constructs a floor-
plan directly from module connectivity and module sizes. An
iterative method iteratively modifies a floorplan into another
and looks for a better one during the process. Using only one
pass, a constructive approach is usually more efficient than its
iterative counterpart. However, it is harder to design a con-
structive algorithm that gives comparable results as iterative
approaches. Of course, iterative improvement can always be
applied to results generated by a constructive approach. But
a good constructive approach should make that unnecessary.
With the success of early simulated annealing floorplanners,
iterative approaches have become the main stream in floor-
planning.

On the other hand, the research in constructive approaches
is less active. Since module connectivities are used for floor-
plan construction, the adjacency graph (also known as Gra-
son graph [4]) plays a crucial role in these approaches [7, 2, 8].
In an adjacency graph, an edge represents the adjacency be-
tween modules that share a boundary. Therefore, if two mod-
ules have an edge in the adjacency graph, the interconnect
between them will be short. However, to be an adjacency
graph, a graph must satisfy many properties: being planar,
triangulated, and without complex triangles. Starting from a
connectivity graph, a constructive approach will usually first
create a planar graph by deleting some edges or introducing
some nodes, then triangulate it and delete complex triangles.
Some of these steps are NP-complete [14]. Even though there
exists a linear time algorithm in theory [2], generating a floor-
plan from an adjacency graph is also not an easy process.

ACG bridges these two schools of floorplanning research.
In iterative approaches, the generation of the floorplan from
a representation usually involves a compaction (for example,
from an O-tree, a module’s position is found as the smallest x
and y satisfying the constraints). Therefore, area is implicitly
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considered first. In constructive approaches, interconnects are
first explored to generate an adjacency graph. They are more
suitable for interconnect plan. But calculating module posi-
tions from an adjacency graph is more complex. The central
concept in module compaction is a constraint graph which is
used to forbid overlaps among modules. By combining ad-
jacency graph and constraint graph, ACG represents both
interconnects and areas. Since edges in an ACG only con-
nect modules close to each other, the distance between two
modules can be estimated directly in the graph. On the other
hand, since an ACG is a constraint graph, the floorplan area
and module positions can be efficiently evaluated by longest
path computations.

As a floorplan representation, ACG is complete, non-redun-
dant, and efficient to map to a floorplan. But we consider
its main merit to be its simplicity and direct representation
of geometry. This comes from a beautiful symmetrical data
structure resulted from the union of horizontal and vertical
edges, and based on it, a total order of modules. Because of
this, incremental change in an ACG is possible and has direct
meanings in the physical floorplan.

2 ACG–Adjacent Constraint Graph

The idea behind constraint graph is very simple: vertices rep-
resent modules and an edge in horizontal graph represents
“left to” relation and an edge in vertical graph represents
“below” relation. Adjacency graph, on the other hand, is an
undirected graph and has one edge between each pair of ad-
jacent modules. As an illustration, for a floorplan given in
Figure 1(a), its constraint graph is shown in Figure 1(b) and
its adjacency graph in Figure 1(c).
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Figure 1: (a) A floorplan; (b) Constraint graph; (c) Adjacency
graph; (d) ACG–Adjacent Constraint Graph.

Obviously, the adjacency graph of a given floorplan is an
undirected sub-graph of its constraint graph. However, a con-
straint graph over-specifies. In the constraint graph in Fig-
ure 1(b), both “below” and “left to” relations are specified
between modules b and c, where there is no adjacency. It is
obvious that over-specification has no benefit in a representa-
tion. The essential idea of constraint graph, that is, forbidding
module overlap, can be maintained by requiring that there is
one relation (“left to” or “below”) between any two modules.

Another set of redundant edges in a constraint graph are
the transitive edges. For example, in Figure 1(b), the edge
(a, e) is implied by edges (a, c) and (c, e), thus is a transitive
edge. Transitive edges are not necessary for floorplan con-
struction. On the contrary, since they are between modules
far away from each other, their presence gives noises to the
geometrical proximity information in other edges. For ex-
ample, after deleting edges (a, e), (b, e), and one (b, c) from
Figure 1(b), we arrive at a graph shown in Figure 1(d), where
solid edges represent horizontal relations and dashed edges
vertical ones. Notice how close this graph is to the adjacency



graph. It so happens that the graph is an ACG since there is
no cross in it.

Definition 1 A cross is a subgraph on four nodes a, b, c, d
such that (a, b), (c, d) are one type of edges (e.g. vertical) but
(a, c), (b, c), (a, d), (b, d) are the other type (e.g. horizontal).

Definition 2 An ACG (Adjacent Constraint Graph) is a con-
straint graph that has exact one relation (horizontal or verti-
cal) between every pair of vertices and has no transitive edge
or cross.

We group the edges in an ACG according to the relations
they represent and call them groups H and V . From the
definition, there are paths between any two modules within
exact one group.

ACG has many good properties which make efficient main-
tenance and operations possible.

Theorem 1 The directed edges in an ACG form a total order
on the vertices. In other words, the vertices can be arranged
in a line such that all the edges are from left to right.

Based on the above theorem, we organize an ACG as fol-
lows. The vertices will be doubly linked in a linear order (the
total order). Edges are all directed from left to right. Each
edge keeps its two end vertices and is kept in one edge list
at each end vertex. Each vertex maintains four linked lists of
edges: one for incoming H edges, one for outgoing H edges,
one for incoming V edges, and one for outgoing V edges. The
edges in each list are ordered according to the distances be-
tween end vertices: shorter edges come first. The structure
is illustrated by an example in Figure 2(a), where edges are
shown in arcs: the edges above the vertex line are in group
H and those below are in group V . Notice that vertex d
has one incoming H edge from a, one outgoing H edge to
e, two incoming V edges from b and c, and no outgoing V
edge. These four lists of edges have direct geometrical mean-
ings: each connects to constraining modules in one direction:
left, right, top, and bottom. And the edge orders in the lists
will be either clockwise or counter-clockwise, based on how
H and V edges are interpreted. For example, if the H edges
are interpreted as “left to” and the V edges as “below”, the
geometrical interpretation of Figure 2(a) is illustrated in Fig-
ure 2(b), where H edges are ordered counter-clockwise and V
edges are ordered clockwise.
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Figure 2: (a) ACG structure; (b) Geometrical relations.

One benefit of the data structure organization is that the
checking and elimination of crosses are made simple and ef-
ficient. Based on Definition 1, the patterns of a cross in the
data structure are shown in Figure 3. We notice here that any
vertex has edges to the three other vertices. Furthermore, we
can prove the following theorem.
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Figure 3: Patterns of a cross in an ACG.

Theorem 2 If the cross formed on a, b, c, d is minimal, that
is, no other cross exists on vertices between a and d, the ver-
tices b, c, d are consecutive among the neighbors of a, that is,
except c, no vertex between b and d is connecting to a.

Based on this theorem, if we follow the edges of a in consec-
utive order, an edge type pattern “V HH” or “HV V ” implies
a cross. Running the checking on edges starting from every
vertex can verify that there is no cross.

Corollary 2.1 Verifying that no cross exists can be done in
linear time in terms of the number of edges.

Total symmetry is another elegant property of ACG. For-
mally, it can be stated as the following proposition.

Proposition 3 Given an ACG data structure, it is still a
valid ACG when the vertex order is reversed or the edge groups
H and V are swapped.

This symmetry comes directly from the symmetry in the geo-
metrical relations represented. The four geometrical relations–
left, right, up, down–are symmetrical with each other. Based
on the symmetry, every provable result concerning edges in
an ACG also implies the other three dual results. It simplifies
our presentation in the sequel.

Corollary 3.1 If a result concerning edges in an ACG is cor-
rect, the result by exchanging left and right (and forward and
backward) or H and V is also correct.

Given the order on vertices, the information represented
by V edges is redundant to that represented by H edges. For
example, in Figure 2(a), with the vertex order, one group of
edges can be constructed from the other group to satisfy the
ACG definition. However, keeping both groups of edges facil-
itates the maintenance and operations on ACG. For example,
without one group of edges, it is very hard to check whether
the other group belongs to a valid ACG. The following lemma
shows the close relation between the two groups.

Lemma 1 In an ACG, any two consecutive V neighbors from
a given vertex are connected by an H edge.

3 Operations on ACG

3.1 Appending
Appending is an operation to add a new vertex to the left or
the right of a given ACG. We only discuss appending a vertex
to the left of an ACG; appending to the right is implied by
Corollary 3.1. This operation takes constant time for adding
one edge and works as follows.

First, the new vertex is added to the left of the vertex
linked list. Then edges from the new vertex to some other
vertices are added iteratively. In each iteration, the closest
vertex that does not have a relation with the new vertex is
identified and a suitable type of edge is then added between
them. Since the type pattern “V HH” or “HV V ” gives a
cross, once the edge type changes, it needs to keep changing.

The key operation in each iteration, that is, identifying the
closest vertex not yet having a relation with the new vertex,
can be done in constant time, thanks to the ACG structure.
At the beginning, when no edge is on the new vertex, it has
no relation with its right vertex. During the iterations, when
the new vertex has already some edges, a relation may be
implied by a path from the new vertex to another vertex.
The following lemma shows that such a candidate vertex can
be easily identified in all situations.

Lemma 2 When the new vertex has only V edges, the first
H neighbor of its furthest V neighbor is the closest vertex not
having a relation with it. When the new vertex has last two
edges in types V, H, there must be an H edge from the V



neighbor to the H neighbor, and the closest vertex not having
a relation with the new vertex is connected to the V neighbor
next to that H edge.

The two situations in the lemma is illustrated in Figure 4,
where the steps to find the candidate vertices are shown by
the numbers.
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Figure 4: (a) New vertex n has only V edges; (b) New vertex
n has both V and H edges.

As an example, consider to append a new vertex e to an
ACG with four vertices a, b, c, d as shown in Figure 5. Vertex
e is first put at the left of the vertex list. In the first iteration,
d is the candidate vertex, and an edge of arbitrary type (say
V ) can be added from e to d. Next, since e has a V edge, the
first H neighbor of d, that is c, will be the candidate. Once
again, the type can be selected and suppose (e, c) is of type
H. Now e has both types of edges. According to the lemma,
(d, c) is an H edge, and its next edge from d is (d, b). So b is
identified as the candidate. But since the edge types already
alternate, edge (e, b) should be of type V –different from that
of edge (e, c). The last iteration will similarly identify a and
add an H edge (e, a).
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Figure 5: Append vertex e to the left of a given ACG.

Based on the discussion of the procedure, we can state the
following theorem.

Theorem 4 Given an ACG, the procedure append produces a
valid ACG with one more vertex, with linear time and storage
complexity in terms of added edge numbers.

3.2 Swap
Swap is an operation that exchanges the positions of two ad-
jacent vertices in the vertex list. Since an ACG requires edges
directed from left to right, the original edge must be removed
and a new edge is added to the other group. Since edges in
one group represent horizontal relations and those in the other
one represent vertical relations, swap will change the geomet-
rical relation of two modules from horizontal to vertical, or
vice versa. As an example, consider the ACG in Figure 2(a).
If we swap vertices b, c, the result is shown in Figure 6(a).
As we can see, other edges must also be modified to keep the
ACG valid. The geometrical effect of the swap is shown in
Figure 6(b). Module c is moved from the right of module b
to below it.

Suppose a swap is done on vertices a, b and the original
edge (a, b) is of type H. After the swap, edge (a, b) is deleted
from group H and a new edge (b, a) is added to group V .
All H paths through (a, b) are then broken, which may leave
some vertex pairs without any relation. On the other hand,
with the new edge (b, a) added, new V paths may formed,
which may make some V edges become transitive. The swap
operation will repair these damages and make the ACG a
valid one again.

First, consider the transitive edges formed in V group.
Based on the way the swap operation is defined, the transitive
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Figure 6: (a) Swap b, c; (b) The geometrical effect of the swap.

edges only appear locally. This can be stated in the following
lemma.

Lemma 3 When edge (b, a) is swapped into group V , transi-
tive edges may only be formed from b’s left V neighbors to a
or from b to a’s right V neighbors.

Based on the result, we only need to check b’s V left neigh-
bors to see whether they have V edges to a. If so, these edges
need to be deleted. Similarly, we will also check a’s V neigh-
bors to see whether they have V edges from b, and if so, delete
them.

Then, the effects of deleting edge (a, b) from group H are
considered. Two vertices will lose their relation if originally
there is only one H path which goes through edge (a, b). For-
tunately, the repair can also be done locally. It is easy to see
that a path broken by deleting (a, b) can be restored by con-
necting a with the vertex after b or b with the vertex before
a. Furthermore, the path is the only one between the two
vertices if and only if the path between a and the vertex after
b and the path between b and the vertex before a are the only
paths. Therefore, we need only to consider a with b’s right H
neighbors and b with a’s left H neighbors. However, before
adding an H edge between two vertices, we must make sure
that there is no other H path between them. The criteria can
be stated as the following lemma. It is illustrated in Figure 7.
Symmetric result exists between a and b’s right H neighbors.

a bc

Figure 7: Vertex c has only one H path to b iff c’s H neighbor
before a has b as its V neighbor.

Lemma 4 Suppose vertex c is a’s left H neighbor. Then c
has only one H path to b which is through (a, b) if and only if
c’s H neighbor before a has b as its V neighbor.

Based on this result, for each left H neighbor of a, we will
find its right H neighbor before a and check whether that
vertex has b as its V neighbor. If so, we will add an H edge
from the current left neighbor of a to b. Similar thing can be
done with b’s right H neighbors. It should be noted that a
swap may introduce crosses in the graph.

4 Experiments with iterative approach

We implemented the ACG data structure and basic operations
append and swap in the C language. Since swap may generate
crosses, the implementation allows crosses in an ACG. As our
focus is ACG but not the simulated annealing, we adopted an
annealing scheme (starting temperature, cooling rate, etc.)
similar to TCS-S [10] without further tuning. Our floorplan-
ner works as follows. After reading in a module, it randomly
appends the module either to the left or to the right of the



circuit FAST-SP TCG TCG-S ACG
area time area time area time area time

apte 46.92 8 46.24 3.4 51.81 0.8 47.08 0.30
hp 11.17 9 9.02 9.9 9.56 0.6 9.33 0.24

xerox 21.07 8 19.99 3.2 20.18 0.2 20.16 0.27
ami33 1.185 28 1.20 190.5 1.21 22.6 1.20 2.15
ami49 36.82 48 37.04 590.7 38.47 63.1 36.92 6.88

n100 191.2k 128 197.8k 2487 192.0k 458 187.5k 28
n200 197.5k 350 – >5h 197.0k 4233 187.1k 129
n300 312.3k 653 – >5h 307.0k 16.3k 293.7k 322

Table 1: Simulated Annealing for Area (Sun Ultra 10)

circuit FAST-SP TCG TCG-S
area time area time area time

apte 46.92 1 46.92 1 46.92 1
hp 8.947 6 8.947 20 8.947 7

xerox 19.08 14 19.83 18 19.796 5
ami33 1.205 20 1.20 306 1.185 84
ami49 36.50 31 36.77 434 36.40 369

Table 2: Results from [13] (Sun Ultra 1) and [9, 10] (Sun
Ultra 60)

current ACG, randomly deciding a relation between two mod-
ules when there is a freedom of choice. The generated ACG
is used as the initial solution. Three perturbations are used
in the annealing: changing the orientation of a module, ex-
changing two modules, and swaping two adjacent modules. It
can be shown that these perturbations are complete for the
solution space. Each of these perturbations is selected with
equal probability.

We did the experiments on a Sun Ultra 10 station over the
MCNC building block benchmarks and three circuits in the
GSRC floorplan benchmark suite (n100, n200, and n300). We
used the default running modes targeting at area optimiza-
tion for FAST-SP [13], TCG, and TCG-S, since there is no
suggestion in the original papers [13, 9, 10] or in the packages.
To match with the results reported in the original papers, we
ran each of MCNC benchmarks 5 times for TCG and TCG-S.
The results were different in different runs, since time is used
for random seed set-up in TCG and TCG-S. The best result
among the 5 runs and the running time for achieving that re-
sult were reported in Table 1. However, there were still some
discrepancies from the results in the original papers which are
copied in Table 2. For fairness, we also ran ACG in the same
way (took the best result among 5 runs). Since FAST-SP does
not set the random seed, it gave the same result each run. As
you can see, the random seed may be one reason why we
could not get the same results as in the original papers. Even
on FAST-SP, which gave the same result in different runs, we
also noticed that different machines gave different results. We
think that it is because different systems may have different
random generators. For the GSRC benchmarks, we ran each
of them only once due to the large running time.

The experiments showed that ACG is faster than other
representations (sequence pairs, TCG, TCG-S) while having
comparable quality. The reason is simple: TCG or TCG-S
has quadratic numbers of edges in the graph while ACG has
only linear number of them.

We also compared ACG with Parquet-2 [1] for the three
GSRC benchmarks. Each benchmark was run 5 times on the
Sun Ultra 10. We ran Parquet-2 with the default parameters
where the area was minimized without the restriction on the
aspect ratio. And in our annealing scheme of ACG, the num-
ber of the perturbations tried in each iteration was cut by
half for faster speed at the cost of solution quality. The best
result among the 5 runs and the running time for achieving it

circuit Parquet-2 ACG
area #move time area #move time

n100 194.9k 112k 17.15 187.7k 139k 13.23
n200 194.2k 224k 84.28 188.7k 278k 61.85
n300 304.1k 337k 217.6 296.3k 426k 148.7

Table 3: ACG vs. Parquet-2 (Sun Ultra 10)

were shown in Table 3. The total numbers of moves (#move)
in the annealings are also reported. It showed that ACG is
faster than Parquet-2 while giving better solutions.
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