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Abstract

This paper quantifies the approximation error in Clark’s ap-
proach [1] to computing the maximum (max) of Gaussian ran-
dom variables; a fundamental operation in statistical timing.
We show that a finite Look Up Table can be used to store
these errors. Based on the error computations, approaches
to different orderings for pair-wise max operations on a set of
Gaussians are proposed. Experiments show accuracy improve-
ments in the computation of the max of multiple Gaussians
by up to 50% in comparison to the traditional approach. To
the best of our knowledge, this is the first work addressing the
mentioned issues.

1 Introduction

Analytical approaches to statistical static timing analysis have
emerged as an active research topic [2–5]. Recent literature
consider gate delays as Gaussian random variables since it fa-
cilitates fast analytical evaluation. Chang et al. propose a sta-
tistical timing analysis approach under this assumption which
considers spatial correlations [6]. A timing analysis algorithm
that accounts for correlations and accommodates dominant
interconnect coupling is proposed by Le et al. in [7]. A first
order incremental block based statistical timing analyzer is
presented by Visweswariah et al. in [8].

Propagation of Gaussian distributions in block-based sta-
tistical timing analysis involves operations like add and max.
It is required that the output of these operations be a Gaus-
sian for further propagation. An add operation on Gaussians
yields another Gaussian and is accurate. However, the max of
multiple Gaussians is not a Gaussian, and approximating its
distribution with a Gaussian introduces inaccuracies. Clark’s
approach [1] is used to approximate the max of two Gaussians
with another Gaussian by matching the first two moments of
their distributions. For multiple Gaussians, the max opera-
tion is performed a pair at a time. Each of these pair-wise
operations introduce errors by approximating the resulting
distribution with a Gaussian. These approximation errors can
propagate and affect accuracy. We observe that the final loss
in accuracy in the max of multiple Gaussians is dependent on
the order in which pair-wise max operations are performed.
Prior work does not describe the impact of ordering on the
inaccuracy of the process.

Our contributions in this paper are summarized as follows.

• We quantify the error in the approximation of the max
of two arbitrary Gaussians with a Gaussian. The closed
form expression for the PDF of the true max is derived,
and used to develop an analytical expression which quan-
tifies the approximation error.

• We present a transformation to obtain the max of two
random variables from the max of a new pair of derived
random variables, parameters of which can be bounded.
In addition, we show that approximation error of the
max operation is an invariant of our transformation.

• We introduce the idea of using a finite Look Up Table
(LUT) to store quantified approximation errors in the
max operation on any Gaussian pair.

• We study the approximation errors as functions of the
given Gaussians and propose good orderings for pair-
wise max operations on a given set of Gaussians. The
orderings attain to reduce the loss in accuracy, without
significant increase in run times.

Due to the symmetry of max and min operations, the max
operation is considered in the paper. The approaches pre-
sented are extensible for the case of min operations. Experi-
ments results show timing estimation accuracy improvements
of up to 50% in comparison to the traditional approach. To
the best of our knowledge, this is the first work addressing
the mentioned issues.

2 Background

Statistical timing analysis involves propagation of delay dis-
tributions through the circuit. Statistical modeling is per-
formed to model gate delays as a function of the sources of
variation. Based on the work in [6–8], we consider circuit
delays as Gaussian random variables. A Gaussian random
variable X is formally expressed as G(µX , σX), with mean
µX and variance σ2

X .
The add operation on Gaussian variables is performed eas-

ily and yields another Gaussian. The max operation, on the
other hand, is an intricate operation, and for a given set of
Gaussians, is performed a pair at a time. We next show
Clark’s moment matching approach [1] to computing the max
of two Gaussians X and Y . ρ is used to represent the corre-
lation coefficient between X and Y . We define the following.

φ(x)
∆
=

1√
2π

exp(−x2

2
) (1)

Φ(y)
∆
=

∫ y

−∞

φ(x)dx (2)

a
∆
= (σ2

X + σ2
Y − 2ρσXσY )1/2 (3)

α
∆
=

µX − µY

a
(4)

The mean µZ and variance σ2
Z of Z

∆
= max(X,Y ) is expressed

analytically as follows.

µZ = µXΦ(α) + µY Φ(−α) + aφ(α) (5)

σ2
Z = (σ2

X + µ2
X)Φ(α) + (σ2

Y + µ2
Y )Φ(−α) +

(µX + µY )aφ(α) − µ2
Z (6)

Z is approximated to a Gaussian variable ZG
∆
= G(µZ , σZ) for

delay propagation. The first and second order moments of Z
are matched to obtain ZG, while the higher order moments of
Z are ignored. This is the first and foremost source of inaccu-
racy in the approach. The non-linearity of the max operation
causes Z to have an asymmetric density function. However
ZG has a symmetric density function. We next quantify the
error introduced in the above approximation in the following
section.
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Figure 1: Error Ξ between two random variables with given PDFs is represented by the area of the shaded region

3 Approximation errors in the max operation

3.1 Error definition

A formal comparison of two given distributions requires a met-
ric that quantifies the dis-similarity (or similarity) between
them. Given two random variables X, Y , and their probabil-
ity density functions (PDFs) ϕX , ϕY respectively, we quantify
the dis-similarity or the error ΞXY between the variables as
the total area under the non-overlapped region of their PDFs.
This is formally expressed as follows.

ΞXY
∆
=

∫ ∞

−∞

|ϕX(t) − ϕY (t)|dt (7)

Figure 1 shows PDFs of two random variables, the dis-
similarity between which we attain to quantify. The area of
the shaded region represents the error between them. Since
the area under each PDF is 1,

0 ≤ ΞXY ≤ 2.

3.2 Error in approximating the max of two Gaussians

We consider the max of two Gaussians Z
∆
= max(X,Y ), where

X
∆
= G(µX , σX), Y

∆
= G(µY , σY ), and ρ denotes their corre-

lation coefficient. Z is approximated to a Gaussian ZG
∆
=

G(µZ , σZ), after computing µZ and σZ from (5)−(6). Based
on (7), we formally quantify the error introduced in this ap-
proximation as the following.

Ξ(Z)(ZG)
∆
=

∫ ∞

−∞

|ϕZ(t) − ϕZG(t)|dt (8)

ϕZG denotes the PDF of the Gaussian ZG. Mathematically,

ϕZG(t)
∆
=

1√
2πσZ

e
−

(t−µZ )2

2σZ
2 =

1

σZ
φ(

t − µZ

σZ
) (9)

We derive a closed form for ϕZ(t) which denotes the true
PDF of max(X,Y ) as the following. The proof is presented
in Appendix I.

ϕZ(t)

=
1

σY
φ(

t − µY

σY
)Φ

[ ( t−µX
σX

) − ρ( t−µY
σY

)

(1 − ρ2)1/2

]

+

1

σX
φ(

t − µX

σX
)Φ

[ ( t−µY
σY

) − ρ( t−µX
σX

)

(1 − ρ2)1/2

]

(10)

Ξ(Z)(ZG) can now be evaluated from (9) and (10) using nu-
merical integration.

3.3 Errors in canonical form

We consider two properties of a generic max operation.

1. Scaling property

max(λX,λY ) = λ · max(X,Y ) ∀λ ≥ 0

2. Shift-invariance property

max(X + θ, Y + θ) = max(X,Y ) + θ

Consider Gaussians X
∆
= G(µX , σX) and Y

∆
= G(µY , σY ),

with correlation coefficient ρ. Without any loss of generality,
we assume σX ≥ σY . Application of the above properties on
max(X,Y ) (shifting by µX and subsequent scaling by σX)
results in the following.

max(X,Y ) = µX + σX · max(X ′, Y ′) (11)

where,

X ′ ∆
= G(µX′ , σX′) =

X − µX

σX
= G(0, 1)

Y ′ ∆
= G(µY ′ , σY ′ ) =

Y − µX

σX
= G(

µY − µX

σX
,
σY

σX
)

ρ′ denotes the correlation coefficient between X ′ and Y ′.
Since σY ′ = σY /σX and σX ≥ σY , we have the following.

0 ≤ σY ′ ≤ 1 (12)

Lemma 1 ρ′ = ρ

Proof: The covariance (cov) of two Gaussians is indepen-
dent of their means µ and is directly proportional to their
standard deviations σ. Since σX′ = σX

σX
and σY ′ = σY

σX
, we

have cov(X ′, Y ′) = cov(X,Y )

σX
2 . From definition, ρ = cov(X,Y )

σXσY
.

ρ′ =
cov(X ′, Y ′)

σX′σY ′

=

cov(X,Y )

σX
2

1 · σY
σX

= ρ

Based on the definitions in (1)-(4), we define the following.

a′ ∆
= (σ2

X′ + σ2
Y ′ − 2ρ′σX′σY ′)

1/2
(13)

α′ ∆
=

µX′ − µY ′

a′
(14)

Lemma 2 α′ = α

Proof: From (3) and (13), we have a′ = a
σX

. Thus,

α′ =
µX′−µY ′

a′ =
−µY ′

a′ =
−

µY −µX
σX
a

σX

= α
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Figure 2: Ξ(Z′)(Z′

G
) as a function of ρ and α (σY ′ = 0.5)

We denote the error in approximating Z ′ ∆
= max(X ′, Y ′)

with a Gaussian Z ′
G = G(µZ′ , σZ′ ) to be Ξ(Z′)(Z′

G
) and prove

that it is exactly equal to the error Ξ(Z)(ZG) in approximating
Z = max(X,Y ) with Gaussian ZG = G(µZ , σZ). The proof
is presented in Appendix II. Mathematically, we prove the
following.

Ξ(Z′)(Z′

G
) = Ξ(Z)(ZG) (15)

The approximation error in the max of any two Gaussians
can thus be estimated from the approximation error in the
max of the derived Gaussians, one of which is the unit normal
Gaussian. The error is therefore a function of µY ′ , σY ′ and
ρ′(= ρ). Since α′(= α) is a function of µY ′ , the error can
be expressed as a function of α, σ′

Y and ρ. It is known that
φ(α) ≈ 0 for |α| ≥ 4, Φ(α) ≈ 0 for α ≤ 4, and Φ(α) ≈ 1
for α ≥ 4. Consequently, for |α| ≥ 4, max(X,Y ) almost
identically resembles the dominating Gaussian [8]. The ap-
proximation error in this case is negligible. Thus, the region
of interest for the parameters that affect the approximation
error is bounded by the following.

−4 ≤ α ≤ 4

0 ≤ σY ′ ≤ 1 from (12)

−1 ≤ ρ ≤ 1 from definition

Experiments are performed to study the dependence of the
approximation error Ξ(Z′)(Z′

G
) on the above parameters. It is

observed that Ξ(Z′)(Z′

G
) decreases when either of the Gaus-

sians dominate the other, i.e., |α| ≥ 3 and increases for Gaus-
sians that contribute almost equally to the max i.e., α in the
neighborhood of 0. Ξ(Z′)(Z′

G
) is found to increase with de-

creasing σY ′ and is convex with respect to the correlation
coefficient. Figures 2−4 show the surface plots of Ξ(Z′)(Z′

G
)

as functions of α, σY ′ and ρ. The presented plots reveal that
while the max of two Gaussians can be very well approxi-
mated with a Gaussian in some cases, the approximation in
other cases yields large errors.

3.4 Look Up Table for error storage

The computation of the mean and variance of the max of
two Gaussians involve the evaluation of a definite integral
Φ(α) and an exponential φ(α). Numerical computations for
their accurate estimation is CPU expensive. We consider the
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infinite Taylor series expansion [9] about a point k of Φ(α).

Φ(α) = Φ(k) + . . .
Φ(n)(k)

n!
(α − k)n . . . (16)

Φ(n)(k) and φ(n)(k) represent the nth derivatives of Φ(k)
and φ(k) respectively. It is observed that the nth derivative
of Φ(α) (and φ(α)), for any n > 0 is a product of φ(α) and a
polynomial in α. Mathematically, we have the following1 .

Φ(n+1)(α) = φ(n)(α) = φ(α)(−1)n n!

bn
2
c

∑

i=0

(−1)i αn−2i

2i i! (n − 2i)!
(17)

We use the above Taylor series expansion to compute Φ(α)
and φ(α) in the region |α| < 4. We propose to pre-compute
Φ(k) and φ(k) for multiple values of k ∈ [ 0, 4)2, and store
the values in two Look Up Tables (LUTs). Thereafter, Φ(α)
(φ(α)) is computed by a table lookup on the closest k in the
vicinity of α to obtain Φ(k) (φ(k)), followed by a finite Taylor

1Please contact the authors for a formal proof.
2It is known that Φ(−k) = 1− Φ(k) and φ(−k) = φ(k)
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series expansion about k. For a uniformly sampled LUT with
step-size p, it is observed that a very high degree of accuracy
can be obtained by expanding few (typically 3 to 4) terms
of the Taylor series expansion. We can obtain any desired
accuracy in the computation of Φ(α) and φ(α) by either de-
creasing p while keeping n constant or by increasing n for a
given p.

We extend this idea to using LUTs for storing quantified
approximation errors next. Given that the approximation
error for any two Gaussians is a function of three bounded
parameters for all practical purposes, we accurately evaluate
approximation errors at discrete points in the bounded space
of these parameters. These evaluated errors are stored in a
three dimensional finite LUT. Since time is not a constraint
in construction of the table, the LUT can be created with as
much accuracy as desired. The error estimation for a given
point is evaluated from (8)−(10). Approximation error esti-
mation for a max operation is now performed very efficiently
by a simple transformation to evaluate σ′

Y = σY
σX

and a sub-

sequent table lookup.

4 Error minimization problem

We consider the max operation on n given Gaussian random
variables X0, X1, . . . , Xn−1, such that

XM
∆
= max

(

X0, X1, . . . , Xn−1

)

.

Pair-wise max operations are performed on the given Gaus-
sians to yield a Gaussian XG = G(µXG , σXG), which is used
to approximate XM . The loss in accuracy of the final result
is dependent on the ordering of the pair-wise max operations.
This is because the introduced inaccuracy for each pair-wise
max operation is a function of the Gaussian parameters of the
pair themselves and can accumulate or get reduced. The max
operation on n Gaussians is analogous to the construction of
a binary tree with n leaves such that each internal node com-
putes the max of its two children. We refer to this tree as a
Max Binary Tree (MBT) in the rest of this paper.

Given n Gaussians, the max (XM ) of which we want to
estimate and approximate with XG, the Error minimization
problem is to create an MBT that yields some XG at its root
such that ΞXM XG is minimized.

According to Knuth [10], the total number of different

labeled oriented binary trees with n leaves is (
2n − 1
n − 1 )(2n −

2)!/2n−1 . In an MBT, only the leaves are labeled. Therefore,
the total number of different MBTs is

( 2n − 1
n − 1

)

(2n − 2)!

2n−1(n − 1)!
> (2n − 1)n−1.

Thus an exhaustive enumeration is prohibitive in solving this
problem. Consequently, we consider good MBT construction
approaches for error reduction.

5 Intelligent Max Binary Tree construction approaches

In this section, we present novel approaches for constructing
good MBTs based on the study in the previous sections. We
assume that a max operation takes Θ(1) time in complexity
analysis.

5.1 Simple Max Binary Tree

This approach constructs the MBT as a skewed binary tree.
A max is performed on two of the n given Gaussians to yield a
new approximated Gaussian. Another max operation follows,
which evaluates the max of the max obtained in the previous
stage and one of the remaining (n− 1) given Gaussians. This
process is repeated (n− 1) times to obtain a Gaussian, which
is used to approximate the max of the n given Gaussians. The
complexity of this approach is Θ(n).

5.2 Partition Max Binary Tree

The Partition MBT approach attains to reduce the depth of
approximation errors accumulated in the (n−1) stages of the
previous approach by constructing a balanced binary tree.
The given set of Gaussians is randomly partitioned into two
subsets. The subsets are then further bi-partitioned, and the
process is done recursively, until the subset contains no more
than two Gaussians. A max operation is then performed on
the Gaussians in each subset. The results are now propagated
backward to evaluate the max of these values bottom up. The
MBT formed using this approach is balanced, and reduces the
depth of accumulation of approximation errors from (n − 1)
to (log n). The complexity of this approach is maintained at
Θ(n).

5.3 Greedy Max Binary Tree

This MBT construction method involves a greedy approach to
reduce approximation errors. Based on the study in the previ-
ous sections, the Greedy MBT approach iteratively computes
the max of two Gaussians from the given set, such that the
approximation error for that pair is the least in comparison
to all other pairs. The computed max is then returned to the
original set and the process continues for (n−1) similar itera-
tions. The method is analogous to a graph reduction problem.
Consider a fully connected graph with n nodes, each repre-
senting a given Gaussian. Edges of the graph contain weights
that denote the approximation error in the max operation of
the pair of nodes it joins. Adjacent nodes of the edge with the
least weight are combined using a max operation. The corre-
sponding nodes are combined into one and edge weights are
incrementally recomputed. This process is repeated (n − 1)
times, after which the graph is left with a single node, which
contains the approximated max of the given Gaussians. A
LUT is used to evaluate the edge weights in the graph. An
alternate metric for any edge weight could be the skewness of
the max of its adjacent nodes. The Greedy MBT approach
reduces given identical Gaussians (those having same means,
variances and ρ = 1) to a single one. The complexity of this
approach is Θ(n3).

5.4 Cluster Max Binary Tree

The Cluster MBT approach is constructed as a combination
of the Partition MBT and the Greedy MBT approaches. The
max operation is performed in a greedy way on a Gaussian
pair that yields the minimal error in approximation among
all other pairs. However, the computed max is not sent back
to the set of the given Gaussians as in the previous approach.
A new pair is selected from the set of given Gaussians for the
max operation iteratively till at most one Gaussian is left. The
process restarts with the computed max distributions as the
given set of Gaussians henceforth. The approach ensures that
the constructed MBT is balanced and tries to reduce accumu-
lation of approximation errors by constraining the maximum
depth of the tree to (log n). This approach reduces identi-
cal Gaussians to fewer ones, but is guaranteed to reducing
them to one only when the number of identical Gaussians is
2k for some positive integral value of k. The complexity of
this approach is Θ(n2).

6 Experimental results

We present experimental results of the proposed MBT con-
struction approaches in this section. We construct a LUT to
store approximation errors as presented in Section 3.4. Ex-
perimental results presented are for a LUT having 2 × 106

entries (100 × 100 × 200 for σY ′ , ρ and α respectively). The
simulations to generate the LUT take 4 hours on a Pentium
2.4GHz machine, with 1GB RAM. The Greedy and the Clus-
ter MBT approaches use the LUT to pick Gaussian pairs. The
standard deviation of each Gaussian has been constrained to
at most 20% of its mean value.
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We consider the max operation on randomly generated sets
of 3 to 100 Gaussians and compare the error of the max ob-
tained in different approaches with the distribution obtained
from Monte Carlo simulations, which we assume golden. 1000
runs are performed for each set to obtain an average. The ob-
tained experimental results reveal that the proposed Partition
MBT, Greedy MBT, and the Cluster MBT approaches reduce
the loss in accuracy of Ξ by up to 24% with respect to the
results obtained from the Simple MBT approach.

In statistical timing, we are concerned about the estima-
tion accuracy of specific probability points in the CDF. We
define a probability point VPr=p for a random variable X as

VPr=p
∆
= x : (Pr(X ≤ x) = p), p ∈ [0, 1].

We compare accuracy gains obtained from the proposed ap-
proaches with respect to the Simple MBT approach. The ab-
solute value of the difference in VPr=p points obtained from
the CDF of the constructed MBT and the Monte Carlo (MC)
CDF is normalized by V MC

Pr=p and multiplied by 100 to denote
the error percent. The error percent of the Simple MBT ap-
proach is used as a reference for comparisons. For each of our
proposed approaches, we denote the value by which the error
percent of the Simple MBT method exceeds the error percent
of the proposed approach as the %Gain. Given a probability
point p, the %Gain obtained in approach A (could be Parti-
tion, Cluster or Greedy) is formally defined as the following.

%Gain
∆
= (18)

(
|V Simple

Pr=p − V MC
Pr=p|

V MC
Pr=p

× 100) − (
|V A

Pr=p − V MC
Pr=p|

V MC
Pr=p

× 100)

The %Gain reflects the absolute value of the gain in accu-
racy and does not reflect the ratio of the gain in accuracy of an
approach over the other. Tables 1−3 present %Gains of the
proposed approaches for the probability points 0.5 (mean),
0.95 and 0.998 respectively. We present the number of Gaus-
sians (N) in the given set, the average %Gain obtained (Gain)
and the maximum %Gain (MaxG) obtained in the simula-
tions. Table 4 presents the %Gain obtained in the accuracy
of estimating the variance of the max.

The proposed approaches are found to improve %Gain.
Since the average error percent in estimation of the VPr=p

points in the Simple MBT approach is experimentally found
to be less than 2%, the %Gain values obtained are relatively
significant. For example a %Gain of 0.5% implies a 0.5

2
×100 =

25% improvement in relative accuracy. The proposed ap-
proaches are heuristics and do not guarantee optimality. The
Partition MBT approach performs better than the Simple
MBT approach on the average and indicates that the depth of
cumulative error accumulation causes a difference. The pro-
posed approaches that use the LUT show absolute maximal
improvements by up to 5.2% in improving the accuracy of es-
timation of the critical probability points in the CDF and by
up to 50% in estimation of the variance of the max. On the
average, we find the Greedy approach performs the best. Run
times are comparable for sets having up to 30 Gaussians. For
the max of 50 Gaussians, run times for the Simple, Partition,
Cluster and Greedy MBT approaches are found to be 0.00007
seconds, 0.0002 seconds, 0.003 seconds and 0.29 seconds re-
spectively. Though the Cluster and Greedy MBT approaches
are computationally more expensive than the Simple MBT
approach, given that we intend to use this method for com-
puting the max of a finite number of delay distributions in
statistical timing, the runtime overheads are acceptable. All
experiments are performed on a Pentium 2.4GHz, 1GB RAM
machine, running Red Hat Linux 9.0.

Table 1: % Accuracy gain results in VPr=0.5(Mean)
N Partition Cluster Greedy

Gain MaxG Gain MaxG Gain MaxG
3 0.00 0.5 0.01 0.5 0.01 0.5
5 0.00 0.5 0.02 1.0 0.02 1.0
7 0.01 0.8 0.03 1.0 0.03 1.0
9 0.03 1.1 0.06 1.1 0.06 1.1
12 0.05 0.8 0.07 1.1 0.07 1.4
15 0.08 0.9 0.11 1.2 0.09 1.4
20 0.14 0.9 0.18 1.3 0.16 1.5
30 0.28 1.1 0.35 1.7 0.31 1.6
50 0.55 1.3 0.70 2.9 0.58 2.9
100 1.04 1.9 1.29 2.7 1.12 2.5

Table 2: % Accuracy gain results in VPr=0.95

N Partition Cluster Greedy
Gain MaxG Gain MaxG Gain MaxG

3 0.02 2.0 0.05 2.0 0.05 2.0
5 0.01 3.1 0.08 3.2 0.09 3.2
7 0.04 2.2 0.07 2.3 0.15 2.7
9 0.03 2.8 0.09 2.3 0.20 2.3
12 0.02 2.7 0.08 2.5 0.23 3.0
15 0.04 2.3 0.14 2.3 0.24 3.1
20 0.05 2.1 0.15 2.8 0.26 2.8
30 0.09 2.8 0.35 3.1 0.31 3.1
50 0.28 3.2 0.33 2.9 0.40 3.2
100 0.57 3.1 0.62 3.4 0.68 3.2

Table 3: % Accuracy gain results in VPr=0.998

N Partition Cluster Greedy
Gain MaxG Gain MaxG Gain MaxG

3 0.01 2.7 0.07 2.7 0.07 2.7
5 0.01 3.8 0.17 3.8 0.18 3.8
7 0.00 3.4 0.10 3.9 0.23 3.8
9 0.06 4.5 0.28 3.6 0.31 4.0
12 0.06 3.7 0.16 4.6 0.31 3.6
15 0.08 3.6 0.14 3.6 0.38 4.3
20 0.10 3.0 0.25 3.6 0.41 4.7
30 0.12 3.3 0.27 4.1 0.50 5.2
50 0.04 3.4 0.23 4.0 0.37 4.3
100 0.08 3.5 0.17 4.1 0.34 3.8

Table 4: % Accuracy gain results in variance estimation
N Partition Cluster Greedy

Gain MaxG Gain MaxG Gain MaxG
3 0.09 42.4 0.54 41.4 0.54 41.4
7 0.08 28.8 0.86 31.6 1.87 31.6
9 0.43 35.7 2.32 27.7 2.54 30.6
12 0.53 36.0 1.35 50.0 2.42 33.1
15 0.68 33.5 1.22 27.6 3.05 34.5
20 0.78 22.6 1.88 33.4 3.06 32.5
30 0.67 24.9 2.04 36.6 3.63 39.8
50 0.24 29.4 2.31 33.9 2.92 32.3
100 0.00 23.3 0.92 28.5 1.50 26.6

7 Conclusions

In this paper, we quantify the approximation error in Clark’s
approach [1] to computing the max of Gaussians. We propose
approaches to different orderings for pair-wise max operations
on a set of Gaussians based on error computations. Prior re-
search [11] has shown that the average errors in estimating
the mean and standard deviation of a circuit’s arrival time
distribution in comparison to Monte Carlo simulations are
≈ 1.8% and 13.7% respectively. Similar numbers are shown
in [6]. The proposed approaches significantly improve the ac-
curacy in variance estimation on the average, errors in which
could be large otherwise. They also improve the estimation
accuracy of specific probability points, which could have sig-
nificant errors (about 4.56% on the average for VPr=0.99 [6]).

We believe that the proposed approaches would increase
the accuracy in the estimation of node and edge criticali-
ties [8], and would thereby guide statistical timing optimiza-
tion better. In addition, expressions for the CDF and PDF of
the true max of two Gaussians would help in accurate yield
estimation, when considering both timing and power [11].
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Appendix I

The joint probability density function ϕ(x, y) for Gaussians

X
∆
= G(µX , σX) and Y

∆
= G(µY , σY ) is defined as follows.

ϕ(x, y)
∆
=

e

{

−1

2(1−ρ2

[

(
x−µX

σX
)
2
−2ρ(

x−µX
σX

)(
y−µY

σY
)+(

y−µY
σY

)
2
]}

2πσXσY (1 − ρ2)1/2

• Expression for the CDF of Z

The CDF Ψ(t) of Z is defined as the probability that Z is at
most t. Since Z = max(X,Y ), Ψ(t) is given by the probability
that both X and Y are not more than t. This is evaluated
by integrating the joint probability density function ϕ(x, y)
in the region where both X ≤ t and Y ≤ t. Thus,

ΨZ(t)
∆
= Pr(Z ≤ t) =

∫ t

−∞

∫ t

−∞

ϕ(x, y) dx dy

=

∫ t

−∞

∫ t

−∞

e
−1

2(1−ρ2)

[

(
x−µX

σX
)
2
−2ρ(

x−µX
σX

)(
y−µY

σY
)+(

y−µY
σY

)
2
]

2πσXσY (1 − ρ2)1/2
dxdy

=

∫ t

−∞

∫ t

−∞

e
−1

2(1−ρ2

[

(
x−µX

σX
)−ρ(

y−µY
σY

)

]2

e
−1
2

[

(
y−µY

σY
)
2
]

2πσXσY (1 − ρ2)1/2
dx dy

=

∫ t

−∞
φ( y−µY

σY
)
∫ t

−∞
φ(

[
x−µX

σX
]−ρ[

y−µY
σY

]

[1−ρ2]1/2 ) dx dy

σXσY (1 − ρ2)1/2

=
1

σY

∫ t

−∞

φ(
y − µY

σY
)Φ

[ ( t−µX
σX

) − ρ( y−µY
σY

)

(1 − ρ2)1/2

]

dy.

• Closed form expression for the PDF of Z

We next derive a closed form expression for the PDF ϕZ(t),
which is defined as the derivative of Ψ(t) with respect to t.

ϕZ(t)
∆
=

d

dt
[ΨZ(t)] =

d

dt

[

∫ t

−∞

∫ t

−∞

ϕ(x, y) dx dy
]

=

∫ t

−∞

ϕ(x, t) dx +

∫ t

−∞

ϕ(t, y) dy

=
1

σY
φ(

t − µY

σY
)Φ

[ ( t−µX
σX

) − ρ( t−µY
σY

)

(1 − ρ2)1/2

]

+
1

σX
φ(

t − µX

σX
)Φ

[ ( t−µY
σY

) − ρ( t−µX
σX

)

(1 − ρ2)1/2

]

Appendix II

We consider approximating Z with a Gaussian ZG
∆
= G(µZ , σZ)

and approximating Z ′ ∆
= max(X ′, Y ′) with a Gaussian Z ′

G
∆
=

G(µZ′ , σZ′ ). ϕZ(t) and ϕZG(t) denote PDFs as defined ear-
lier and ϕZ′ (t) and ϕZ′

G
(t) denote the PDFs of Z ′ and Z′

G

respectively. From (9) and (10), we have the following.

ϕZ′

G
(t)

∆
=

1√
2πσZ′

e
−

(t−µ
Z′ )

2

2σ
Z′

2
(19)

ϕZ′ (t)
∆
=

1

σY ′

φ(
t − µY ′

σY ′

)Φ
[

t − ρ(
t−µY ′

σY ′

)

(1 − ρ2)1/2

]

+ φ(t)Φ
[

(
t−µY ′

σY ′

) − ρt

(1 − ρ2)1/2

]

(20)

Lemma 3 µZ = µX + σXµZ′ and σZ = σXσZ′

Proof: The results are trivially derived from (5)-(6).

Lemma 4 ϕZG (t) = 1
σX

ϕZ′

G
( t−µX

σX
)

Proof: The result is immediate from a simple substitution
in (19) and from Lemma 3.

Lemma 5 ϕZ(t) = 1
σX

ϕZ′ ( t−µX
σX

)

Proof: The result is immediate from a simple substitution
in (20) which yields (10).

We next prove that the error in approximating Z with ZG

is the same as the error in approximating Z with Z ′
G.

Lemma 6 Ξ(Z′)(Z′

G
) = Ξ(Z)(ZG)

Proof: From our error definition in (8), and from the results
obtained above, we have the following.

Ξ(Z′)(Z′

G
)

=

∫ ∞

−∞

|ϕZ′ (t) − ϕZ′

G
(t)| dt

=

∫ ∞

−∞

|ϕZ′ (
t − µX

σX
) − ϕZ′

G
(
t − µX

σX
)| d(

t − µX

σX
)

= σX

∫ ∞

−∞

|ϕZ(t) − ϕZG(t)| dt
1

σX
= Ξ(Z)(ZG)
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